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Abstract
We consider processing an n × d matrix A in a stream with
row-wise updates according to a recent algorithm called Frequent
Directions (Liberty, KDD 2013). This algorithm maintains an
` × d matrix Q deterministically, processing each row in O(d`2)
time; the processing time can be decreased to O(d`) with a slight
modification in the algorithm and a constant increase in space. Then
for any unit vector x, the matrix Q satisfies

0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`.

We show that if one sets ` = dk + k/εe and returns Qk, a k × d
matrix that is simply the top k rows of Q, then we achieve the
following properties:

‖A−Ak‖2F ≤ ‖A‖2F − ‖Qk‖2F ≤ (1 + ε)‖A−Ak‖2F
and where πQk (A) is the projection of A onto the rowspace of Qk

then
‖A− πQk (A)‖

2
F ≤ (1 + ε)‖A−Ak‖2F .

We also show that Frequent Directions cannot be adapted to a
sparse version in an obvious way that retains ` original rows of the
matrix, as opposed to a linear combination or sketch of the rows.

1 Introduction
The data streaming paradigm [27] considers computation on
a large data set A where one data item arrives at a time, is
processed, and then is not read again. It enforces that only
a small amount of memory is available at any given time.
This small space constraint is critical when the full data set
cannot fit in memory or disk. Typically, the amount of space
required is traded off with the accuracy of the computation
on A. Usually the computation results in some summary
S(A) of A, and this trade-off determines how accurate
one can be with the available space resources. Although
computational runtime is important, in this paper we mainly
focus on space constraints and the types of approximation
guarantees that can be made.

In truly large datasets, one processor (and memory) is
often incapable of handling all of the dataset A in a feasible
amount of time. Even reading a terabyte of data on a single
processor can take many hours. Thus this computation is
often spread among some set of processors, and then the
summary of A is combined after (or sometimes during [8])
its processing on each processor. Again often each item is
read once, whether it comes from a single large source or is

being generated on the fly. The key computational problem
shifts from updating a summary S(A) when witnessing a
single new data item (the streaming model), to taking two
summaries S(A1) and S(A2) and constructing a single new
summary S(A1 ∪ A2). In this new paradigm the goal is
to have the same space-approximation trade-offs in S(A1 ∪
A2) as possible for a streaming algorithm. When such a
process is possible, the summary is known as a mergeable
summary [2]. Linear sketches are trivially mergeable, so
this allows many streaming algorithms to directly translate
to this newer paradigm. Again, space is a critical resource
since it directly corresponds with the amount of data needed
to transmit across the network, and emerging cost bottleneck
in big data systems.

In this paper we focus on deterministic mergeable sum-
maries for low-rank matrix approximation, based on recent
work by Liberty [23], that is already known to be merge-
able [23]. Thus our focus is a more careful analysis of the
space-error trade off for the algorithm, and we describe them
under the streaming setting for simplicity; all bounds directly
carry over into mergeable summary results. In particular we
re-analyze the Frequent Directions algorithm of Liberty to
show it provides relative error bounds for matrix sketching,
and conjecture it achieves the optimal space, up to log fac-
tors, for any row-update based summary. This supports the
strong empirical results of Liberty [23]. His analysis only
provided additive error bounds which are hard to compare
to more conventional ways of measuring accuracy of matrix
approximation algorithms.

1.1 Problem Statement and Related Work In this prob-
lem A is an n × d matrix and the stream processes each
row ai (of length d) at a time. Typically the matrix is as-
sumed to be tall so n � d, and sometimes the matrix
will be assumed to be sparse so the number of non-zero
entries nnz(A) of A will be small, nnz(A) � nd (e.g.
nnz(A) = O((n+ d) log(nd))).

The best rank-k approximation to A (under Frobenius
or 2 norm) is denoted as Ak and can be computed in O(nd2)
time on a tall matrix using the singular value decomposition.
The svd(A) produces three matrices U , S, and V where U



and V are orthonormal, of size n×n and d×d, respectively,
and S is n×d but only has non-zero elements on its diagonal
{σ1, . . . , σd}. Let Uk, Sk, and Vk be the first k columns of
each matrix, then A = USV T and Ak = UkSkV

T
k . Note

that although Ak requires O(nd) space, the set of matrices
{Uk, Sk, Vk} require only a total of O((n + d)k) space (or
O(nk) if the matrix is tall). Moreover, even the set {U, S, V }
really only takesO(nd+d2) space since we can drop the last
n − d columns of U , and the last n − d rows of S without
changing the result. In the streaming version, the goal is to
compute something that replicates the effect ofAk using less
space and only seeing each row once.

We next describe the most relevant related works under
various categories, and then in Section 1.2 we make an
effort to catalog the upper bounds of directly comparable
algorithms.

Construction bounds. The strongest version, (providing
construction bounds) for some parameter ε ∈ (0, 1), is
some representation of a rank k matrix Â such that ‖A −
Â‖ξ ≤ (1 + ε)‖A − Ak‖ξ for ξ = {2, F}. Unless A is
sparse, then storing Â explicitly may require Ω(nd) space,
so that is why various representations of Â are used in its
place. This can include decompositions similar to the SVD,
e.g. a CUR decomposition [11, 15, 24] where Â = CUR
and where U is small and dense, and C and R are sparse
and skinny, or others [7] where the middle matrix is still
diagonal. The sparsity is often preserved by constructing the
wrapper matrices (e.g. C and R) from the original columns
or rows of A. There is an obvious Ω(n + d) space lower
bound for any construction result in order to preserve the
column and the row space.

Projection bounds. Alternatively, a weaker version (pro-
viding projection bounds) just finds a rank k subspace Bk
where the projection of A onto this subspace πBk

(A) rep-
resents Â. This bound is weaker since this cannot actually
represent Â without making another pass over A to do the
projection. An even weaker version finds a rank r > k sub-
space B, where Â is represented by the best rank k approxi-
mation of πB(A); note that πB(A) is then also rank r, not k.
However, when B or Bk is composed of a set of ` rows (and
perhaps Bk is only k rows) then the total size is only O(d`)
(allotting constant space for each entry); so it does not de-
pend on n. This is a significant advantage in tall matrices
where n � d. Sometimes this subspace approximation is
sufficient for downstream analysis, since the rowspace is still
(approximately) preserved. For instance, in PCA the goal is
to compute the most important directions in the row space.

Streaming algorithms. Many of these algorithms are not
streaming algorithms. To the best of our understanding,
the best streaming algorithm [6] is due to Clarkson and
Woodruff. All bounds assume each matrix entry requires

O(log nd) bits. It is randomized and it constructs a decom-
position of a rank k matrix Â that satisfies ‖A − Â‖F ≤
(1 + ε)‖A−Ak‖F , with probability at least 1− δ. This pro-
vides a relative error construction bound of sizeO((k/ε)(n+
d) log(nd)) bits. They also show an Ω((k/ε)(n + d)) bits
lower bound.

Although not explicitly described in their paper, one
can directly use their techniques and analysis to achieve a
weak form of a projection bound. One maintains a matrix
B = AS with m = O((k/ε) log(1/δ)) columns where
S is a d × m matrix where each entry is chosen from
{−1,+1} at random. Then setting Â = πB(A), achieves
a relative (1 + ε)-error projection bound, however B is rank
O((k/ε) log(1/δ)) and hence that is the only bound on Â
as well. The construction lower bound suggests that there
may be an Ω(dk/ε) bits lower bound for projection, but is
not proven. They also study this problem in the turnstile
model where each element of the matrix can be updated
at each step (including subtractions). In this model they
require O((k/ε2)(n + d/ε2) log(nd)) bits, and show an
Ω((k/ε)(n+ d) log(nd)) bits lower bound.

Another more general “coreset” result is provided by
Feldman et al. [16]. In the streaming setting it requires
O((k/ε) log n) space and can be shown to provide a rank
O(k/ε) matrix B that satisfies a relative error bound of the
form ‖A− πB(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

Column sampling. Another line of work [1,4,10–15,24,30]
considers selecting a set of rows from A directly (not main-
taining rows that for instance may be linear combinations of
rows of A). This maintains sparsity of A implicitly and the
resulting summary may be more easily interpretable. Note,
they typically consider the transpose of our problem and se-
lect columns instead of rows, and sometimes both. An algo-
rithm [4] can construct a set of ` = (2k/ε)(1+o(1)) columns
R so that ‖A− πR(A)‖2F ≤ (1 + ε)‖A−Ak‖2F . There is an
Ω(k/ε) lower bound [10], but this enforces that only rows of
the original matrix are retained and does not directly apply
to our problem. And these are not streaming algorithms.

Although not typically described as streaming algo-
rithms (perhaps because the focus was on sampling columns
which already have length n) when a matrix is processed row
wise there exists algorithms that can use reservoir sampling
to become streaming. The best streaming algorithm [13]
samples O(k/ε2) rows (proportional to their squared norm)
to obtain a matrixR so that ‖A−πR(A)‖2F ≤ ‖A−Ak‖2F +
ε‖A‖2F , a weaker additive error bound. These techniques can
also build approximate decompositions of Â instead of using
πR(A), but again these decompositions are only known to
work with at least 2 passes, and are thus not streaming.

Runtime Bounds. There is a wealth of literature on the
problem of matrix approximation; most recently two algo-
rithms [7, 28] showed how to construct a decomposition of



Â that has rank k with error bound ‖A − Â‖2F ≤ (1 +
ε)‖A − Ak‖2F with constant probability in approximately
O(nnz(A)) time. We refer to these papers for a more thor-
ough survey of the history of the area, many other results,
and other similar approximate linear algebra applications.

Frequent directions. Finally we mention a recent algorithm
by Liberty [23] which runs in O(nd/ε) time, maintains a
matrix with 2/ε rows in a row-wise streaming algorithm, and
produces a matrix Â of rank at most 2/ε so that for any unit
vector x of length d satisfies 0 ≤ ‖Ax‖2−‖Âx‖2 ≤ ε‖A‖2F .
We will examine a slight variation of this algorithm and
describe bounds that it achieves in more familiar terms. This
algorithm will be more carefully explained in Section 2.2.

Incremental PCA. We mention one additional line of work
on incremental PCA [5, 19, 20, 22, 29]. These approaches
attempt to maintain the PCA of a dataset A (using the SVD
and a constant amount of additional bookkeeping space) as
each row of A arrives in a stream. In particular, after i − 1
rows they consider maintaining Aik, and on a new row ai
compute svd([Aik; ai]) = U iSi(V i)T and, then only retain
its top rank k approximation as Ai+1

k = U ikS
i
k(V ik )T . This is

remarkably similar to Liberty’s algorithm [23], but is missing
the Misra-Gries [26] step (we describe Liberty’s algorithm in
more detail in Section 2.2). As a result, incremental PCA can
have arbitrarily bad error on adversarial data.

Consider an example where the first k rows generate a
matrix Ak with kth singular value σk = 10. Then each row
thereafter ai for i > k is orthogonal to the first k rows of A,
and has norm 5. This will cause the (k + 1)th right singular
vector and value σk+1 of svd([Aik; ai]) to exactly describe
the subspace of ai with σk+1 = 5. Thus this row ai will
always be removed on the processing step and Ai+1

k will be
unchanged from Aik. If all rows ai for i > k are pointing in
the same direction, this can cause arbitrarily bad errors of all
forms of measuring approximation error considered above.

1.2 Catalog of Related Bounds Tables 1, 2 and 3 sum-
marize existing algorithms in landscape of work in low-rank
matrix approximation. We grouped them into three main cat-
egories: Streaming, Fast Runtime, and Column Sampling.
We also tried to write bounds in a consistent compatible for-
mat. To do so, some parts needed to be slightly simplified.
The space and time bounds are given in terms of n (the num-
ber of rows), d (the number of columns), k (the specified
rank to approximate), r (the rank of input matrix A), ε (an
error parameter), and δ (the probability of failure of a ran-
domized algorithm). An expresion Õ(x) hides poly log(x)
terms.

The size is sometimes measured in terms of the number
of columns (#C) and/or the number of rows (#R). Otherwise,
if #R or #C is not specified the space refers the number of
words in the RAM model where it is assumedO(log nd) bits

fit in a single word. The error is of one of several forms.

• A projection result builds a subspace G so that Â =
πG(A), but does not actually construct πG(A). This is
denoted by P.
Ideally rank(G) = k. When that is not the case, then it
is denoted Pr where r is replaced by the rank of G.

• A construction result builds a series of (usually 3)
matrices (say C, U , and R) where Â = CUR. Note
again, it does not construct Â since it may be of larger
size than all of C, U , and R together, but the three
matrices can be used in place of Â. This is denoted
C.

• ε-relative error is of the form ‖A−Â‖F ≤ (1+ε)‖A−
Ak‖F where Ak is the best rank-k approximation to A.
This is denoted εR.

• ε-additive error is of the form ‖A − Â‖2F ≤ ‖A −
Ak‖2F + ε‖A‖2F . This is denoted εA.
This can sometimes also be expressed as a spectral
norm of the form ‖A − Â‖22 ≤ ‖A − Ak‖22 + ε‖A‖2F
(note the error term ε‖A‖2F still has a Frobenius norm).
This is denoted εL2.

• In a few cases the error does not follow these patterns
and we specially denote it.

• Algorithms are randomized unless it is specified. In
all tables we state bounds for a constant probability of
failure. If we want to decrease the probability of failure
to some parameter δ, we can generally increase the size
and runtime by O(log(1/δ)).

1.3 Our Results Our main result is a deterministic relative
error bound for low-rank matrix approximation. A major
highlight is that all proofs are, we believe, quite easy to
follow.

Low-rank matrix approximation. We slightly adapt the
streaming algorithm of Liberty [23], called Frequent Direc-
tions to maintain ` = dk+k/εe rows, which outputs an `×d
matrixQ. Then we considerQk a k×dmatrix, the best rank
k approximation to Q (which turns out to be its top k rows).
We show that

‖A− πQk
(A)‖2F ≤ (1 + ε)‖A−Ak‖2F

and that

‖A−Ak‖2F ≤ ‖A‖2F − ‖Qk‖2F ≤ (1 + ε)‖A−Ak‖2F .

This algorithm runs in O(ndk2/ε2) time. If we allow ` =
cdk + k/εe for any constant c > 1, then it can be made to
run in O(ndk/ε) time with the same guarantees on Qk.

This is the smallest space streaming algorithm known
for these bounds. Also, it is deterministic, whereas previous
algorithms were randomized.



Streaming algorithms
Paper Space Time Bound
DKM06 [13]
LinearTimeSVD

#R = O(1/ε2)
O((d+ 1/ε2)/ε4)

O((d+ 1/ε2)/ε4 + nnz(A)) P, εL2

#R = O(k/ε2)
O((k/ε2)2(d+ k/ε2))

O((k/ε2)2(d+k/ε2)+nnz(A)) P, εA

Sar06 [31]
turnstile

#R = O(k/ε+ k log k)
O(d(k/ε+ k log k))

O(nnz(A)(k/ε + k log k) +
d(k/ε+ k log k)2))

PO(k/ε+k log k), εR

CW09 [6] #R = O(k/ε) O(nd2 + (ndk/ε)) PO(k/ε), εR
CW09 [6] O((n+ d)(k/ε)) O(nd2 + (ndk/ε)) C, εR
CW09 [6]
turnstile

O((k/ε2)(n+ d/ε2)) O(n(k/ε2)2 +nd(k/ε2)+nd2) C, εR

FSS13 [16]
deterministic

O((dk/ε) log n) n((dk/ε) log n)O(1) P2dk/εe, εR

Lib13 [23]
deterministic,
rank(Q) ≤ 2/ε

#R = 2/ε
O(d/ε)

O(nd/ε) Any unit vector x
0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤
ε‖A‖2F

Lib13 [23]
deterministic,
ρ = ‖A‖2F /‖A‖22

#R = O(ρ/ε)
O(dρ/ε)

O(ndρ/ε) PO(ρ/ε), εL2

This paper
deterministic

#R = dk/ε+ ke
O(dk/ε)

O(ndk2/ε2) P, εR

#R = cdk/ε+ ke, c > 1
O(dk/ε)

O( c2

c−1ndk/ε) P, εR

Table 1: Low-rank matrix approximation algorithms in streaming model.

Algorithms with Fast Runtime
Paper Space Time Bound
AM01 [1] O(nd) O(nd) ‖A−Âk‖2 ≤ ‖A−Ak‖2+

10(maxi,j |Aij |)
√
n+ d

CW13 [7] O((k2/ε6) log4(k/ε) +
(nk/ε3) log2(k/ε) +
(nk/ε) log(k/ε))

O(nnz(A))+Õ(nk2/ε4+k3/ε5) C, εR

NN13 [28] - O(nnz(A)) + Õ(nk2 +
nk1.37ε−3.37 + k2.37ε−4.37)

C, εR

- O(nnz(A) logO(1) k) +
Õ(nk1.37ε−3.37 + k2.37ε−4.37)

C, εR

Table 2: Low-rank matrix approximation algorithms with fast runtime.



Column Sampling algorithms
Paper Space Time Bound
FKV04 [17] O(k4/ε6 max(k4, ε−2)) O(k5/ε6 max(k4, ε−2)) P, εA
DV06 [10] #C = O(k/ε+ k2 log k)

O(n(k/ε+ k2 log k))
O(nnz(A)(k/ε+ k2 log k)+
(n + d)(k2/ε2 + k3 log(k/ε) +
k4 log2 k))

P, εR

DKM06 [13]
“LinearTimeSVD”

#C = O(1/ε2)
O((n+ 1/ε2)/ε4)

O((n+ 1/ε2)/ε4 + nnz(A)) P, εL2

#C = O(k/ε2)
O((k/ε2)(n+ k/ε2))

O((k/ε2)2(n+ k/ε2) + nnz(A)) P, εA

DKM06 [13]
“ConstantTimeSVD”

#C+R = O(1/ε4)
O(1/ε12 + nk/ε4)

O((1/ε12 + nk/ε4 + nnz(A)) P, εL2

#C+R = O(k2/ε4)
O(k6/ε12 + nk3/ε4)

O(k6/ε12 + nk3/ε4 + nnz(A)) P, εA

DMM08 [15]
“CUR”

#C =O(k2/ε2)
#R = O(k4/ε6)

O(nd2) C, εR

MD09 [24]
“ColumnSelect”

#C = O(k log k/ε2)
O(nk log k/ε2)

O(nd2) PO(k log k/ε2), εR

BDM11 [4] #C = 2k/ε(1 + o(1)) O((ndk + dk3)ε−2/3) P2k/ε(1+o(1)), εR

Table 3: Column Sampling based low-rank matrix approximation algorithms.

We note that it is sometimes desirable for the bounds
to be written without squared norms, for instance as ‖A −
πQk

(Q)‖F ≤ (1 + ε)‖A − Ak‖F . For ε > 0, if we
take the square root of both sides of the bound above
‖A − πQk

(A)‖2F ≤ (1 + ε)‖A − Ak‖2F , then we still get
a
√

(1 + ε) ≤ (1 + ε) approximation.

No sparse Frequent Directions. We also consider trying to
adapt the Frequent Directions algorithm to column sampling
(or rather row sampling), in a way that the ` rows it maintains
are rows from the original matrix A (possibly re-weighted).
This would implicitly preserve the sparsity of A in Q. We
show that this is, unfortunately, not possible, at least not in
the most obvious adaptation.

1.4 Matrix Notation Here we quickly review some nota-
tion. An n × d matrix A can be written as a set of n rows
as [a1; a2; . . . , an] where each ai is a row of length d. Al-
ternatively a matrix V can be written as a set of columns
[v1, v2, . . . , vd].

The Frobenius norm of a matrix A is defined ‖A‖F =√∑
i=1 ‖ai‖2 where ‖ai‖ is Euclidean norm of ai. Let Ak

be the best rank k approximation of the matrixA, specifically
Ak = arg maxC:rank(C)≤k‖A− C‖F .

Given a row r and a matrix X let πX(r) be a projection
operation of r onto the subspace spanned byX . In particular,
we will project onto the row space of X , and this can be
written as πX(r) = rXT (XXT )+X where Y + indicates
taking the Moore-Penrose psuedoinverse of Y . But whether
it projects to the row space or the column space will not
matter since we will always use the operator inside of a

Frobenius norm.
This operator can be defined to project matrices R as

well, denoted as πX(R), where this can be thought of as
projecting each row of the matrix R individually.

2 Review of Related Algorithms
We begin by reviewing two streaming algorithms that our
results can be seen as an extension. The first is an algorithm
for heavy-hitters from Misra-Gries [26] and its improved
analysis by Berinde et al. [3]. We re-prove the relevant
part of these results. Next we describe the algorithm of
Liberty [23] for low-rank matrix approximation that our
analysis is based on. We again re-prove his result, with a few
additional intermediate results we will need for our extended
analysis. One familiar with the work of Misra-Gries [26],
Berinde et al. [3], and Liberty [23] can skip this section,
although we will refer to some lemmas re-proven below.

2.1 Relative Error Heavy-Hitters LetA = {a1, . . . , an}
be a set of n elements where each ai ∈ [u]. Let fj = |{ai ∈
A | ai = j}| for j ∈ [u]. Assume without loss of generality
that fj ≥ fj+1 for all j, and define Fk =

∑k
j=1 fj . This is

just for notation, and not known ahead of time by algorithms.
The Misra-Gries algorithm [26] finds counts f̂j so that

for all j ∈ [u] we have 0 ≤ fj − f̂j ≤ n/`. It only uses
` counters and ` associated labels and works in a streaming
manner as follows, starting with all counters empty (i.e. a
count of 0). It processes each ai in (arbitrary) order.

• If ai matches a label, increment the associated counter.
• If not, and there is an empty counter, change the label



of the counter to ai and set its counter to 1.
• Otherwise, if there are no empty counters, then decre-

ment all counters by 1.

To return f̂j , if there is a label with j, then return the
associated counter; otherwise return 0.

Let r be the total number of times that all counters are
decremented. We can see that r < n/` since each time
one counter is decremented then all ` counters (plus the new
element) are decremented and must have been non-empty
before hand. Thus this can occur at most n/` times otherwise
we would have decremented more counts than elements.
This also implies that fj − f̂j ≤ r < n/` since we only do
not count an element if it is removed by one of r decrements.
This simple, clever algorithm, and its variants, have been
rediscovered several times [9, 18, 21, 25].

Define F̂k =
∑k
j=1 f̂j and let Rk =

∑u
j=k+1 fj =

n−Fk. The value Rk represents the total counts that cannot
be described (even optimally) if we only use k counters. A
bound on Fk − F̂k in terms of Rk is more interesting than
one in terms of n, since this algorithm is only useful when
there are only really k items that matter and the rest can be
ignored. We next reprove a result of Berinde et al. [3] (in
their Appendix A).

LEMMA 2.1. (BERINDE et al. [3]) The number of decre-
ments is at most r ≤ Rk/(`− k).

Proof. On each of r decrements at least ` − k counters not
in the top k are decremented. These decrements must come
from Rk, so each can be charged to at least one count in Rk;
the inequality follows. 2

THEOREM 2.1. When using ` = dk + k/εe in the Misra-
Gries algorithm Fk − F̂k ≤ εRk and fj − f̂j ≤ ε

kRk.
If we use ` = dk + 1/εe, then fj − f̂j ≤ εRk.

Proof. Using Lemma 2.1 we have r ≤ Rk/(` − k). Since
for all j we have fj− f̂j ≤ r, then Fk− F̂k ≤ rk ≤ Rk k

`−k .
Finally, setting ` = k + k/ε results in Fk − F̂k ≤ εRk and
r ≤ Rk

`−k = ε
kRk.

Setting ` = k+1/ε results in fj−f̂j ≤ r ≤ Rk

`−k = εRk
for any j. 2

This result can be viewed as a warm up for the rank
k matrix approximation to come, as those techniques will
follow a very similar strategy.

2.2 Additive Error Frequent Directions Recently Lib-
erty [23] discovered how to apply this technique towards
sketching matrices. Next we review his approach, and for
perspective and completeness re-prove his main results.

Algorithm. The input to the problem is an n × d matrix A
that has n rows and d columns. It is sometimes convenient

to think of each row ai as a point in Rd. We now process A
one row at a time in a streaming fashion always maintaining
an `× d matrix such that for any unit vector x ∈ Rd

(2.1) ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`,

This invariant (2.1) guarantees that in any “direction” x
(since x is a unit vector in Rd), thatA andQ are close, where
close is defined by the Frobenius norm of ‖A‖2F over `.

Liberty’s algorithm is described in Algorithm 2.1. At
the start of each round, the last row of Q will be all zeros.
To process each row ai, we replace the last row (the `th
row) of Q with ai to create a matrix Qi. We take the SVD
of Qi as [U, S, V ] = svd(Qi). Let δ = s2` , the last (and
smallest) diagonal value of S, and in general let sj be the
jth diagonal value so S = diag(s1, s2, . . . , s`). Now set

s′j =
√
s2j − δ for j ∈ [`], and notice that all values are non-

negative and s′` = 0. Set S′ = diag(s′1, s
′
2, . . . , s

′
`). Finally

set Q = S′V T .

Algorithm 2.1 Frequent Directions (Liberty [23])
Initialize Q0 as an all zeros `× d matrix.
for each row ai ∈ A do

Set Q+ ← Qi−1 with last row replaced by ai
[Z, S, Y ] = svd(Q+)
Ci = SY T [only for notation]
Set δi = s2` [the `th entry of S, squared]

Set S′ = diag
(√

s21 − δi,
√
s22 − δi, . . . ,

√
s2`−1 − δi, 0

)
Set Qi = S′Y T

return Q = Qn

It is useful to interpret each row of Y T as a “direction,”
where the first row is along the direction with the most
variance, all rows are orthogonal, and all rows are sorted in
order of variance given that they are orthogonal to previous
rows. Then multiplying by S′ scales the jth row yj of Y T

by s′j . Since s′` = 0, then the last row of Qi must be zero.

Analysis. Let ∆ =
∑n
i=1 δi.

LEMMA 2.2. For any unit vector x ∈ Rd we have

‖Cix‖2 − ‖Qix‖2 ≤ δi.



Proof. Let Yj be the jth column of Y , then

‖Cix‖2 =
∑̀
j=1

s2j 〈yj , x〉2

=
∑̀
j=1

((s′j)
2 + δi)〈yj , x〉2

=
∑̀
j=1

(s′j)
2〈yj , x〉2 + δi

∑̀
j=1

〈yj , x〉2

≤ ‖Qix‖2 + δi

Subtracting ‖Qix‖2 from both sides completes the proof. 2

LEMMA 2.3. For any unit vector x ∈ Rd we have

0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ∆.

Proof. Notice that ‖Cix‖2 = ‖Qi−1x‖2 + ‖aix‖2 for all
2 ≤ i ≤ n and that ‖Q1x‖2 = ‖a1x‖2. By substituting this
into inequality from Lemma 2.2, we get

‖Qi−1x‖2 + ‖aix‖2 ≤ ‖Qix‖2 + δi

Subtracting ‖Qi−1x‖2 from both sides and summing over i
reveals

‖Ax‖2 =

n∑
i=1

‖aix‖2

≤
n∑
i=1

(‖Qix‖2 − ‖Qi−1x‖2 + δi)

= ‖Qnx‖2 − ‖Q0x‖2 +

n∑
i=1

δi

= ‖Qnx‖2 + ∆.

Subtracting ‖Qnx‖2 = ‖Qx‖2 from both sides proves the
second inequality of the lemma.

To see the first inequality observe ‖Qi−1x‖2+‖aix‖2 =
‖Cix‖2 ≥ ‖Qix‖2 for all 1 ≤ i ≤ n. Then we can expand

‖Ax‖2 =

n∑
i=1

‖aix‖2

=

n∑
i=1

‖Cix‖2 − ‖Qi−1x‖2

≥
n∑
i=1

‖Qix‖2 − ‖Qi−1x‖2

= ‖Qx‖2.

2

LEMMA 2.4. (LIBERTY [23]) Algorithm 2.1 maintains for
any unit vector x that

0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`

and

T = ∆` = ‖A‖2F − ‖Q‖2F .

Proof. In the ith round of the algorithm ‖Ci‖2F = ‖Qi‖2F +
`δi and ‖Ci‖2F = ‖Qi−1‖2F + ‖ai‖2. By solving for ‖ai‖2
and summing over i we get

‖A‖2F =

n∑
i=1

‖ai‖2

=

n∑
i=1

‖Qi‖2F − ‖Qi−1‖2F + `δi

= ‖Q‖2F + `∆.

This proves the second part of the lemma. Using that
‖Q‖2F ≥ 0 we obtain ∆ ≤ ‖A‖2F /`. Substituting this into
Lemma 2.3 yields 0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`. 2

3 New Relative Error Bounds for Frequent Directions
We now generalize the relative error type bounds for Misra-
Gries (in Section 2.1) to the Frequent Directions algorithm
(in Section 2.2).

Before we proceed with the analysis of the algorithm,
we specify some parameters and slightly modify Algorithm
2.1. We always set ` = dk+k/εe. Also, instead of returning
Q in Algorithm 2.1, as described by Liberty, we return Qk.
Here Qk is the best rank k approximation of Q and can be
written Qk = S′kY

T
k where S′k and Yk are the first k rows of

S′ and Y , respectively. Note that Y = [y1, . . . , y`] are the
right singular vectors of Q.

This way Qk is also rank k (and size k × d), and
will have nice approximation properties to Ak. Recall that
Ak = UkΣkV

T
k where [U,Σ, V ] = svd(A) and Uk, Σk, Vk

are the first k columns of these matrices, representing the
first k principal directions. Let V = [v1, . . . , vd] be the right
singular vectors of A.

LEMMA 3.1. ∆ ≤ ‖A−Ak‖2F /(`− k).

Proof. Recall that T = ∆` = ‖A‖2F − ‖Q‖2F is the total
squared norm subtracted from all of any set of orthogonal
directions throughout the algorithm. Now if r = rank(A) we



have:

T = ‖A‖2F − ‖Q‖2F

=

k∑
i=1

‖Avi‖2 +

r∑
i=k+1

‖Avi‖2 − ‖Q‖2F

=

k∑
i=1

‖Avi‖2 + ‖A−Ak‖2F − ‖Q‖2F

≤
k∑
i=1

‖Avi‖2 + ‖A−Ak‖2F −
k∑
i=1

‖Qvi‖2

= ‖A−Ak‖2F +

k∑
i=1

(
‖Avi‖2 − ‖Qvi‖2

)
≤ ‖A−Ak‖2F + k∆

Third transition holds because
∑k
i=1 ‖Qvi‖2 < ‖Q‖2F and

fifth transition is due to Lemma 2.3 that ‖Avi‖2−‖Qvi‖2 ≤
∆. Now we solve for T = ∆` ≤ ‖A − Ak‖2F + k∆ to get
∆ ≤ ‖A−Ak‖2F /(`− k). 2

Now we can show that projecting A onto Qk provides a
relative error approximation.

LEMMA 3.2. ‖A− πQk
(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

Proof. Using the vectors vi as right singular vectors of A,
and letting r = rank(A), then we have

‖A− πQk
(A)‖2F = ‖A‖2F − ‖πQk

(A)‖2F

= ‖A‖2F −
k∑
i=1

‖Ayi‖2

≤ ‖A‖2F −
k∑
i=1

‖Qyi‖2F

≤ ‖A‖2F −
k∑
i=1

‖Qvi‖2

≤ ‖A‖2F −
k∑
i=1

(‖Avi‖2 −∆)

= ‖A‖2F − ‖Ak‖2F + k∆

≤ ‖A−Ak‖2F +
k

`− k
‖A−Ak‖2F

=
`

`− k
‖A−Ak‖2F

Note that first line is true due to Pythagorean theo-
rem. Second transition holds by Lemma 2.3 and since∑j
i=1 ‖Qyi‖2 ≥

∑j
i=1 ‖Qvi‖2 third transition holds too.

Fourth transition comes from Lemma 2.3 and sixth transi-
tion is driven by Lemma 3.1.

Finally, setting ` = dk + k/εe results in ‖A −
πQk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F . 2

We would also like to relate the Frobenius norm of Qk
directly to that of Ak, instead of projecting A onto it (which
cannot be done in a streaming setting, at least not in ω(n)
space). However ‖A−Qk‖F does not make sense since Qk
has a different number of rows than A. However, we can
decompose ‖A − Ak‖2F = ‖A‖2F − ‖Ak‖2F since Ak is a
projection of A onto a (the best rank k) subspace, and we
can use the Pythagorean Theorem. Now we can compare
‖A‖2F − ‖Ak‖2F to ‖A‖2F − ‖Qk‖2F .

LEMMA 3.3. ‖A‖2F − ‖Ak‖2F ≤ ‖A‖2F − ‖Qk‖2F ≤ (1 +
ε)(‖A‖2F − ‖Ak‖2F ).

Proof. The first inequality can be seen since

‖Ak‖2F =

k∑
i=1

‖Avi‖2 ≥
k∑
i=1

‖Ayi‖2

≥
k∑
i=1

‖Qyi‖2

= ‖Qk‖2F

And the second inequality follows by

‖A‖2F − ‖Qk‖2F = ‖A‖2F −
k∑
i=1

‖Qyi‖2

≤ ‖A‖2F −
k∑
i=1

‖Qvi‖2

≤ ‖A‖2F −
k∑
i=1

(‖Avi‖2 −∆)

= ‖A‖2F − ‖Ak‖2F + k∆

≤ ‖A−Ak‖2F +
k

`− k
‖A−Ak‖2F

=
`

`− k
‖A−Ak‖2F

Finally, setting ` = k + k/ε results in ‖A‖2F − ‖Qk‖2F ≤
(1 + ε)‖A−Ak‖2F = (1 + ε)(‖A‖2F − ‖Ak‖2F ). 2

One may ask why not compare ‖Ak‖F to ‖Qk‖F di-
rectly, instead of subtracting from ‖A‖2F . First note that the
above bound does guarantee that ‖Ak‖F ≥ ‖Qk‖F . Sec-
ond, in situations where a rank k approximation is interest-
ing, then most of the mass fromA should be in its top k com-
ponents. Then ‖Ak‖F > ‖A− Ak‖F so the above bound is
actually tighter. To demonstrate this we can state the follow-
ing conditional statement comparing ‖Ak‖F and ‖Qk‖F .

LEMMA 3.4. If ‖A−Ak‖F ≤ ‖Ak‖F , then

(1− ε)‖Ak‖2F ≤ ‖Qk‖2F ≤ ‖Ak‖2F .



Proof. The second inequality follows from Lemma 3.3, by
subtracting ‖A‖2F . The first inequality uses Lemma 2.3 as
follows.

‖Ak‖2F =

k∑
i=1

‖Avi‖2 ≤
k∑
i=1

(‖Qvi‖2 + ∆)

≤ ‖Qk‖2F + k∆

≤ ‖Qk‖2F +
k

`− k
‖A−Ak‖2F

≤ ‖Qk‖2F + ε‖Ak‖2F .

2

Finally, we summarize all of our bounds about Algo-
rithm 2.1.

THEOREM 3.1. Given an input n × d matrix A, by setting
` = dk + k/εe Algorithm 2.1 runs in time O(nd`2) =
O(ndk2/ε2) time and produces an ` × d matrix Q that for
any unit vector x ∈ Rd satisfies

0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`

and the projection of Q along its top k right singular values
is a k × d matrix Qk which satisfies

‖A− πQk
(A)‖2F ≤ (1 + ε)‖A−Ak‖2F

and

‖A‖2F−‖Ak‖2F ≤ ‖A‖2F−‖Qk‖2F ≤ (1+ε)(‖A‖2F−‖Ak‖2F ).

Liberty [23] also observes that by increasing ` by a
constant c > 1 and then processing every `(c − 1) elements
in a batch setting (each round results in a c` row matrix Q)
then the runtime can be reduced toO( c2

c−1nd`) = O(ndk/ε)
at the expense of more space. The same trick can be applied
here to use ` = cdk + k/εe rows in total O(ndk/ε) time.

4 No Sparse Frequent Directions
In this section we consider extending the Frequent Directions
algorithm described in the previous section to a sparse ver-
sion. The specific goal is to retain a (re-weighted) set of `
rows Q of an input matrix A so that for any unit vector x ∈
Rd that 0 ≤ ‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /`, and also to hope-
fully extend this so that ‖A−πQk

(A)‖2F ≤ (1+ε)‖A−Ak‖2F
as above. This is an open problem left by Liberty [23]. It is
also a useful goal in many scenarios when returning a set of
k singular vectors of a matrix that are linear combinations of
inputs are hard to interpret; in this case returning a weighted
set of actual rows is much more informative.

In this section we show that this is not possible by
directly extending the Frequent Directions algorithm.

In particular we consider processing one row in the
above framework. The input to the problem is an `×dmatrix
Q = [w1r̄1; . . . ;w`r̄`] where each wj is a scalar (initially set
towj = ‖rj‖). The output of one round should be an `− 1×
d matrix Q̂ = [ŵ1r̄1; . . . ; ŵj−1r̄j−1; ŵj+1r̄j+1; . . . ; ŵ`r̄`]
where one of the rows, namely rj , is removed and the rest of
the rows are re-weighted.

Requirements. To make this process work we need the fol-
lowing requirements. Let δi = minj ‖⊥Q−j

(Q)‖2 represent
the smallest amount of squared norm resulting from remov-
ing one row from Q by the procedure above. 1 Assume we
remove this row, although removing any row is just as diffi-
cult but would create even more error.

(P1) The Frobenius norm ‖Q̂‖2F must be reduced so ‖Q̂‖2F ≤
‖Q‖2F − c`δi for some absolute constant c.
The larger the constant (ideally c = 1) the smaller the
bound on `.

(P2) For any unit vector (direction) x ∈ Rd the differ-
ence in norms between Q̂ and Q must be bounded as
‖Qx‖2 ≤ ‖Q̂x‖2 + δi.
In the direction v which defines the norm δi =
‖⊥Q−j (Q)‖2 = ‖Qv‖2 we have 0 = ‖Q̂v‖2 and the in-
equality is tight. And for instance a vector u in the span
of Q−j we have that ‖Qu‖2 = ‖Q̂u‖2, which makes
the right hand side larger.

If both (P1) and (P2) hold, then we can run this proce-
dure for all rows of A and obtain a final matrix Q. Using
similar analysis as in Section 2.2, for any unit vector x ∈ Rd
we can show

‖Ax‖2 − ‖Qx‖2 ≤
∑
i

δi ≤ ‖A‖2F /(c`).

Hard construction. Consider a ` × d matrix Q with
d > `. Let each row of Q be of the form rj =
[1, 0, 0, . . . , 0, 1, 0, . . . , 0] where there is always a 1 in the
first column, and another in the (j + 1)th column for row j;
the remaining entries are 0. Let x = [1, 0, 0, . . . , 0] be the
direction strictly along the dimension represented by the first
column.

Now δi = minj ‖⊥Q−j (Q)‖2 = 1, since for any jth
row rj , when doing an orthogonal projection to Q−j the
remaining vector is always exactly in the jth column where
that row has a squared norm of 1. For notational simplicity,
lets assume we choose to remove row `.

We now must re-weight rows r1 though r`−1; let the
new weights be ŵ2

j = w2
j − αj .

1Define ⊥X(Y ) as the orthogonal projection of Y onto X . It projects
each row of Y onto the subspace orthogonal to the basis of X . It can be
interpreted as ⊥X(Y ) = Y − πX(Y ). Also, we let Q−j be the matrix Q
after removing the jth row.



In order to satisfy (P1) we must have

‖Q‖2F − ‖Q̂‖2F =
∑̀
j=1

w2
j −

`−1∑
j=1

ŵ2
j = w2

` +

`−1∑
j=1

αj ≥ c`δi.

Since w2
` = 2 and δi = 1 we must have

∑`−1
j=1 αj ≥ c`− 2.

In order to satisfy (P2) we consider the vector x as
defined above. We can observe

‖Qx‖2 =
∑̀
j=1

w2
j 〈r̄j , x〉2 =

∑̀
j=1

w2
j (1/2).

and

‖Q̂x‖2 =

`−1∑
j=1

ŵ2
j 〈r̄j , x〉2 = (1/2)

`−1∑
j=1

(w2
j − αj)

= (‖Qx‖2 − 1)− (1/2)

`−1∑
j=1

αj .

Thus we require that
∑`−1
j=1 αj ≤ 2δi − 2 = 0, since recall

δi = 1.
Combining these requirements yields that

0 ≥
`−1∑
j=1

αj ≥ c`− 2

which is only valid when c ≤ 2/`.
Applying the same proof technique as in Section 2.2 to

this process reveals, at best, a bound so that for any direction
x ∈ Rd we have

‖Ax‖2 − ‖Qx‖2 ≤ ‖A‖2F /2.
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