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Abstract

Let X be a chain and OT (X) the full order-preserving transforma-
tion semigroup on X. In this paper, we give a necessary and sufficient
condition for an element of OT (X) to be regular. For ∅ �= Y ⊆ X, we
may count the order-preserving transformation semigroup OT (X,Y ) =
{α ∈ OT (X) | ran α ⊆ Y } as a generalization of OT (X). In addition,
we show that an element α ∈ OT (X,Y ) is regular in OT (X,Y ) if and
only if ran α = Y α and α is regular in OT (X).
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1 Introduction and Preliminaries

An element a of a semigroup S is called regular if a = axa for some x ∈ S, and
S is called a regular semigroup if every element of S is regular. Let Reg(S) be
the set of all regular elements of S.

The image of x in the domain of a mapping α under α is written as xα and
the range (image) of α is denoted by ranα.

For a nonempty set X, let T (X) be the full transformation semigroup on
X, i.e., T (X) is the semigroup under composition of all mappings α : X → X.
It is well-known that T (X) is a regular semigroup ([1, p.4] and [2, p.63]) and
every semigroup can be embedded in T (X) for some nonempty set X([1, p.3]
and [2, p.7]).

A mapping ϕ from a poset X into a poset Y is said to be order-preserving
if for all x, x

′ ∈ X, x ≤ x
′
in X implies xϕ ≤ x

′
ϕ in Y. The posets X and Y
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are said to be order-isomorphic if there is an order-preserving bijection ϕ from
X onto Y such that ϕ−1 : Y → X is order-preserving.

For a poset X, let OT (X) be the subsemigroup of T (X) consisting of all
order-preserving mappings α : X → X. It is known from [1, p.203] that
OT (X) is a regular semigroup if X is a finite chain. In 2000, Kemprasit and
Changphas [4] extended this result to any chain order-isomorphic to a subset
of Z, the set of integers with their natural order.

Theorem 1.1. [4] If X is any chain which is order-isomorphic to a subset
of Z with usual order, then OT (X) is a regular semigroup.

Note that a chain X in Theorem 1.1 is a countable chain. In fact, Kim and
Kozhukhov [6] characterized a countable chain X such that OT (X) is a reg-
ular semigroup. We have that Theorem 1.1 becomes a consequence of their
characterization.

In [4], the authors also considered the regularity of OT (X) where X is an
interval X in R, the set of real numbers with their natural order as follows:

Theorem 1.2. [4] For an interval X in R with usual order, OT (X) is a
regular semigroup if and only if X is closed and bounded.

Rungrattrakoon and Kemprasit [8] extended Theorem 1.2 by considering
intervals in any proper subfield of R as follows:

Theorem 1.3. [8] For a nontrivial interval X in a proper subfield F of R,
OT (X) is not a regular semigroup.

In fact, Theorem 1.3 is a consequence of a main theorem in [3]. As a particular
case of Theorem 1.3, we have that OT (Q) is not a regular semigroup where
Q is the set of rational numbers with their natural order. This result may be
considered as a consequence of a lemma in [6] which states that for a countable
chain X having no maximum and minimum, OT (X) is regular if and only if
X is order-isomorphic to Z.

In [5], the authors generalized the semigroup OT (X) by using sandwich
multiplication and then the regularity was investigated.

The above theorems motivate us to characterize the regular elements of
OT (X) when X is a chain. Then these known results become its consequences.

In 1975, Symons [9] considered the subsemigroup T (X, Y ) of T (X) where
Y is a nonempty subset of a nonempty set X and T (X, Y ) = {α ∈ T (X) |
ran α ⊆ Y }. He studied the automorphisms of T (X, Y ) and considered when
two T (X, Y ) are isomorphic. Since T (X, X) = T (X), we may count T (X, Y )
as a generalization of T (X). However, T (X, Y ) may not be regular. In [7], the
authors characterized the regular elements of T (X, Y ) as follows:
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Theorem 1.4. [7] Let Y be a nonempty subset of a set X. For α ∈
T (X, Y ), α ∈ Reg(T (X, Y )) if and only if ranα = Y α.

We define OT (X, Y ) analogously where Y is a nonempty subset of a poset
X, i.e., OT (X, Y ) = {α ∈ OT (X) | ranα ⊆ Y }. Then OT (X, Y ) may be
also considered as a generalization of OT (X). Notice that OT (X, Y ) is a
subsemigroup of both T (X, Y ) and OT (X). We show in this paper that for a
chain X and ∅ �= Y ⊆ X, Reg(OT (X, Y )) = Reg(T (X, Y ))∩Reg(OT (X)) and
determine when OT (X, Y ) is a regular semigroup.

For a nonempty subset A of a chain X, we let max(A) and min(A) denote
the maximum and the minimum of A, respectively if they exist. Also, for
nonempty subsets A and B of X, let A < B mean that a < b for all a ∈ A
and b ∈ B. For x ∈ X, let x < A stand for {x} < A. We define A > B, A ≤
B, A ≥ B, x > A, x ≤ A and x ≥ A analogously. Notice that x is an upper
bound (u.b.) of A in X if and only if x ≥ A, and x is a lower bound (l.b.) of
A in X if and only if x ≤ A.

The cardinality of a set S is denoted by |S|.

2 Regular Element of OT (X)

To characterize the regular elements of the semigroup OT (X) where X is a
chain, the following series of lemma is needed. The first lemma is evident.

Lemma 2.1. Let X be a chain. If α ∈ OT (X) and a, b ∈ ran α satisfy
a < b, then aα−1 < bα−1.

Lemma 2.2. Let X be a chain and α ∈ Reg(OT (X)).

(i) If ranα has an u.b. in X, then max(ranα) exists.
(ii) If ranα has a l.b. in X, then min(ranα) exists.

Proof. (i) Let β ∈ OT (X) and u ∈ X be such that α = αβα and u ≥ ran α.
Then ran α = Xα = Xαβα = (ranα)βα ≤ uβα ∈ ranα. It follows that
uβα = max(ranα).

(ii) can be proved similarly.

Lemma 2.3. Let X be a chain and α ∈ Reg(OT (X)). If x ∈ X� ran α
is neither an u.b. nor a l.b. of ranα, then max({t ∈ ran α | t < x}) or
min({t ∈ ranα | t > x}) exists.

Proof. Let β ∈ OT (X) be such that α = αβα. We have from the assumption
that both {t ∈ ran α | t < x} and {t ∈ ran α | t > x} are nonempty sets and
ran α is a disjoint union of these two sets. Since xβα ∈ ranα, it follows that
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xβα < x or xβα > x. For t ∈ X, if tα < x, then tα = (tα)βα ≤ xβα. If
tα > x, then tα = (tα)βα ≥ xβα. This shows that

xβα =

{
max({t ∈ ranα | t < x}) if xβα < x,

min({t ∈ ranα | t > x}) if xβα > x,

so the desired result follows.

Theorem 2.4. Let X be a chain and α ∈ OT (X). Then α ∈ Reg(OT (X))
if and only if the following three conditions hold.

(i) If ran α has an u.b. in X, then max(ran α) exists.
(ii) If ran α has a l.b. in X, then min(ran α) exists.
(iii) If x ∈ X� ran α is neither an u.b. nor a l.b. of ranα, then

max({t ∈ ranα | t < x}) or min({t ∈ ranα | t > x}) exists.

Proof. If α ∈ Reg(OT (X)), then from Lemma 2.2(i), Lemma 2.2(ii) and
Lemma 2.3, (i), (ii) and (iii) hold, respectively.

For the converse, assume that (i), (ii) and (iii) hold. If ran α has an u.b.
in X, let u = max(ranα). If ranα has a l.b. in X, let l = min(ran α). If
x ∈ X� ran α is neither an u.b. nor a l.b. of ranα, let

mx =

⎧⎪⎨
⎪⎩

max({t ∈ ranα | t < x}) if max({t ∈ ran α | t < x}) exists,

min({t ∈ ranα | t > x}) if max({t ∈ ran α | t < x}) does not exist

and min({t ∈ ran α | t > x}) exists.

For each x ∈ ran α, choose x
′ ∈ xα−1. Then x

′
α = x for all x ∈ ranα. Thus

(xα)
′
α = xα for all x ∈ X. Define β : X → X by

xβ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
′

if x ∈ ran α,

u
′

if x ≥ ran α,

l
′

if x ≤ ran α,

mx
′

if x ∈ X� ran α and x is neither an u.b. nor

a l.b. of ran α.

Then for every x ∈ X, xαβα = (xα)βα = (xα)
′
α = xα. Hence α = αβα. It

remains to show that β is order-preserving. Let x, y ∈ X be such that x < y.
We can see from Lemma 2.1 that u

′
= max(ran β) if ranα has an u.b. in X

and l
′
= min(ran β) if ranα has a l.b. in X. It follows that if y ≥ ran α or

x ≤ ran α, then xβ ≤ yβ. Also, by Lemma 2.1, we have that if x, y ∈ ran α,
then xβ = x

′
< y

′
= yβ. Therefore there are three cases to clarify as follows:
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Case 1: x ∈ ran α, y ∈ X� ranα and y � ranα. Since x < y, we have
y � ran α. If my = max({t ∈ ran α | t < y}), then x ≤ my, so by Lemma 2.1,
xβ = x

′ ≤ my
′
= yβ. If my = min({t ∈ ran α | t > y}), then x < y < my, so

by Lemma 2.1, xβ = x
′
< my

′
= yβ.

Case 2 : x ∈ X� ran α, x � ranα and y ∈ ranα. Since x < y, we
have x � ranα. If mx = max({t ∈ ranα | t < x}), then mx < x < y, so
xβ = mx

′
< y

′
= yβ. If mx = min({t ∈ ran α | t > x}), then mx ≤ y and

hence xβ = mx
′ ≤ y

′
= yβ.

Case 3: x, y ∈ X� ranα, x � ran α and y � ran α. Since x < y, it follows
that x � ranα and y � ran α.

Subcase 3.1 : mx = max({t ∈ ranα | t < x}) and my = max({t ∈
ran α | t < y}). Since {t ∈ ranα | t < x} ⊆ {t ∈ ranα | t < y}, we have
mx ≤ my, so xβ = mx

′ ≤ my
′
= yβ.

Subcase 3.2 : mx = max({t ∈ ranα | t < x}) and my = min({t ∈
ran α | t > y}). Then mx < x < y < my, thus xβ < yβ.

Subcase 3.3 : mx = min({t ∈ ranα | t > x}) and my = max({t ∈
ran α | t < y}). Then max({t ∈ ran α | t < x}) does not exist. It follows that
{t ∈ ranα | t < x} � {t ∈ ran α | t < y}. Hence x < c < y for some c ∈ ran α.
This implies that mx ≤ c ≤ my and thus xβ ≤ yβ.

Subcase 3.4 : mx = min({t ∈ ran α | t > x}) and my = min({t ∈
ran α | t > y}). Since {t ∈ ranα | t > x} ⊇ {t ∈ ranα | t > y}, we have
mx ≤ my. Hence xβ ≤ yβ.

The proof is thereby completed.

By the property of Z with usual order, Theorem 1.1 is clearly obtained from
Theorem 2.4

Corollary 2.5. If X is any chain which is order-isomorphic to a subset of
Z with usual order, then OT (X) is a regular semigroup.

Let X be an interval in R and α ∈ OT (X). If x ∈ X� ran α is neither an
u.b nor a l.b. of ranα in X, then

X = {t ∈ ranα | t < x}α−1 ∪̇ {t ∈ ran α | t > x}α−1.

where ∪̇ means a disjoint union and by Lemma 2.1, {t ∈ ran α | t < x}α−1 <
{t ∈ ran α | t > x}α−1. Since X is an interval in R, it follows that

sup ({t ∈ ran α | t < x}α−1)= inf ({t ∈ ran α | t > x}α−1), say e.

Then either e = max ({t ∈ ranα | t < x}α−1) or e = min ({t ∈ ran α | t > x}α−1).
Since α is order-preserving, it follows that eα = max ({t ∈ ran α | t < x}) for
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the first case and eα = min ({t ∈ ran α | t > x}) for the second case.
Hence we have

Corollary 2.6. Let X be an interval in R and α ∈ OT (X). Then α ∈
Reg(OT (X)) if and only if the following two conditions hold.

(i) If ran α has an u.b. in X, then max(ran α) exists.
(ii) If ran α has a l.b. in X, then min(ran α) exists.

We can give a simple proof of Theorem 1.2 by making use of Corllary 2.6.

Corollary 2.7. Let X be an interval in R. Then OT (X) is a regular semi-
group if and only if X is closed and bounded.

Proof. Let X be closed and bounded. Then X = [a, b] for some a, b ∈ R with
a ≤ b. Since α is order-preserving, aα = min(ranα) and bα = max(ran α). By
Corollary 2.6, OT (X) is a regular semigroup.

For the converse, assume that X is not closed or X is unbounded. Then
X is one of the forms:

R, [a,∞), (a,∞), (−∞, a], (−∞, a) where a ∈ R,
[a, b), (a, b], (a, b) where a, b ∈ R with a < b.

Case 1: X = R, [a,∞) or (a,∞). Let c ∈ X and define α : X → R by

xα =

⎧⎨
⎩ c +

x − c

x − c + 1
if x ≥ c,

c if x < c.

Since the derivative of α at x > c is
1

(x − c + 1)2 > 0 and ranα = [c, c + 1) ⊆
X, it follows that α ∈ OT (X). By Corollary 2.6(i), α /∈ Reg(OT (X)).

Case 2: X = (−∞, a] or (−∞, a). Let d ∈ X and define β : X → R by

xβ =

⎧⎨
⎩ d − x − d

x − d − 1
if x ≤ d,

d if x > d.

Then the derivative of β at x < d is
1

(x − d − 1)2 > 0 and ranβ = (d−1, d] ⊆
X. It follows that β ∈ OT (X) and by Corollary 2.6(ii), β /∈ Reg(OT (X)).
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Case 3: X = [a, b), (a, b] or (a, b). Define γ : X → R by

xγ =
1

4
(x − a) +

a + b

2
for all x ∈ X.

Then the derivative of γ at x ∈ X is
1

4
, a <

a + b

2
<

a + 3b

4
< b and

ran γ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
a + b

2
,
a + 3b

4
) if X = [a, b),

(
a + b

2
,
a + 3b

4
] if X = (a, b],

(
a + b

2
,
a + 3b

4
) if X = (a, b).

Then γ ∈ OT (X) and by Corollary 2.6, γ /∈ Reg(OT (X)).

The proof is thereby completed.

Next, we shall prove Theorem 1.3 as a consequence of Theorem 2.4.

Corollary 2.8. If X is a nontrivial interval of a proper subfield F of R,
then OT (X) is not a regular semigroup.

Proof. Let a, b ∈ X be such that a < b. Since Q ⊆ F � R, there is an
irrational number c ∈ R�F . Thus a − c < d < b − c for some d ∈ Q. Thus
a < c + d < b, c + d ∈ R�F and c + d is an irrational number. Let e = c + d.
Consequently, X =

(
(−∞, a) ∩ X

) ∪ (
[a, e) ∩ X

) ∪ (
(e,∞) ∩ X

)
. Define

μ : R → F by

xμ =

⎧⎪⎪⎨
⎪⎪⎩

x if x ∈ (−∞, a),
a + x

2
if x ∈ [a, e),

x if x ∈ (e,∞),

and let α = μ|X . Clearly α is order-preserving. We claim that ([a, e) ∩ X)α =

[a,
a + e

2
) ∩ X. If x ∈ [a, e) ∩ X, then

a + x

2
∈ F and a ≤ a + x

2
= xα <

a + e

2
<

a + b

2
< b, so xα ∈ [a,

a + e

2
) ∩ X since X is an interval in F . For

the reverse inclusion, let y ∈ [a,
a + e

2
) ∩ X. Then a ≤ 2y − a < e < b and

2y − a ∈ F . It follows that 2y − a ∈ X and (2y − a)α = y. Hence the claim
holds. Consequently,

ranα =
(
(−∞, a) ∩ X

) ∪ (
[a,

a + e

2
) ∩ X

) ∪ (
(e,∞) ∩ X

)
=

(
(−∞,

a + e

2
) ∩ X

) ∪ (
(e,∞) ∩ X

) ⊆ X.
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Therefore we have α ∈ OT (X). Let p ∈ Q be such that
a + e

2
< p < e.

Then p /∈ ranα. Since Q ⊆ F and a <
a + e

2
< p < e < b, it follows that

p ∈ X. Hence p ∈ X� ran α, {t ∈ ran α | t < p} = (−∞,
a + e

2
) ∩ X and

{t ∈ ranα | x > p} = (e,∞) ∩ X. If max
(
(−∞,

a + e

2
) ∩ X

)
exists, say m,

then m ∈ X and a ≤ m <
a + e

2
< b. Let q ∈ Q be such that m < q <

a + e

2
.

Then q ∈ F and a < q < b which imply that m < q ∈ (−∞,
a + e

2
) ∩ X.

This is a contradiction. Then max
(
(−∞,

a + e

2
) ∩ X

)
does not exist. We

can show similarly that min
(
(e,∞) ∩ X

)
does not exist. By Theorem 2.4,

α /∈ Reg(OT (X)). This proves that OT (X) is not a regular semigroup, as
desired.

3 Regular Elements of OT (X, Y )

In this section, we characterize the regular elements of the semigroup OT (X, Y )
where Y is a nonempty subset of a chain X. Then we determine when
OT (X, Y ) is a regular semigroup.

Theorem 3.1. Let X be a chain and ∅ �= Y ⊆ X. Then for α ∈ OT (X, Y ),
α ∈ Reg(OT (X, Y )) if and only if α ∈ Reg(T (X, Y )) and α ∈ Reg(OT (X)).

Proof. Assume that α ∈ Reg(OT (X, Y )). Since OT (X, Y ) is a subsemigroup
of T (X, Y ) and OT (X), it follows that α is regular in T (X, Y ) and OT (X),
i.e., α ∈ Reg(T (X, Y )) and α ∈ Reg(OT (X)).

For the converse, assume that α ∈ Reg(T (X, Y )) and α ∈ Reg(OT (X)). By
Theorem 1.4, ranα = Y α or equivalently, xα−1 ∩ Y �= ∅ for all x ∈ ranα. For
each x ∈ ran α, choose yx ∈ xα−1∩Y . Then yxα = x for all x ∈ ranα. Let β ∈
OT (X) be such that α = αβα. Then Xα = Xαβα ⊆ Xβα ⊆ Xα = ranα. It

follows that ranα = ran(βα). Thus X =

·⋃
x∈ ran(βα)

x(βα)−1 =

·⋃
x∈ ranα

x(βα)−1.

Define β
′
: X → Y by a bracket notation as follows:

β
′
=

(
x(βα)−1

yx

)
x∈ ranα

.

If x ∈ X, then xα = (xα)βα, so xα ∈ (xα)(βα)−1 which implies that
xαβ

′
α = yxαα = xα. Hence α = αβ

′
α. To show that β

′
is order-preserving,

let x1, x2 ∈ X be such that x1 < x2. Then x1βα ≤ x2βα. If x1βα = x2βα,
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then x1, x2 ∈ (x1βα)(βα)−1, so x1β
′
= yx1βα = x2β

′
. If x1βα < x2βα, then

by Lemma 2.1, (x1βα)α−1 < (x2βα)α−1. It follows that yx1βα < yx2βα. Since
((x1βα)(βα)−1)β

′
= {yx1βα} and ((x2βα)(βα)−1)β

′
= {yx2βα}, we have that

x1β
′
= yx1βα < yx2βα = x2β

′
.

Hence the proof is completed.

The following theorem is a direct consequence of Theorem 1.4, Theorem 2.4
and Theorem 3.1.

Theorem 3.2. Let X be a chain and ∅ �= Y ⊆ X. Then for α ∈ OT (X, Y ),
α ∈ Reg(OT (X, Y )) if and only if the following four conditions hold.

(i) ran α = Y α.
(i) If ran α has an u.b. in X, then max(ran α) exists.
(ii) If ran α has a l.b. in X, then min(ran α) exists.
(iii) If x ∈ X� ran α is neither an u.b. nor a l.b. of ranα, then

max({t ∈ ranα | t < x}) or min({t ∈ ranα | t > x}) exists.

Finally, the regularity of the semigroup OT (X, Y ) is determined. The
following series of lemmas is needed.

Lemma 3.3. Let X be a chain and Y ⊆ X and |Y | ≥ 2. If there is an
element a ∈ X such that a > Y or a < Y , then the semigroup OT (X, Y ) is
not regular.

Proof. Let e, f ∈ Y be such that e < f . Define α : X → Y by

α =

(
u v
e f

)
u < a
v≥ a

if a > Y and α =

(
u v
e f

)
u≤ a
v > a

if a < Y.

Then α ∈ OT (X, Y ), ranα = {e, f}, Y α = {e} for a > Y and Y α = {f}
for a < Y . By Theorem 3.2, α /∈ Reg(OT (X, Y )). Hence OT (X, Y ) is not
regular.

Lemma 3.4. Let X be a chain. If Y � X and |Y | ≥ 3, then the semigroup
OT (X, Y ) is not regular.

Proof. Let e, f, g ∈ Y be such that e < f < g and let a ∈ X�Y . If a > Y
or a < Y , then by Lemma 3.3, OT (X, Y ) is not regular. Assume that a ≯ Y
and a ≮ Y . Then {t ∈ Y | t < a} and {t ∈ Y | t > a} are nonempty. Define
α : X → Y by

α =

(
u a v
e f g

)
u < a
v > a

.

Then α ∈ OT (X, Y ) and ran α = {e, f, g} �= {e, g} = Y α. By Lemma 3.2,
α /∈ Reg(OT (X, Y )) and so OT (X, Y ) is not regular.
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Lemma 3.5. Let X be a chain, Y ⊆ X and |Y | = 2. Then OT (X, Y )
is a regular semigroup if and only if min(X) and max(X) exist and Y =
{min(X), max(X)}.

Proof. Let Y = {e, f} be such that e < f . Assume that OT (X, Y ) is regular.
Then by Lemma 3.3, for every a ∈ X, a ≯ Y and a ≮ Y . Thus e ≤ a ≤ f for
all a ∈ X. This implies that e = min(X) and f = max(X).

For the converse, assume that min(X) and max(X) exist, e = min(X)
and f = max(X). Let α ∈ OT (X, Y ). If | ranα| = 1, then α2 = α, so
α ∈ Reg(OT (X, Y )). If ranα = {e, f}, then eα = e and fα = f since
α is order-preserving. Thus ran α = Y α, so α satisfies (i) of Theorem 3.2.
It is evident that α satisfies (ii) - (iv) of Theorem 3.2. It follows that α ∈
Reg(OT (X, Y )).

Theorem 3.6. Let X be a chain and ∅ �= Y ⊆ X. Then OT (X, Y ) is a
regular semigroup if and only if one of the following statements holds.

(i) Y = X and OT (X) is a regular semigroup.
(ii) |Y | = 1.
(iii) |Y | = 2, min(X) and max(X) exist and Y = {min(X), max(X)}.

Proof. Assume that OT (X, Y ) is regular and suppose that (i) and (ii) are false.
Then (Y � X or OT (X) is not regular) and |Y | ≥ 2.

Case 1: Y � X and |Y | ≥ 2. Then the regularity of OT (X, Y ) and Lemma
3.4 yield |Y | = 2. Hence (iii) holds by Lemma 3.5.

Case 2: OT (X) is not regular and |Y | ≥ 2. Since OT (X, Y ) is regular, it
follows that Y � X, so by Lemma 3.4, |Y | = 2. Thus (iii) holds by Lemma
3.5.

Conversely, OT (X, Y ) is obviously regular if (i) or (ii) holds. We have by
Lemma 3.5 that OT (X, Y ) is regular if (iii) holds.

Therefore the theorem is proved.

References

[1] P. M. Higgins, Techniques of Semigroup Theory, New York, Oxford Uni-
versity Press, 1992.

[2] J. M. Howie, Fundamentals of Semigroup Theory, Oxford, Clarendon
Press, 1995.



Order-preserving transformation semigroups 641

[3] Y. Kemprasit, Order-preserving transformation semigroups whose bi-
ideals and quasi-ideals coincide. Ital. J. Pure Appl. Math., N.22(2007),
261-272.

[4] Y. Kemprasit and T. Changphas, Regular order-preserving transforma-
tion semigroups, Bull. Austral. Math. Soc. 62(2000), 511-524.

[5] Y. Kemprasit and S. Jaidee, Regularity and isomorphism theorems of gen-
eralized order-preserving transformation semigroups, Vietnam J. Math.
33(3)(2005), 253-260.

[6] V. I. Kim and I. B. Kozhukhov, Regularity conditions for semigroups of
isotone transformations of countable chains, J. Math. Sci. 152(2)(2008),
203-208.

[7] S. Nenthein, P. Youngkhong and Y. Kemprasit, Regular elements of some
transformation semigroups, PU.M.A. 16(3)(2005), 307-314.

[8] P. Rungrattrakoon and Y. Kemprasit, Regularity of full order-preserving
transformation semigroups on intervals of subfields of R, East-West J.
Math., Spec. Vol. for NCAM 2003-2004, 107-110.

[9] J.S.V. Symons, Some results concerning a transformation semigroup, J.
Aust. Math. Soc. 19(Series A)(1975), 413-425.

Received: April, 2010


