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Abstract Determining the structures, kinetics, thermodynamics and mechanisms that underlie

conformational exchange processes in proteins remains extremely difficult. Only in favourable cases

is it possible to provide atomic-level descriptions of sparsely populated and transiently formed

alternative conformations. Here we benchmark the ability of enhanced-sampling molecular

dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4

lysozyme. We find that the simulations capture key properties previously measured by NMR

relaxation dispersion methods including the structure of a minor conformation, the kinetics and

thermodynamics of conformational exchange, and the effect of mutations. We discover a new

tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to

be relevant for ligand escape. Together, our results provide a comprehensive view of the structural

landscape of a protein, and point forward to studies of conformational exchange in systems that

are less characterized experimentally.

DOI: 10.7554/eLife.17505.001

Introduction
Proteins are dynamical entities whose ability to change shape often plays essential roles in

their function. From an experimental point of view, intra-basin dynamics is often described via con-

formational ensembles whereas larger scale (and often slower) motions are characterized as

a conformational exchange between distinct conformational states. The latter are often simplified as

a two-site exchange process, G*)E, between a highly populated ground (G) state, and a transiently

populated minor (or ‘excited’, E) state. While the structure of the ground state may often be deter-

mined by conventional structural biology tools, it is very difficult to obtain atomic-level insight into

minor conformations due to their transient nature and low populations. As these minor conforma-

tions may, however, be critical to protein functions, including protein folding, ligand binding,

enzyme catalysis, and signal transduction (Mulder et al., 2001; Tang et al., 2007; Baldwin and Kay,

2009) it is important to be able to characterize them in detail. While it may in certain cases be possi-

ble to capture sparsely populated conformations in crystals under perturbed experimental condi-

tions, or to examine their structures by analysis of electron density maps (Fraser et al., 2009), NMR

spectroscopy provides unique opportunities to study the dynamical equilibrium between major and

minor conformations (Baldwin and Kay, 2009; Sekhar and Kay, 2013) via e.g. chemical-exchange

saturation transfer (Vallurupalli et al., 2012), Carr-Purcell-Meiboom-Gill (CPMG) relaxation disper-

sion (Hansen et al., 2008), or indirectly via paramagnetic relaxation enhancement (Tang et al.,

2007) or residual dipolar coupling (Lukin et al., 2003) experiments. In favourable cases such experi-

ments can provide not only thermodynamic and kinetic information (i.e. the population of G and E

states and the rate of exchange between them), but also structural information in the form of
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chemical shifts (CS), that can be used to determine the structure of the transiently populated state

(Sekhar and Kay, 2013).

Despite the important developments in NMR described above, it remains very difficult to obtain

structural models of minor conformations, and a substantial amount of experiments are required.

Further, it is generally not possible to use such experiments to infer the mechanisms of interconver-

sion, and to provide a more global description of the multi-state free energy landscape

(Zhuravlev and Papoian, 2010; Wang et al., 2012). In the language of energy landscape theory

(Onuchic et al., 1997), free energy basins and their depths control the population and stability of

functionally distinct states, while the relative positions of basins and the inter-basin barrier heights

determine the kinetics and mechanism of conformational exchange. As a complement to experi-

ments, such functional landscapes can be explored by in silico techniques, such as molecular dynam-

ics (MD) simulations, that may both be used to help interpret experimental data and provide new

hypotheses for testing (Karplus and Lavery, 2014; Eaton and Muñoz, 2014). Nevertheless, the

general applicability of simulation methods may be limited by both the accuracy of the physical

models (i.e. force fields) used to describe the free energy landscape and our ability to sample these

efficiently by computation. We therefore set out to benchmark the ability of simulations to deter-

mine conformational free energy landscapes.

The L99A variant of lysozyme from the T4 bacteriophage (T4L) has proven an excellent model sys-

tem to understand protein structure and dynamics. Originally designed a ‘cavity creating’ variant to

probe protein stability (Eriksson et al., 1992b) it was also demonstrated that the large (150 Å3)

internal cavity can bind hydrophobic ligands such as benzene (Eriksson et al., 1992a; Liu et al.,

2009). It was early established that the cavity is inaccessible to solvent in the ground state, but that

ligand binding is rapid (Feher et al., 1996), suggesting protein dynamics to play a potential role in

the binding process. This posts a long-standing question of how the ligands gain access to the bur-

ied cavity (Mulder et al., 2000; López et al., 2013; Merski et al., 2015; Miao et al., 2015).

NMR relaxation dispersion measurements of L99A T4L demonstrated that this variant, but not the

wild type protein, displayed conformational exchange on the millisecond timescale between the

eLife digest Proteins are the workhorses of cells, where they perform a wide range of roles. To

do so, they adopt specific three-dimensional structures that enable them to interact with other

molecules as necessary. Often a protein needs to be able to shift between different states with

distinct structures as it goes about its job. To fully understand how a protein works, it is important to

be able to characterize these different structures and how the protein changes between them.

Many of the experimental techniques used to study protein structure rely on isolating the

individual structural forms of a protein. Since many structures only exist briefly, this can be very

difficult. To complement experimental results, computer simulations allow researchers to model how

atoms behave within a molecule. However, a number of factors limit how well these models

represent what happens experimentally, such as the accuracy of the physical description used for

the modeling.

Wang et al. set out to test and benchmark how well computer simulations could model changes

in structure for a protein called T4 lysozyme, which has been studied extensively using experimental

techniques. T4 lysozyme exists in two different states that have distinct structures. By comparing

existing detailed experimental measurements with the results of their simulations, Wang et al. found

that the simulations could capture key aspects of how T4 lysozyme changes its shape.

The simulations described the structure of the protein in both states and accurately determined

the relative proportion of molecules that are found in each state. They could also determine how

long it takes for a molecule to change its shape from one state to the other. The findings allowed

Wang et al. to describe in fine detail – down to the level of individual atoms – how the protein

changes its shape and how mutations in the protein affect its ability to do so. A key question for

future studies is whether these insights can be extended to other proteins that are less well

characterized experimentally than T4 lysozyme.

DOI: 10.7554/eLife.17505.002
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ground state and a minor state populated at around 3% (at room temperature) (Mulder et al.,

2001). Such small populations generally lead only to minimal perturbations of ensemble-averaged

experimental quantities making structural studies difficult, and hence it was difficult to probe

whether the exchange process indeed allowed for ligand access to the cavity. A series of additional

relaxation dispersion experiments, however, made it possible to obtain backbone and side chain

CSs of the minor E state of L99A (Mulder et al., 2002; Bouvignies et al., 2011). The backbone CS

data were subsequently used as input to a CS-based structure refinement protocol (CS-ROSETTA) to

produce a structural model of the E state (EROSETTA; Figure 1) of the L99A mutant (Bouvignies et al.,

2011). This model was based in part on the crystal structure of the ground state of L99A (referred to

in what follows as GXray), but perturbing the structure in regions that the experiments demonstrated

to undergo conformational change in a way so that the final model (EROSETTA) agrees with experi-

ments. The structure was further validated by creating and solving the structure of a triple mutant

variant that inverts the populations of the G and E states. The EROSETTA structure revealed substantial

local rearrangements in T4L L99A, in particular near the cavity which gets filled by the side chain of a

phenylalanine at position 114 (F114). Because the cavity is filled and solvent inaccessible in the

E-state, the structure did, however, not reveal how ligands might access the cavity.

In an attempt to benchmark the ability of simulations to map conformational free energy land-

scapes, we have here employed a series of in silico experiments designed to probe the structure

and dynamics of L99A T4L and have compared the results to NMR measurements. We used

enhanced-sampling MD simulations in explicit solvent and with state-of-the-art force fields to map

the free-energy landscape including the exchange between the major and minor conformations of

the protein. We used a series of recently developed metadynamics methods (Laio and Parrinello,

2002) to sample the conformational exchange process and associated structure and thermodynam-

ics, as well as to determine the kinetics and mechanisms of exchange. We obtained additional

insight into the structural dynamics of the E state using simulations that employed the experimental

CSs as replica-averaged restraints. Our results provide a coherent picture of the conformational

dynamics in L99A and extend the insights obtained from recent simulations of a triple mutant of T4L

(Vallurupalli et al., 2016), by providing new information about the mechanisms of exchange and the

transient exposure of the internal cavity. Together with previous results for Cyclophilin A

(Papaleo et al., 2014) the results described here reiterate how simulation methods have now

reached a stage where they can be used to study slow, conformational exchange processes such as

those probed by NMR relaxation dispersion even in cases where less information is available from

experiments.

Results and discussion

Mapping the free-energy landscape
As the average lifetime of the G and E states are on the order of 20–50 ms and 1 ms, respectively

(Mulder et al., 2001, 2002; Bouvignies et al., 2011), direct and reversible sampling of the G-E tran-

sition at equilibrium would be extremely demanding computationally. Indeed, a recent set of simula-

tions of a triple mutant of T4L, which has a substantially faster kinetics, was able only to observe

spontaneous transitions in one direction (Vallurupalli et al., 2016). We therefore resorted to a set of

flexible and efficient enhanced sampling methods, collectively known as ‘metadynamics’ (Laio and

Parrinello, 2002), that have previously been used in a wide range of applications. In metadynamics

simulations, a time-dependent bias is continuously added to the energy surface along a small num-

ber of user-defined collective variables (CVs). In this way, sampling is enhanced to reach new regions

of conformational space and at the same time allows one to reconstruct the (Boltzmann) free-energy

surface. The success of the approach hinges on the ability to find a set of CVs that together describe

the slowly varying degrees of freedom and map the important regions of the conformational

landscape.

We first performed a set of metadynamics simulations in the well-tempered ensemble

(Barducci et al., 2008) using so-called path CVs (Spath and Zpath) (Branduardi et al., 2007;

Saladino et al., 2012) with the aid of recently developed adaptive hills to aid in the convergence of

the sampling (Branduardi et al., 2012; Dama et al., 2014) (see details in Appendix and Appen-

dix 1—table 1). In short, the Spath variable describes the progress of the conformational transition
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between the GXray and EROSETTA structures with additional ‘interpolation’ using an optimal ‘reference’

path in a simplified model (see details in Appendix and Figure 2—figure supplement 1), while Zpath

measures the distance to this reference path. In this way, the two-dimensional free energy landscape

along Spath and Zpath provides a useful description on conformational exchange between ground and

excited states that does not assume that the initial reference path describes perfectly the actual

path(s) taken.

Projecting the sampled free energy landscape along Spath (upper panel of Figure 2) reveals a

deep, narrow free energy basin around Spath ¼ 0:2 (labeled by red sphere and corresponding to the

G state), and a broader, shallow free energy basin with Spath ranging from 0.6 to 0.8 (labeled by blue

sphere and corresponding to the E state). Additional information is obtained from the two-dimen-

sional landscape (shown as a negative free energy landscape, -F(Spath, Zpath), in the lower panel of

Cα chemical shi� di�erences between G and E (ppm)

Figure 1. Structures of the major G and minor E states of L99A T4L and the hidden state hypothesis. The X-ray

structure of the G state (GXray; PDB ID code 3DMV) has a large internal cavity within the core of the C-terminal

domain that is able to bind hydrophobic ligands. The structure of the E state (EROSETTA; PDB ID code 2LC9) was

previously determined by CS-ROSETTA using chemical shifts. The G and E states are overall similar, apart from the

region surrounding the internal cavity. Comparison of the two structures revealed two remarkable conformational

changes from G to E: helix F (denoted as HF ) rotates and fuses with helix G (HG) into a longer helix, and the side

chain of phenylalanine at position 114 (F114) rotates so as to occupy part of the cavity. As the cavity is inaccessible

in both the GXray and EROSETTA structures it has been hypothesized that ligand entry occurs via a third ‘cavity open’

state (Merski et al., 2015).

DOI: 10.7554/eLife.17505.003
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Figure 2) which reveals a complex and rough landscape with multiple free energy minima

Figure 2. Free energy landscape of the L99A variant of T4L. In the upper panel, we show the projection of the free

energy along Spath, representing the Boltzmann distribution of the force field employed along the reference path.

Differently colored lines represent the free energy profiles obtained at different stages of the simulation, whose

total length was 667ns. As the simulation progressed, we rapidly found two distinct free energy basins, and the

free energy profile was essentially constant during the last 100 ns of the simulation. Free energy basins around

Spath ¼ 0:2 and Spath ¼ 0:75 correspond to the previously determined structures of the G- and E-state, respectively

(labelled by red and blue dots, respectively). As discussed further below, the E-state is relatively broad and is here

indicated by the thick, dark line with Spath ranging from 0.55 to 0.83. In the lower panel, we show the three-

dimensional negative free energy landscape, -F(Spath, Zpath), that reveals a more complex and rough landscape with

multiple free energy minima, corresponding to mountains in the negative free energy landscape. An intermediate-

state basin around Spath ¼ 0:36 and Zpath ¼ 0:05 nm2, which we denote I0:36, is labeled by a yellow dot.

DOI: 10.7554/eLife.17505.004

The following figure supplements are available for figure 2:

Figure supplement 1. Approximately equidistant frames along the reference path.

DOI: 10.7554/eLife.17505.005

Figure supplement 2. One and two dimensional free energy landscape of L99A and the triple mutant.

DOI: 10.7554/eLife.17505.006
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(corresponding to mountains in the negative free energy landscape). Subsequently, structural inspec-

tion of these minima identified that the conformations in the basins around Spath ¼ 0:2 and Spath ¼

0:75 correspond to the structures of GXray and EROSETTA, respectively.

The broad nature of the free energy landscape in the region of the minor state is consistent with

the observation that our MD simulations initiated from EROSETTA display significant conformational

fluctuations (RUN20 and RUN22 in Appendix 1—table 1). Furthermore, our metadynamics simula-

tions revealed multiple local free energy minima adjacent to the EROSETTA basin, together composing

a wider basin (highlighted by the black curve in Figure 2). Thus, these simulations suggest that the E

state displays substantial conformational dynamics, a result corroborated by simulations that have

been biased by the experimental data (see section ‘Simulations of the minor state using chemical

shift restraints’).

In addition to free-energy minima corresponding to the G and E states, we also found a free

energy minimum around Spath ¼ 0:36 and Zpath ¼ 0:05 nm2 (denoted as I0:36 and labeled by a yellow

sphere in Figure 2) that is located between the G and E states on the one-dimensional free-energy

surface. We note, however, that it is difficult to infer dominant reaction pathways from such free

energy surfaces, and so from this data alone, we cannot determine whether I0:36 occurs as an inter-

mediate in G-E conformational transitions. Indeed, it appears from the two-dimensional surface that

there exist multiple possible pathways between G and E, as illustrated by white lines along the

mountain ridges of the negative free energy landscape in the lower panel of Figure 2. (We also

explored the mechanism of exchange by reconnaissance metadynamics simulations (Tribello et al.,

2011), the results of which are described and discussed further below.)

Effect of mutations on the free energy landscape
Based on the encouraging results above for L99A T4L, we examined whether simulations could also

capture the effect of mutations on the free energy landscape. Using Rosetta energy calculations on

the GXray and EROSETTA structures it was previously demonstrated that two additional mutations,

G113A and R119P, when introduced into the L99A background, cause an inversion in the popula-

tions of the two states (Bouvignies et al., 2011; Vallurupalli et al., 2016). Indeed, NMR data dem-

onstrated that the triple mutant roughly inverts the populations of the two states so that the minor

state structure (of L99A) now dominates (with a 96% population) the triple mutant. We repeated the

calculations described above for L99A also for the triple mutant. Remarkably, the free energy profile

of the triple mutant obtained using metadynamics simulations reveals a free energy landscape with a

dominant minimum around Spath=0.7 and a higher energy conformation around Spath=0.15 (Figure 2—

figure supplement 2). Thus, like our previous observations for a ‘state-inverting mutation’ in Cyclo-

philin A (Papaleo et al., 2014), we find here that the force field and the sampling method are suffi-

ciently accurate to capture the effect of point mutations on the free energy landscape. Further, we

note that the barrier height for the conformational exchange in the triple mutant is very similar to

the value recently estimated using a completely orthogonal approach (Vallurupalli et al., 2016).

Finally, we attempted to determine the free energy landscape of the L99A,G113A double mutant,

which has roughly equal populations of the two states (Bouvignies et al., 2011), but this simulation

did not converge on the simulation timescales at which the two other variants converged.

Calculating conformational free energies
With a free-energy surface in hand and a method to distinguish G- and E-state conformations, we

calculated the free energy difference, DG, between the two conformational states, and compared

with the experimental values. We divided the global conformational space into two coarse-grained

states by defining the separatrix at Spath ¼ 0:46 which corresponds to a saddle point on the free

energy surface, on the basis of the observations above that the E state is relatively broad. Although

a stricter definition of how to divide the reaction coordinate certainly helps the precise calculation,

here we just used this simple definition to make an approximate estimation of the free energy differ-

ence. Further, since the barrier region is sparsely populated, the exact point of division has only a

modest effect on the results. By summing the populations on the two sides of the barrier we calcu-

lated DG as a function of the simulation time (Figure 3). Initially during the simulations the free

energy profile varies substantially (Figure 2) and the free energy difference equally fluctuates. As the

simulations converge, however, the free energy difference between the two states stabilize to a
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value at approximately DG=3.5 kcal mol�1 (Fig-

ure 3, black line). This value can be compared to

the value of 2.1 kcal mol�1 obtained from NMR

relaxation dispersion experiments (Mulder et al.,

2001), revealing reasonably good, albeit not

exact, agreement with the experiments.

Similar calculations using the simulations of

the triple mutant also converge, in this case to

about �1.6 kcal mol�1 (Figure 3, blue line), in

excellent agreement with the experimental mea-

surement (�1.9 kcal mol�1) (Bouvignies et al.,

2011). Combining these two free energy differ-

ences we find that the G113A, R119P mutations

cause a shift in the G-E free energy of 5.1 kcal

mol�1 in simulations compared to 4.0 kcal mol�1

obtained by experiments. Thus, we find that the

simulations with reasonably high accuracy are

able to capture the thermodynamics of the con-

formational exchange between the two states.

While the generality of such observations will

need to be established by additional studies, we

note here that comparably good agreement was

obtained when estimating the effect of the S99T

mutations in Cyclophilin A (Papaleo et al., 2014).

In our previous work on Cyclophilin A

(Papaleo et al., 2014) we sampled the conforma-

tional exchange using parallel-tempering metady-

namics simulations (Bonomi and Parrinello,

2010) using four CVs that we chose to describe

the structural differences between the G and E

states in that protein. We note here that we also

tried a similar approach here but unfortunately

failed to observe a complete G-to-E transition,

even in a relatively long trajectory of about 1 ms

per replica (CVs summarized in Appendix 1—table 2, parameters shown in Appendix 1—table 1).

This negative result is likely due to the CVs chosen did not fully capture the relevant, slowly changing

degrees of freedom, thus giving rise to insufficient sampling even with the use of a parallel temper-

ing scheme.

Calculating the rates of conformational exchange
Enhanced-sampling simulations such as those described above provide an effective means of map-

ping the free-energy landscape and hence the structural and thermodynamic aspects of conforma-

tional exchange. While the same free-energy landscape also determines the kinetics and

mechanisms of exchange it may be more difficult to extract this information from e.g. path-CV-based

metadynamics (PathMetaD) simulations. To examine how well simulations can also be used to deter-

mine the rates of the G-to-E transitions, quantities that can also be measured by NMR, we used the

recently developed ‘infrequent metadynamics’ method (InMetaD, see details in Appendix)

(Tiwary and Parrinello, 2013; Salvalaglio et al., 2014; Tiwary et al., 2015a; 2015b). Briefly

described, the approach calculates first-passage times for the conformational change in the pres-

ence of a slowly-added bias along a few CVs, here chosen as the path CVs also used to map the

landscape. By adding the bias slowly (and with lower amplitude) we aim to avoid biasing the transi-

tion-state region and hence to increase the rate only by lowering the barrier height; in this way it is

possible to correct the first-passage times for the bias introduced.

Using this approach on L99A T4L we collected 42 and 36 independent trajectories with state-to-

state transition starting from either the G state or E state, respectively (Appendix 1—figure 1 and

Appendix 1—figure 2 ). The (unbiased) rates that we calculated (Table 1 and Appendix 1—figure
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Figure 3. Estimation of free energy differences and

comparison with experimental measurements. We

divided the global conformational space into two

coarse-grained states by defining the separatrix at

Spath ¼ 0:46 (0.48 for the triple mutant) in the free

energy profile (Figure 2—figure supplement 2) which

corresponds to a saddle point of the free energy

surface, and then estimated the free energy differences

between the two states (DG) from their populations.

The time evolution of DG of L99A (upper time axis) and

the triple mutant (lower axis) are shown as black and

blue curves, respectively. The experimentally

determined values (2.1 kcal mol�1 for L99A and �1.9

kcal mol�1 for the triple mutant) are shown as yellow

lines.
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3) are in good agreement with the experimental rates (Mulder et al., 2001; Bouvignies et al.,

2011) (within a factor of 10), corresponding to an average error of the barrier height of ~ 1 kcal

mol�1. We also performed similar calculations for the ‘population-inverting’ triple mutant, where we

collected 30 transitions (15 for each direction) using InMetaD simulations. As for L99A, we also here

find similarly good agreement with experimental measurements (Vallurupalli et al., 2016) (Table 1

and Appendix 1—figure 4). We estimated the reliability of this computational approach using a Kol-

mogorov-Smirnov test to examine whether the first-passage times conform to the expected Poisson

distribution (Salvalaglio et al., 2014), and indeed the results of this analysis suggest good agree-

ment (Table 1, Appendix 1—figure 5 and Appendix 1—figure 6).

The ability to calculate forward and backward rates between G and E provided us with an alterna-

tive and independent means to estimate the free energy difference between the two states (Table 1),

and to test the two-state assumption used in the analysis of the experimental NMR data. We there-

fore calculated the free energy difference from the ratio of the forward and backward reaction rates.

The values obtained (2.9�0.5 kcal mol�1 and �1.2�1.1 kcal mol�1 for L99A and the triple mutant,

respectively) are close both to the values obtained above from the equilibrium free energy land-

scape (3.5 kcal mol�1 and �1.6 kcal mol�1) and experiment (2.1 kcal mol�1 and �1.9 kcal mol�1). In

particular, the relatively close agreement between the two independent computational estimates

lends credibility both to the free energy landscape and the approach used to estimate the kinetics.

The observation that both values for L99A are slightly larger than the experimental number suggests

that this discrepancy (ca. 1 kcal mol�1) can likely be explained by remaining force field deficiencies

rather than lack of convergence or the computational approach used.

Simulations of the minor state using chemical shift restraints
While the simulations described above used available structural information of G and E states to

guide and enhance conformational sampling, the resulting free energy surfaces represent the Boltz-

mann distributions of the force field and are not otherwise biased by experimental data. To further

refine the structural model of the E state we used the relaxation-dispersion derived CSs that were

used to determine of EROSETTA [BMRB (Ulrich et al., 2008) entry 17604] as input to restrained MD

simulations. In these simulations, we used the experimental data as a system-specific force field cor-

rection to derive an ensemble of conformations that is compatible both with the force field and the

CSs. Such replica-averaged simulations use the experimental data in a minimally-biased way that is

consistent with the Principle of Maximum Entropy (Pitera and Chodera, 2012; Roux and Weare,

2013; Cavalli et al., 2013; Boomsma et al., 2014).

We performed CS-restrained MD simulations of the E state of L99A averaging the CSs over four

replicas. Although the number of replicas is a free parameter, which should in principle be chosen as

large as possible, it has been demonstrated that four replicas are sufficient to reproduce the struc-

tural heterogeneity accurately (Camilloni et al., 2013) without excessive computational require-

ments. The agreement between calculated and experimental CSs was quantified by the root-mean-

square deviation between the two (Figure 4—figure supplement 1). In particular, it is important not

to bias the agreement beyond what can be expected based on the inherent accuracy of the CS

Table 1. Free energy differences and rates of conformational exchange.

tG!E (ms) tE!G (ms) DG (kcal mol�1)

L99A

NMR 20 0.7 2.1

InMetaD 175�56 1.4�0.6 2.9�0.5

PathMetaD 3.5

L99A/G113A/R119P

NMR 0.2 4 -1.9

InMetaD 2.0�1.7 14.3�8.3 -1.2�1.1

PathMetaD -1.6

DOI: 10.7554/eLife.17505.008
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prediction methods (we assumed that the error in the experimental CS measurement, even for the E

state, is negligible in comparison). Thus, we compared the experimental CS values of the minor state

with the values calculated using the EROSETTA structure as input to CamShift (Kohlhoff et al., 2009),

Sparta+ (Shen and Bax, 2010) and ShiftX (Neal et al., 2003) (Figure 4—figure supplement 2). The

average RMSDs for five measured nuclei (Ha, HN , N, C
0 and Ca) are 0.2, 0.4, 2.0, 0.8 and 1.1ppm,

respectively (Appendix 1—table 1), which are close to the inherent uncertainty of the CS back-calcu-

lation, indicating that the level of agreement enforced is reasonable.

To compare the results of these experimentally-biased simulations with the experimentally-unbi-

ased simulations described above, we projected the CS-restrained MD trajectories onto either one

(Figure 4) or both (Figure 4—figure supplement 3) of the Spath and Zpath variables used in the path-

variable-driven simulations (PathMetaD). The distribution of conformations obtained using the

E-state CSs as restraints is in good agreement with the broad free energy profile of the E-state

obtained in the metadynamics simulations that did not include any experimental restraints. To

ensure that this observation is not merely an artifact of both simulations using the same force field

(CHARMM22*), we repeated the biased simulations using the Amber ff99SB*-ILDN force field and

obtained comparable results. We also verified that the conclusions obtained are reasonably robust

to other variables such as the number of replicas and the strength of restraints (Figure 4—figure

supplement 4).

As a final and independent test of the structural ensemble of the minor conformation of L99A we

used the ground state CSs of the triple mutant (BMRB entry 17603), which corresponds structurally

to the E state of L99A, as restraints in replica-averaged CS-biased simulations (Figure 4—figure sup-

plement 5). Although not fully converged, these simulations also cover roughly the same region of

conformational space when projected along Spath (Figure 4).

Thus, together our different simulations, which employ different force fields, are either unbiased

or biased by experimental data, and use either dispersion-derived (L99A) or directly obtained (triple

mutant) CS all provide a consistent view of the minor E-state conformation of L99A. We also note

that the CS-derived ensembles of the E-state support the way we divided the G- and E-states when

calculating conformational free energy differences between the two states.

Mechanisms of conformational exchange
Having validated that our simulations can provide a relatively accurate description of the structure,

thermodynamics and kinetics of conformational exchange we proceeded to explore the molecular

mechanism of the G-to-E transitions. We used the recently developed reconnaissance metadynamics

approach (Tribello et al., 2010), that was specifically designed to enhance sampling of complicated

conformational transitions and has been employed to explore the conformational dynamics of com-

plex systems (Tribello et al., 2011; Söderhjelm et al., 2012).

We performed three independent reconnaissance metadynamics simulations of L99A starting

from the G state (summarized in Appendix 1—table 1) using the same geometry-based CVs that we

also used in the parallel-tempering simulations described above. We observed complete

conformational transitions from the G to E state in the reconnaissance simulations in as little as tens

of nanoseconds of simulations (Figure 5—figure supplement 1)— at least 1–2 orders of magnitude

faster than standard metadynamics. These G-to-E and E-to-G transitions, although biased by the

CVs, provide insight into the potential mechanisms of exchange. To ease comparison with the equi-

librium sampling of the free energy landscape we projected these transitions onto the free energy

surface F(Spath,Zpath) (Figure 5). The results reveal multiple possible routes connecting the G and E

states, consistent with the multiple gullies found on the free energy surface (Figure 2). The trajecto-

ries also suggested that the G-to-E interconversion can either take place directly without passing the

I0:36 state or indirectly via it.

In the context of coarse-grained kinetic models the results above would suggest at least two pos-

sible mechanisms operate in parallel: G*)E or G*)I0:36*)E. Further inspection of the structures along

these different kinetics routes (see the trajectories of other order parameters in Figure 5—figure

supplement 2 and Videos 1–4) suggested an interesting distinction between the two. In the

G*)I0:36*)E route the side chain of F114, which occupies the cavity in the E state, gets transiently

exposed to solvent during the transition, whereas in the direct G*)E transitions F114 can rotate its
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side chain inside the protein core (see also the solvent accessible surface area calculation of F114 in

Figure 5—figure supplement 3).

A potential pathway for ligand binding and escape
As the internal cavity in L99A T4L remains buried in both the G and E states (and indeed occupied

by F114 in the E state) it remains unclear how ligands access this internal cavity and how rapid bind-

ing and release is achieved. Visual inspection of our trajectories and solvent-accessible surface area

analysis revealed structures with transient exposure of the internal cavity towards the solvent. The

structures were mostly found in a region of conformational space that mapped onto the I0:36 basin

(Figure 2), and the events of that basin mostly took place between 430 ns and 447 ns (see Video 5).

Thus, we mapped these structures to the free energy surface (Figure 6—figure supplement 1) and

analysed them. Overall, the structure is more similar to the G- than E-state, though is more loosely

packed. The similarity to the G-state is compatible with rapid binding and position of F114 in this

state.

We used CAVER3 (Chovancova et al., 2012) (see parameters in Appendix 1—table 4) to analyse

the structures and found multiple tunnels connecting the cavity with protein surface (Figure 6—
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Figure 4. Conformational ensemble of the minor state as determined by CS biased, replica-averaged simulations.

We determined an ensemble of conformations corresponding to the E-state of L99A T4L using replica-averaged

CSs as a bias term in our simulations. The distribution of conformations was projected onto the Spath variable

(orange) and is compared to the free energy profile obtained above from the metadynamics simulations without

experimental biases (black line). To ensure that the similar distribution of conformations is not an artifact of using

the same force field (CHARMM22*) in both simulations, we repeated the CS-biased simulations using also the

Amber ff99SB*-ILDN force field (magenta) and obtained similar results. Finally, we used the ground state CSs of a

triple mutant of T4L, which was designed to sample the minor conformation (of L99A) as its major conformation,

and also obtained a similar distribution along the Spath variable (cyan).

DOI: 10.7554/eLife.17505.009

The following figure supplements are available for figure 4:

Figure supplement 1. Equilibrium sampling of conformational regions of the E state of L99A by CS-restrained

replica-averaged simulation.

DOI: 10.7554/eLife.17505.010

Figure supplement 2. Estimation of the inherent uncertainty of the chemical shift calculation by different

algorithms: CamShift (Kohlhoff et al., 2009), ShiftX (Neal et al., 2003) and Sparta+ (Shen and Bax, 2010).

DOI: 10.7554/eLife.17505.011

Figure supplement 3. Force field dependency of the replica averaged MD simulations of L99A with chemical shift

restraints.

DOI: 10.7554/eLife.17505.012

Figure supplement 4. Effect of changing the force constant and number of replicas in CS-restrained simulation of

L99A.

DOI: 10.7554/eLife.17505.013

Figure supplement 5. Replica-averaged CS-restrained MD simulation of a T4L triple mutant (L99A/G113A/R119P).

DOI: 10.7554/eLife.17505.014
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figure supplement 1 and 2). The tunnels are relatively narrow with the typical radius of the bottle-

neck (defined as the narrowest part of a given tunnel) between ~1 Å � ~2 Å. We used CAVER Ana-

lyst1.0 (Kozlikova et al., 2014) (see details in Appendix and parameters in Appendix 1—table 4) to

separate the tunnels into different clusters (Figure 6—figure supplement 3 and Appendix 1—table

5) with the dominant cluster (denoted tunnel#1) having a entrance located at the groove between

HF and HI . A typical representative structure of I0:36 is shown in Figure 6A. The radii along the struc-

tures in cluster #1 vary, but share an overall shape (Figure 6—figure supplement 1), and we find

that the maximal bottleneck radius is ~ 2.5 Å, the average bottleneck radius is ~ 1.3 Å, and the aver-

age length ~11.2 Å.

Interestingly, a series of structures of L99A were recently described, in which the internal cavity

where filled with eight congeneric ligands of increasing size to eventually open the structure

size (Merski et al., 2015). We performed a comparable tunnel analysis on those eight ligand-bound

structures (PDB ID codes: 4W52 – 4W59), revealing the maximal bottleneck radius of 1.8 Å (bound

with n-hexylbenzene, 4W59). Although the size of the tunnel in these X-ray structures is slightly

smaller than that in I0:36 structures, the location of the tunnel exit is consistent with the dominant

tunnel#1 in I0:36 (Figure 6—figure supplement 3). We note, however, that the tunnels observed in

our simulation and in the ligand-induced cavity-open X-ray structure (4W59), are too narrow to allow

for unhindered passage of e.g. benzene with its a van der Waals’ width of 3.5 Å (Eriksson et al.,

Figure 5. Mechanisms of the G-E conformational exchanges explored by reconnaissance metadynamics.

Trajectories labeled as Trj1 (magenta), Trj2 (blue) and Trj3 (green and orange) are from the simulations RUN10,

RUN11 and RUN12 (Appendix 1—table 1), respectively. There are multiple routes connecting the G and E states,

whose interconversions can take place directly without passing the I0:36 state or indirectly via it.

DOI: 10.7554/eLife.17505.015

The following figure supplements are available for figure 5:

Figure supplement 1. Complete G-to-E transitions of L99A obtained by reconnaissance metadynamics

simulations.

DOI: 10.7554/eLife.17505.016

Figure supplement 2. Conformational transitions between the G and E states monitored by other order

parameters.

DOI: 10.7554/eLife.17505.017

Figure supplement 3. Solvent accessible surface area (SASA) calculation of the side chain of F114.

DOI: 10.7554/eLife.17505.018
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1992a). Thus, we speculate that the transient exposure in I0:36 might serve as a possible starting

point for ligand (un)binding, which would induce (Koshland, 1958; López et al., 2013; Wang et al.,

2012) further the opening of the tunnel.

As an initial step towards characterizing the mechanism of ligand binding and escape we used

adiabatic biased molecular dynamics (ABMD) simulations (Marchi and Ballone, 1999; Paci and Kar-

plus, 1999) to study the mechanism of how benzene escapes the internal cavity (see Appendix for

details). In ABMD the system is perturbed by a ‘ratcheting potential’, which acts to ‘select’ spontane-

ous fluctuations towards the ligand-free state. In particular, the biasing potential is zero when the

reaction coordinate (here chosen to be the RMSD of the ligand to the cavity-bound state) increases,

but provides a penalty for fluctuations that brings the ligand closer to the cavity. In this way, we

were able to observe multiple unbinding events in simulations despite the long lifetime (1.2 ms) of

the ligand in the cavity. Most of trajectories (15 of the 20 events observed) reveal that benzene

escapes from the cavity by following tunnel #1 (Figure 6—figure supplement 4 and Appendix 1—

Video 1. Trajectory of the G-to-E conformational

transition observed in Trj1, corresponding to the red

trajectory in Figure 5. The backbone of L99A is

represented by white ribbons, Helices E, F and G are

highlighted in blue, while F114 is represented by red

spheres.

DOI: 10.7554/eLife.17505.019

Video 2. Trajectory of the G-to-E conformational

transition observed in Trj2, corresponding to the blue

trajectory in Figure 5. The backbone of L99A is

represented by white ribbons, Helices E, F and G are

highlighted in blue, while F114 is represented by red

spheres.

DOI: 10.7554/eLife.17505.020

Video 3. Trajectory of the G-to-E conformational

transition observed in Trj3, corresponding to the green

trajectory in Figure 5. The backbone of L99A is

represented by white ribbons, Helices E, F and G are

highlighted in blue, while F114 is represented by red

spheres.

DOI: 10.7554/eLife.17505.021

Video 4. Trajectory of the E-to-G conformational

transition observed in Trj3, corresponding to the yellow

trajectory in Figure 5. The backbone of L99A is

represented by white ribbons, Helices E, F and G are

highlighted in blue, while F114 is represented by red

spheres.

DOI: 10.7554/eLife.17505.022
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table 6). A typical unbinding path is shown in the

right panel of Figure 6 (see also Video 6).

Because the ABMD introduces a bias to speed up

ligand escape, we ensured that the observed

pathway was the same at two different values of

the biasing force constants (Figure 6—figure

supplement 4 and Appendix 1—table 6). Future

work will be aimed to perform a more quantita-

tive analysis of the ligand binding and unbinding

kinetics.

Conclusions
The ability to change shape is an essential part of

the function of many proteins, but it remains diffi-

cult to characterize alternative conformations that

are only transiently and sparsely populated. We

have studied the L99A variant of T4L as a model

system that displays a complicated set of dynam-

ical processes which have been characterized in

substantial detail. Our results show that modern

simulation methods are able to provide insight

into such processes, paving the way for future

studies for systems that are more difficult to

study experimentally.

Using a novel method for defining an initial

reference path between two conformations, we

were able to sample the free energy landscape described by an accurate molecular force field. In

accordance with experiments, the simulations revealed two distinct free energy basins that corre-

spond to the major and minor states found by NMR. Quantification of the free energy difference

between the two states demonstrated that the force field is able to describe conformational free

energies to an accuracy of about 1 kcal mol�1. This high accuracy is corroborated by previous stud-

ies of a different protein, Cyclophilin A, where we also calculated conformational free energies and

compared to relaxation dispersion experiments and found very good agreement. For both proteins

we were also able to capture and quantify the effect that point mutations have on the equilibrium

between the two states, and also here found good agreement with experiments. We note, however,

that comparable simulations of the L99A/G113A mutant did not reach convergence.

Moving a step further, we here also calculated the kinetics of conformational exchange using a

recently developed metadynamics method. For both the L99A variant and a population-inverting tri-

ple mutant we find that the calculated reaction rates are in remarkably good agreement with experi-

ments. The ability to calculate both forward and backward rates provided us with the opportunity to

obtain an independent estimate the calculated free energy difference. The finding that the free

energy differences estimated in this way (for both L99A and the triple mutant) are close to those

estimated from the free energy landscape provides an important validation of both approaches, and

we suggest that, when possible, such calculations could be used to supplement conventional free

energy estimates.

The free-energy landscape suggested that the E state is relatively broad and contains a wider

range of conformations. To validate this observation, we used the same chemical shift information as

was used as input to Rosetta and performed replica-averaged CS-restrained simulations. The result-

ing ensemble demonstrates that the experiments and force field, when used jointly, indeed are com-

patible with a broader E state. Thus, we suggest that the EROSETTA structure and CS-restrained

ensemble jointly describe the structure and dynamics of the E state.

While NMR experiments, in favourable cases, can be used to determine the structure, thermody-

namics and kinetics of conformational exchange, a detailed description mechanism of interconver-

sion remains very difficult to probe by experiments. We explored potential mechanisms of

conformational exchange between the two states, finding at least two distinct routes. One route

involved a direct transition with the central F114 entering the cavity within the protein, whereas a

Video 5. Movie of the calculated two-dimensional free

energy landscape of L99A as a function of simulation

time. The figure shows the time evolution of the free

energy surface as a function of Spath and Zpath sampled

in a 667 ns PathMetaD simulation of L99A.

DOI: 10.7554/eLife.17505.023
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Figure 6. A transiently formed tunnel from the solvent to the cavity is a potential ligand binding pathway. (A) We

here highlight the most populated tunnel structure (tunnel#1), that has an entrance located at the groove

between helix F (HF ) and helix I (HI ). Helices E, F and G (blue) and F114 (red) are highlighted. (B) The panel shows

a typical path of benzene (magenta) escaping from the cavity of L99A, as seen in ABMD simulations, via a tunnel

formed in the same region as tunnel #1 (see also Video 6).

DOI: 10.7554/eLife.17505.024

The following figure supplements are available for figure 6:

Figure supplement 1. A transiently formed tunnel from the solvent to the cavity forms in the I0:36 state.

DOI: 10.7554/eLife.17505.025

Figure supplement 2. Representative structures of the cavity region in the I0:36 state.

DOI: 10.7554/eLife.17505.026

Figure supplement 3. Tunnel clustering analysis on I0:36 state.

DOI: 10.7554/eLife.17505.027

Figure supplement 4. Ligand unbinding pathways revealed by ABMD simulations.

DOI: 10.7554/eLife.17505.028
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different possible mechanism involves transient

partial-loosening of the protein. In both cases,

the mechanism differs from the reference path

that we used as a guide to map the free energy

landscape, demonstrating that high accuracy of

the initial guess for a pathway is not absolutely

required in the metadynamics simulations, sug-

gesting also the more general applicability of the

approach.

Finally, we observed a set of conformations

with a transiently opened tunnel that leads from

the exterior of the protein to the internal cavity,

that is similar to a recently discovered path that is

exposed when the cavity is filled by ligands of

increasing size. The fact that such a tunnel can be

explored even in the absence of ligands suggests

that intrinsic protein motions may play an impor-

tant role in ligand binding, and indeed we

observed this path to be dominant in simulations

of ligand unbinding.

In total, we present a global view of the many,

sometimes coupled, dynamical processes present

in a protein. Comparison with a range of experi-

mental observations suggests that the simula-

tions provide a relatively accurate description of the protein, demonstrating how NMR experiments

can be used to benchmark quantitatively the ability of simulations to study conformational exchange.

We envisage that future studies of this kind, also when less is known about the structure of the alter-

native states, will help pave the way for using simulations to study the structural dynamics of proteins

and how this relates to function.

Materials and methods

System preparation
Our simulations were initiated in the experimentally determined structures of the ground state of

L99A (GXray; PDB ID code 3DMV) or minor, E state (EROSETTA; 2LCB). The structure of the ground state

of the L99A, G113A, R119P triple mutant, corresponding to the E state of L99A was taken from PDB

entry 2LC9 (GTriple
ROSETTA). Details can be found in the Appendix.

Initial reaction path
Taking GXray and EROSETTA as the models of the initial and final structures, we calculated an initial

reaction path between them with the MOIL software (Elber et al., 1995), which has been used to

explore the mechanism of conformational change of proteins (Wang et al., 2011). Further details

can be found in the Appendix and in refs. (Majek et al., 2008; Wang et al., 2011).

Path CV driven metadynamics simulations with adaptive hills
The adaptive-hill version of metadynamics updates the Gaussian width on the fly according to

the local properties of the underlying free-energy surface on the basis of local diffusivity of the CVs

or the local geometrical properties. Here, we used the former strategy. Simulation were performed

using Gromacs4.6 (Pronk et al., 2013) with the PLUMED2.1 plugin (Tribello et al., 2014). See

parameter details in Appendix 1—table 1.

Replica-averaged CS-restrained simulations
We performed replica-averaged CS restrained MD simulations by using GPU version of Gromacs5

with the PLUMED2.1 and ALMOST2.1 (Fu et al., 2014) plugins. Equilibrated structures of EROSETTA

Video 6. A typical trajectory of the benzene escaping

from the buried cavity of L99A via tunnel #1 revealed

by ABMD simulations. The backbone of L99A is

represented by white ribbons, Helices E, F and G are

highlighted in blue, while F114 and benzene are

represented by spheres in red and magenta,

respectively.

DOI: 10.7554/eLife.17505.029
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and G
Triple
ROSETTA were used as the starting conformations. CS data of EROSETTA and G

Triple
ROSETTA were

obtained from the BMRB database (Ulrich et al., 2008) as entries 17604 and 17603, respectively.

Reconnaissance metadynamics simulations
Reconnaissance metadynamics (Tribello et al., 2010) uses a combination of a machine learning tech-

nique to automatically identify the locations of free energy minima by periodically clustering the tra-

jectory and a dimensional reduction technique that can reduce the landscape complexity. We

performed several reconnaissance metadynamics simulations with different combinations of CVs

starting from GXray using Gromacs4.5.5 with PLUMED1.3 plugin. See parameter details in Appen-

dix 1—table 1.

Calculating kinetics using infrequent metadynamics
The key idea of infrequent metadynamics is to bias the system with a frequency slower than the bar-

rier crossing time but faster than the slow intra-basin relaxation time, so that the transition state

region has a low risk of being substantially biased. As the first transition times should obey Poisson

statistics, the reliability of the kinetics estimated from InMetaD can be assessed by a statistical analy-

sis based on the Kolmogorov-Smirnov (KS) test (Salvalaglio et al., 2014). See parameter details on

Appendix and Appendix 1—table 1.
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Appendix

Molecular modeling and system preparation
We used the crystal structure of T4L L99A (PDB ID code 3DMV) as starting point for simulations

of the G state of L99A. For the E state of L99A and the G state of the L99A, G113A, R119P

triple-mutant we used the CS-ROSETTA structures with PDB ID code 2LCB and 2LC9,

respectively.

Each protein was solvated in a dodecahedral box of TIP3P water molecules with periodic

boundary conditions. The protein-solvent box had a distance of 10 Å from the solute to the

box boundary in each dimension, which results in approximately 10,000 water molecules and

more than 32,000 atoms. Chloride counter-ions were included to neutralize the overall electric

charge of the system. We used the CHARMM22* force field (Piana et al., 2011) for most of

our simulations, but also used the Amber ff99SB*-ILDN (Hornak et al., 2006; Best and

Hummer, 2009; Lindorff-Larsen et al., 2010) for some simulations to examine the

dependency of the results on the choice of force field.

The van der Waals interactions were smoothly shifted to zero between 0.8 and 1.0 nm, and

the long-range electrostatic interactions were calculated by means of the particle mesh Ewald

(PME) algorithm with a 0.12 nm mesh spacing combined with a switch function for the direct

space between 0.8 and 1.0 nm. The bonds involving hydrogen atoms were constrained using

the LINCS algorithm. We employed the V-rescale thermostat (Bussi et al., 2007) to control the

temperatureand simulated the system in the canonical ensemble.

Reference transition path and path collective variables
We used path collective variables both to enhance sampling in path driven metadynamics (see

below) as well as to represent the conformational landscape sampled by other means. Path

collective variables have previously been shown to be very useful in finding free energy

channels connecting two metastable states, and also able to construct the global free energy

surfaces even far away from the initial path (Branduardi et al., 2007). A reference path is

defined by a set of conformations along the path, and the progress along this path can be

described mathematically as:

SpathðXÞ ¼

PN
i¼1

ie�lMiðXÞ

PN
i¼1

e�lMiðXÞ

Here X are the coordinates of the instantaneous protein conformer sampled by MD

simulations, N is the number of frames used to describe the reference path (often dependent

on the length scale of the conformational transition process), MiðXÞ is the mean-square

deviation (after optimal alignment) of a subset of the atoms from the reference structure of

i th frame, and l is a smoothing parameter whose value should roughly be proportional to the

inverse of the average mean square displacement between two successive frames along the

reference path. With this definition, Spath quantifies how far the instantaneous conformer, X, is

from the reactant state and the product state, thus monitoring the progress of the system

along the conformational transition channel.

Using Spath as the sole CV would assume that the initial reference path contains a sufficient

description of the important degrees of freedom between the two states. It is, however, rarely

possible to guess such a path because determining the actual pathway taken is a goal of the

simulation. Thus, Spath is supplemented by a second CV, Zpath, which measures the deviation

away from the structures on the reference path. I.e. if Spath quantifies the progress along the

path, Zpath measures the distance away from the reference path:
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ZpathðXÞ ¼�
1

l
ln
X

N

i¼1

e�lMiðXÞ

The combination of Spath and Zpath thus maps the entire conformational landscape to a two-

dimensional projection, which can also be thought of as a tube connecting the two end states,

and where S measures the progress along the tube and Z the width of the tube. The

usefulness of the path CVs is, however, dependent on the quality of reference path, which is

determined amongst other things by two factors: (1) the relative accuracy of the reference

path and (2) how uniform reference structures are distributed along the path. Because of the

explosion in number of possible conformations as one progresses along Zpath, simulations are

mostly enhanced when Spath provides a relatively good description of the pathway taken.

Further, if reference structures are only placed sparsely along the path, one looses resolution

of the free energy surface and also decreases the ability to enhance sampling.

To obtain a good reference path, without knowing beforehand the mechanism of conversion,

we here used a method to construct snapshots along a possible initial path. Taking GXray and

EROSETTA as initial and final structures, we calculated the optimal reaction paths between them

with the MOIL software (Elber et al., 1995) which has previously been used to explore the

mechanism of conformational change of proteins (Wang et al., 2011) . After minimizing

endpoint structures, we employed the minimum-energy-path self-penalty walk (SPW)

(Czerminski and Elber, 1990) functional embedded in the CHMIN module to obtain an initial

guess for the conformational transition path. This path was subsequently optimized in the SDP

(steepest descent path) module by minimizing the target function T consisting of two terms S

and C. S is an action function that provides approximate most probable Brownian trajectories

connecting the reactant and product states, while C is a restraint function aimed to distribute

frames approximately uniformly along the path. They can be expressed by:

S¼
X

N�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hsþð
qU

qxi
Þ2

s

jxiþ1 � xij

C¼ l
X

i

ðDli;iþ1 �< Dl >Þ2

where N is the number of frames along the reference path, xi is the entire vector of

conformational coordinates of frame i, U is a potential energy as a function of the mass-

weighted coordinate vector, Hs is a constant with an arbitrary positive value, which can be

tuned to generate the optimal paths with different thermal energies. Dli;iþ1 ¼ M1=2jxi � xiþ1j is

the arc-length between consecutive frames. l controls the strength of the restraint function C.

The SDP or minimum energy path is the limiting path in which the action S is optimized with

Hs ! 0. An important advantage of an SDP is that it is capable of giving a good guess of the

minimal energy path which can reflect the major mechanism, only with inexpensive

computation. Further details can be found in Refs. (Wang et al., 2011; Majek et al., 2008).

The SDP was approximated as 31 discrete conformations. Most regions of the GXray and

EROSETTA structures are very similar, with the exception of the cavity-related atoms whose

movement determines the conformational transitions between the G and E states. To minimize

computations, we used only a subset of heavy atoms around the cavity from amino acid

residues 99 to 126 to define Spath and Zpath, resulting a ‘light version’ of the reference path

which included only 212 atoms. We used the Ca atoms of the C-terminal domain to align the

molecule. It is important to note that by focusing only on atoms surrounding the cavity in the

calculation of the path-variables we only enhance sampling of the conformational changes

relating to the cavity. We used l ¼ 56:0 based on the consideration that smooth change of the

function of Spath can be achieved when e�l<MiðXÞ> � 0:1 (Tribello et al., 2014).
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We defined Spath and Zpath using the SDP as described above. The equidistant requirement of

the path is satisfied by the penalty function as is evident from the RMSD matrix for path

frames which has a gullwing shape (Figure 2—figure supplement 1, indicating that each

frame is closest to its neighbor and more different from all other reference frames.

Metadynamics simulations
Metadynamics discourages the system from sampling already visited conformational regions by

continuously adding an external history-dependent repulsive potential at the present value of

the reaction coordinates or CVs, which are assumed to include the slowly varying degrees of

freedom and thus describe the main features of the dynamics (Laio and Parrinello, 2002). The

biasing potential in metadynamics results in an artificial (enhanced) dynamics but makes it

possible to reconstruct the free energy surfaces by removing the bias introduced. The bias is

typically added as Gaussians at regular time intervals, tG, and is given by:

VGðS; tÞ ¼
X

jt=tG j

k¼1

!kdðSðtÞ;Sðk � tGÞÞ

Here S denotes the CVs, k is the index of the individual Gaussians, !k is the height of the k’th

Gaussian, and dðSðtÞ; Sðk � tGÞÞ is a short-ranged kernel function of the CVs:

dðSðtÞ;Sðk � tGÞÞ ¼ e

Pn

j¼1
�

jsjðtÞ�sj ðk�tG Þj2

2s2
kj

where n is the number of CV, j is the index of a CV, and skj and sjðk � tGÞ are the width and the

position of the Gaussian hills, respectively.

We here used a range of different metadynamics approaches to determine the free energy

landscape, and the mechanism and kinetics of conformational exchange (see below).

Well-tempered metadynamics
In the well-tempered version of metadynamics, the height of the individual Gaussians, !k, is

decreased as the total bias accumulates over time, in order to improve the convergence of the

free energy:

!k ¼ !0e
� 1

g�1

VG ðS;k�tG Þ

kBT

Here !0 is the initial height, g ¼ ðT þ DTÞ=T is referred as the bias factor, which can be tuned

to control the speed of convergence and diminish the time spent in lesser-relevant, high-

energy states. Thus, the quantity T þ DT is often referred as the fictitious CV temperature.

Adaptive-width metadynamics
In contrast to standard metadynamics in which the width of the Gaussians is constant, the

adaptive-width version of metadynamics updates the Gaussian width skj on the fly according

to local properties of the underlying free-energy surface on the basis of local diffusivity of the

CVs or the local geometrical properties (Branduardi et al., 2012).

In the region of conformational space near the endpoints of the path CVs many conformations

are compressed on similar CV values, leading to high-density but low-fluctuation boundaries. It

is apparent that the use of a fixed width might give an inaccurate estimation of the free

energy profile in the boundaries where the free energy basins of reactant and product states
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are located, also makes it more difficult for the simulations to converge. Therefore, the feature

of shape adaptive of Gaussian potential is particularly helpful for the case of using path CVs

that have significant boundary effects.

Metadynamics with path variables (PathMetaD)
We sampled the free energy landscape along Spath and Zpath, as defined above, using adaptive-

width metadynamics, which resulted in a finer resolution and faster convergence of the free

energy landscape, in particular near the path boundaries, than standard metadynamics. The

production simulations were performed at 298K in well-tempered ensemble (Appendix 1—

table 1: RUN1 and RUN2).

Reconnaissance metadynamics
To explore the mechanism of conformational exchange we used reconnaissance

metadynamics (Tribello et al., 2010). This is a ‘self-learning’ approach which combines of a

machine learning technique to automatically identify the locations of free energy minima by

periodically clustering the trajectory and a dimensional reduction technique that can reduce

the complex locations to a locally-defined one-dimensional CV by using information collected

during the clustering. It has previously been shown that reconnaissance metadynamics makes

it possible to determine a path from a large set of input collective variables

(Söderhjelm et al., 2012; Tribello et al., 2011).

Infrequent Metadynamics (InMetaD)
We used the recently described ‘infrequent metadynamics’ (InMetaD) to obtain the rates of the

conformational exchange process (Tiwary and Parrinello, 2013). In standard metadynamics

simulations it is very difficult to obtain kinetic properties because the biasing potential is

added both to the free energy basins as well as the barriers that separate them. While it is

potentially possible to determine the rates from the height of the free energy barriers, this

requires both that the CVs used represent the entire set of slowly varying degrees of freedom,

and also a good estimate of the pre-exponential factor to convert barrier height to a rate.

The key idea in InMetaD to circumvent these problems is to attempt to add the bias to the

system more slowly than the barrier crossing time but faster than the slow inter-basin

relaxation time, so that the transition state region has a lower risk of being biased, and

therefore the transitions are less affected. By filling up a free energy basin by a known amount

it is possible to determine how much the barrier has been decreased, and hence remove this

bias from the rates determined. Thus, as described in more detail below, the approach works

by performing a large number of individual simulations to obtain first passage times between

the individual basins, which are then corrected by the known enhancement factors to obtain

estimates of the unbiased rates. This method has been successfully used to reproduce the

kinetics of conformational change of alanine dipeptide (Tiwary and Parrinello, 2013)

unbinding of the inhibitor benzamidine from trypsin (Tiwary et al., 2015a) and slow unbinding

of a simple hydrophobic cavity-ligand model system (Tiwary et al., 2015b).

In these simulations we used a deposition frequency of 80 or 100 ps (see parameters in

Appendix 1—table 1), a value much lower than the deposition frequency of 1 ps used in the

PathMetaD simulations described above. In this way we lower the risk of substantially

corrupting the transition state region. In addition, a tight upper wall potential on Zpath=0.10

nm2 is used to confine the sampling based on our converged free energy surface which shows

the conformational change mostly occurs within this region.

With these parameters we collected dozens of trajectories that have a state-to-state transition

in the G-to-E and E-to-G directions. The passage times observed in each of these were then

corrected for the metadynamics bias as follows.
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First, we calculate the acceleration factor a from:

a¼ t=tM ¼<eVðs;tÞ=kT>M

where the anguluar brackets denote an average over a metadynamics run before the first

transition, and Vðs; tÞ is the metadynamics time-depedent bias. The evolution of the

acceleration factor aðtÞ can be expressed by:

aðtÞ ¼ ð1=tÞ

Z t

0

dt0eVðs;t
0Þ=kT

Then the observed passage time, t, is reweighted by:

ttrue ¼ aðtÞ � t¼

Z t

0

dt0eVðs;t
0Þ=kT

In principle, the transition time should be a Poisson-distributed random variable, and its mean,

�, standard deviation s and median tm=ln2 all should be equal to each other. In practice,

however, they are somewhat sensitive to insufficient sampling (Salvalaglio et al., 2014). So

rather than simply calculating averages of the individual times, we estimated the average rate

and transition time t from a fit of the empirical cumulative distribution function (ECDF) with

the theoretical cumulative distribution function (TCDF):

TCDF ¼ 1� e�
t
t

It has previously been shown that t estimated in this way converges more quickly than the

simple average, �. This is also consistent with our observation, and we find that 10–15 samples

appear sufficient to get a reasonably accurate estimation of the transition time. We used a

bootstrap approach to estimate the errors.

To examine whether the observed times indeed follow the expected Poisson distribution we

used a Kolmogorov-Smirnov (KS) test to obtain a p-value that quantifies the similarity between

the empirical and theoretical distributions. Traditionally, a threshold value typically of 0.05 or

0.01 (the significance level of the test) is used to judge if the theoretical (TCDF) and empirical

(ECDF) distributions are in agreement. If the p-value is equal to or larger than the threshold

value, it suggests that the estimated transition time is quite reliable. If (a) the transition regions

were perturbed significantly with infrequent biasing or (b) there are hidden unidentified

timescales at play (e.g. the CVs do not capture the slow degrees of freedom) the KS test for

time-homogeneous Poisson statistics would fail.

CS-restrained replica-averaged simulation
The simulation methods described above constitute different ways of exploring the

thermodynamics (PathMetaD), kinetics (InMetaD) and mechanism (Reconnaissance

metadynamics) of conformational exchange. In all of these simulations, sampling is determined

by the molecular energy function (force field), and the experimental information on T4L is used

only in the construction of the path variables. When additional experimental information is

available, one may introduce an additional energy term so as to bias the simulations to be in

agreement with this information (Robustelli et al., 2010). As the experimental values are

ensemble averages we apply these restraints only to averages calculated over a number of

‘replicas’ that are simulated in parallel. In this way, the information from the experimental data

is incorporated into the simulation as a perturbation following the maximum entropy

principle (Pitera and Chodera, 2012; Roux and Weare, 2013; Cavalli et al., 2013;

Boomsma et al., 2014).
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We used this approach to obtain conformational ensembles that include not only information

from the molecular force field, but also experimental NMR chemical shifts (CS). In particular,

we used either the chemical shifts of the E state of L99A obtained from the analysis of the

CPMG experiments, or the native state chemical shifts of a triple mutant that populates the

same state as its ground state (Bouvignies et al., 2011). The CS restraints were imposed by

adding a pseudo-energy term (ECS) to a standard molecular-mechanics force field (EFF).

ECS ¼ �CS
X

N

i¼1

X

6

j¼1

ðdExpij �
1

M

X

M

k¼1

dSimijk Þ2

Here �CS is strength of the CS restraints, i indicates the residue number (total of N), j indicates

each of the six backbone atoms whose chemical shifts were used (Ca, Cb, C
0, Ha, HN and N), k

is an index for the total of M replicas, and dExp and dSim are the experimental and simulated

CSs, respectively. The latter quantity, dSim, was calculated by CamShift (Fu et al., 2014) as a

plugin of PLUMED. The CS values of Pro, Gly, Asp, Glu, His and terminal residues were not

included because the accuracy in their predictions are too low to contain sufficient information

in this approach (Fu et al., 2014). We set �CS=24 kJ mol�1 ppm�2 and used M=4 replicas. In

principle, the number of replicas is a free parameter that should be set as large as possible

when the experimental data and the method for calculating it is noise free (Boomsma et al.,

2014). In practice, one uses a finite set of replicas and it has been shown that M=4 replicas is

sufficient to capture the dynamics accurately (Camilloni et al., 2013).

We performed replica-averaged CS restrained MD simulations using GROMACS4.6 and the

PLUMED2.1 plugin at 298 K. The equilibrated structures of EROSETTA and G
Triple
ROSETTA were used as

the starting configuration (of each of the four replicas) in the CS-restrained simulations of L99A

and the L99A,G113A,R119P triple mutant, respectively. The CS data for EROSETTA and G
Triple
ROSETTA

were obtained from the Biological Magnetic Resonance Bank (BMRB) database (Ulrich et al.,

2008) with entries 17604 and 17603, respectively.

PT-WT-MetaD failed to get the converged free energy landscape
In practice, the choice of CVs plays a fundamental role in determining the accuracy,

convergence and efficiency of metadynamics simulations. If an important CV is missing, the

exploration of the free energy landscape will be difficult due to hysteresis. Finding a minimal

set of CVs that include all important degrees of freedom is a highly nontrivial task and one

often has to proceed by several rounds of trial simulations.

At the beginning, we followed a strategy which had previously been successfully used in the

exploration of protein conformational transitions (Sutto and Gervasio, 2013; Papaleo et al.,

2014) to design a set of CVs on the basis of static structural comparison between GXray and

EROSETTA. In particular, by comparing these two structures we defined several CVs that

described structural differences by individual dihedral angles and hydrogen bonds, as well as

dihedral correlation and coordination number (state-specific contact map) (Bonomi et al.,

2009) (summarized in Appendix 1—table 1). We combined these in a multiple-replica,

parallel tempering approach in the well-tempered ensemble (PT-WT-metaD) (Bonomi and

Parrinello, 2010) to further enhance the sampling. In PT-WT-metaD, the energy fluctuations

are enlarged by using energy as a biased CV but the average energy is the same as the

canonical ensemble, allowing the use of a larger spacing between temperatures and a much

fewer number of replicas than normal PT simulations (Barducci et al., 2015). Coordinate

exchange with high temperature replicas can enhance the sampling of all the degrees of

freedom, even those not included in the biased CVs, and one may include a ‘neutral’ replica

(without energy bias, at 298 K). We performed a series of simulations with different

combinations of CVs starting from the G state of L99A (Appendix 1—table 2). However,

unfortunately, we only observed partial G-to-E transitions, even in a relatively long trajectory
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of about 1 �s for each replica. This negative result suggested that these manually chosen CVs

did not contain all the necessary slow degrees of freedom.

Tunnel analysis
We used CAVER3 (Chovancova et al., 2012) to analyse the structures and CAVER Analyst1.0

(Kozlikova et al., 2014)(http://www.caver.cz/, see also parameters in Appendix 1—table 4)

to separate the tunnels into different clusters. CAVER Analyst is a standalone program based

on CAVER3.0 algorithm (Chovancova et al., 2012). The settings for the tunnel calculations can

be set through the Tunnel Computation window, while the advanced parameters can be set in

the Tunnel Advanced Settings window. We used the center of mass of the cavity-related

region (residue 93-124) as the position of the starting point. Average-link hierarchical

clustering algorithm is performed to build a tree hierarchy of tunnel axes based on their

pairwise distances. The size of the resulting clusters is dependent on the Clustering threshold

parameter which specifies the level of detail at which the tree hierarchy of tunnel clusters will

be cut. We used the default value so that the tree hierarchy of tunnel clusters is cut at the

value of 3.5.

Adiabatic bias molecular dynamics
Adiabatic biased molecular dynamics (ABMD) (Marchi and Ballone, 1999; Paci and Karplus,

1999) is an algorithm developed to accelerate the transition from the reactant state to the

productive state, here corresponding to the ligand bound state and ligand-free state,

respectively. In ABMD the system is perturbed by a ‘ratcheting potential’, which acts to

‘select’ spontaneous fluctuations towards the ligand-free state. The ratcheting potential is

implemented in PLUMED2.2 as

Vð�ðtÞÞ ¼
0:5Kð�ðtÞ� �mðtÞÞ

2; �ðtÞ>�mðtÞ
0; �ðtÞ � �mðtÞ

�

where

�ðtÞ ¼ ðSðtÞ� StargetÞ
2

and

�mðtÞ ¼min0�t�t�ðtÞþhðtÞ

K is the force constant, SðtÞ is the instantaneous CV value, Starget is the target value of the CV

and hðtÞ is an additional white noise acting on the minimum position of �ðtÞ. Here, we used the

RMSD of the ligand to the cavity-bound state as the CV, and set Starget ¼ 4:0 nm and K=20

kJ � mol�1 � nm�2 or 50 kJ � mol�1 � nm�2 to check the dependency of the force constant

chosen. The biasing potential is zero when the CV increases but provides a penalty when the

CV decreases. In this way, we were able to observe multiple unbinding events in simulations

despite the long lifetime (1.2 ms) of the ligand in the cavity.
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Appendix 1—figure 1. Two representative InMetaD trajectories of L99A with G to E transitions.

The time point, t0, for the first transition from G to E is identified when the system evolves into

conformational region of Spath > 0.55 and Zpath < 0.01. We then calculate the unbiased

passage time by multiplying t0 by the corresponding accelerate factor a(t0). Upper panels show

the evolution of the reweighted time as a function of metadynamics time. The kinks usually

indicate a possible barrier crossing event. Middle panels show the trajectories starting from

the G state and crossing the barrier towards the E state. Lower panels show the biasing

landscape reconstructed from the deposited Gaussian potential, which can be used to check

the extent to which the transition state regions are affected by deposited bias potential.

DOI: 10.7554/eLife.17505.030
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Appendix 1—figure 2. Two representive InMetaD trajectories of L99A with E to G transitions of

L99A. First transition time for G to E transition is identified when the system evolves into

conformational region of Spath < 0.28 and Zpath < �0.01.

DOI: 10.7554/eLife.17505.031
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Appendix 1—figure 3. Characteristic transition times between G and E states of L99A. The

error bars represent the standard deviation of t obtained from a bootstrap analysis.
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Appendix 1—figure 4. Characteristic transition times between G and E states of the triple

mutant. The figure shows the characteristic transition time tGfiE (left panel) and tEfiG (right

panel) of the triple mutant as a function of the size of a subsample of transition times

randomly extracted from the main complete sample. The error bars represent the standard

deviation of characteristic transition times obtained by a bootstrap analysis. The calculated

and experimental values of the transition times are shown in blue and red font, respectively.
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Appendix 1—figure 5. Poisson fit analysis for G to E transitions and E to G transitions of L99A.

We show the ECDF (the empirical cumulative distribution function) and TCDF (the theoretical

cumulative distribution function) in black and blue lines, respectively. The respective p-values

are reasonably, albeit not perfectly, well above the statistical threshold of 0.05 or 0.01,

indicating the kinetics is not substantially modified by the deposited bias potential in InMetaD.

Error bars are the standard deviation obtained by a bootstrap analysis.

DOI: 10.7554/eLife.17505.034
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Appendix 1—figure 6. Poisson fit analysis for G to E transitions and E to G transitions of the tri-

ple mutant. The figure shows the p-values of the Poisson fit analysis of G fi E (A) and E fi G (B)

transition times as a function of the size of a subsample of transition times randomly extracted

from the main complete sample.
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Appendix 1—table 2. Definition of collective variables.

CV definitions parameters purpose

1 total energy bin=500
enhance energy
fluctuations

2
dihedral angle of Ca atoms of consecutive residues F104-Q105-
M106-G107

s=0.1

3
dihedral angle of Ca atoms of consecutive residues G113-F114-
T115-N116

s=0.1

4 QG, distance in contact map space to the GXray structure s=0.5

5 QE , distance in contact map space to the EROSETTA structure s=0.5

6 distance between QG and QE s=0.5

7
number of backbone hydrogen bonds formed between M102 and
G107

s=0.1

8
dihedral correlation between the Ca dihedral angles of con-
secutive residues in segment N101-G107

s=0.1

9 global RMSD to the whole protein
wall poten-
tial

avoid sampling un-
folding space
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Appendix 1—table 3. Average root-mean-square deviation (<RMSD> in units of ppm)

between experimental CSs and those from the CS-restrained replica-averaged simulations.

Nucleus RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9

C0 0.833 0.655 0.776 0.854 0.793 0.907 0.727

Ca 1.055 0.879 0.929 1.065 0.940 1.103 0.894

N 1.966 1.707 1.771 1.967 1.780 2.011 1.828

HN 0.379 0.275 0.291 0.368 0.284 0.414 0.286

HA 0.232 0.183 0.186 0.242 0.182 0.246 0.183
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Appendix 1—table 4. Parameter set used in tunnel analysis using CAVER3.0

(Chovancova et al., 2012) and CAVER Analyst1.0 (Kozlikova et al., 2014).

Minimum probe radius 0.9 Å

Shell depth 4

Shell radius 3

Clustering threshold 3.5

Starting point optimization

Maximum distance 3 Å

Desired radius 5 Å

DOI: 10.7554/eLife.17505.039

Appendix 1—table 5. Clustering analysis of tunnels (top three listed).

Index Population Maximal bottleneck radius (Å) Average bottleneck radius (Å)

#1 27% 2.5 1.3

#2 20% 1.4 1.0

#3 15% 1.3 1.0

DOI: 10.7554/eLife.17505.040

Appendix 1—table 6. Unbinding Pathways Explored by ABMD (RMSDBNZ as CV).

k=20 kJ/(mol � nm�2) k=50 kJ/(mol � nm�2)

Index Length Path Length Path

RUN1 56 ns P1 27 ns P2

RUN2 36 ns P2 78 ns P1

Appendix 1—table 6 continued on next page
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Appendix 1—table 6 continued

k=20 kJ/(mol � nm�2) k=50 kJ/(mol � nm�2)

RUN3 43 ns P1 6 ns P1

RUN4 43 ns P1 35 ns P1

RUN5 77 ns P2 10 ns P1

RUN6 176 ns P1 44 ns P1

RUN7 41 ns P1 18 ns P1

RUN8 106 ns P1 15 ns P1

RUN9 72 ns P1 7 ns P1

RUN10 107 ns P1 2 ns P1

RUN11 61 ns P1 20 ns P2

RUN12 58 ns P2 26 ns P1

RUN13 64 ns P1 31 ns P2

RUN14 173 ns P2 20 ns P1

RUN15 172 ns P1 34 ns P1

RUN16 74 ns P2 22 ns P1

RUN17 20 ns P1 17 ns P1

RUN18 34 ns P1 35 ns P2

RUN19 91 ns P1 21 ns P2

RUN20 61 ns P1 18 ns P1

Cost 1.6 �s 0.5 �s

Summary

P1 75% (15/20) 75% (15/20)

P2 25% (5/20) 25% (5/20)
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