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Abstract
Knowledge is distributed unevenly through most enterprises. Hence, flows of

knowledge (e.g., across time, people, locations, organizations) are critical to
organizational efficacy and performance under a knowledge-based view of the

firm. However, supported principally by narrative textual theory in the

emerging knowledge management (KM) field, the researcher has difficulty

describing how different kinds of knowledge will flow through various parts of
an organization. This causes difficulty also for predicting the effects of alternate

approaches to dispersing knowledge that ‘clumps’ in various areas. This

problem is also manifest for the KM professional, who lacks clear theory or tools
to anticipate how any particular information technology or other managerial

intervention may enhance or impede specific knowledge flows in the

enterprise. In this expository article, we build upon a steady stream of research
in computational organization theory to develop agent-based models of

knowledge dynamics. This work draws from emerging theory for multi-

dimensional representation of the knowledge-flow phenomenon, which
enables the dynamics of enterprise knowledge flows to be formalized and

emulated through computational models. This approach provides the means

for knowledge-flow processes to be visualized and analyzed in new ways.

Computational experimentation enables the performance of many alternate
process designs and technological interventions to be compared through

examination of dynamic models, before committing to a specific approach in

practice. We illustrate this research method and modeling environment
through semi-formal representation and agent-based emulation of several

knowledge-flow processes from the domain of software development. We also

outline key directions for the new kinds of KM research and practice elucidated
by this work.
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Introduction
Knowledge represents a critical resource in the modern enterprise – so
critical that it is conceptualized as central to competitive advantage in a
knowledge-based view of the firm (Grant, 1996; Spender, 1996; Cole,
1998). But knowledge is not distributed evenly through the enterprise.
Capitalizing on this resource for enterprise performance depends upon its
rapid and efficient transfer from one organization, location, person or time
of application to another. From a technological perspective, such dynamic
dependence points immediately to the design of information systems (IS) –
along with corresponding organization, work and process redesigns
(Leavitt, 1965; Davenport, 1993) – to enhance knowledge flows. But
knowledge is distinct from information (e.g., it enables action; see Nonaka,
1994; Davenport et al., 1998; Teece, 1998), and few extant information
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systems even address knowledge as the focus or object of
flow (Nissen, 1999).

In the context of research, the emerging knowledge
management (KM) field does not have the benefit of
strong theory on knowledge flows. As Alavi & Leidner
(2001, p. 126) note, there exist ‘large gaps in the body
of knowledge in this area.’ Limited by our present state of
knowledge, the researcher has difficulty describing how
different kinds of knowledge will flow through various
parts of an organization. This causes difficulty also for
predicting the effects of alternate approaches to disper-
sing knowledge that ‘clumps’ in various areas. For
instance, we have a number of models that describe
various aspects of knowledge flows (e.g., Von Hippel,
1994; Dixon, 2000; Nissen et al., 2000; Schultze & Boland,
2000; Szulanski, 2000; Augier et al., 2001; King & Ko, 2001;
O’Leary, 2001; Swap et al., 2001). But few such models
address the dynamics of knowledge as it flows.

Nonaka (1994) describes a ‘spiral’ of dynamic interac-
tion between tacit and explicit knowledge, which
comprises a dynamic theory of knowledge creation. But
even this dynamic model does not address explicitly the
central variable time. Nissen (2002) builds upon Nonaka
and others to develop a phenomenological model of
knowledge dynamics. This latter model makes flow time
explicit, and it supports a multidimensional representa-
tional framework for analysis and visualization of diverse
knowledge-flow patterns. However, even this time-de-
pendent characterization of knowledge-flow dynamics
remains static in terms of its representational model. This
is much like trying to visualize three-dimensional motion
through a static picture (e.g., camera snapshot).

Further, all of the extant theoretical models above are
constructed principally from natural language textual
narrative, which is inherently ambiguous and informal.
Different researchers develop different interpretations of
what a theory says, which magnifies differences in terms
of what such theory means. This confounds theory
development and impedes theory testing. The problem
is also manifest for the KM professional. Ambiguous
theory is limited in its utility to inform practice. The
professional further lacks tools to anticipate how any
particular information technology or other managerial
intervention may enhance or impede specific knowledge
flows in the enterprise. Without clear theory or predictive
tools, the manager is limited generally to reliance
upon intuition, imitation or trial and error, techniques
that do not enjoy the benefits of cumulative knowledge
accretion.

The research described in this article continues the
modeling work from above by addressing the dynamics
of knowledge flows. Drawing upon current advances in
computational organization theory, it develops agent-
based models of knowledge dynamics. Through
commitment to a semi-formal representation of the
knowledge-flow phenomenon, the resulting models are
considerably less ambiguous and more precise than even
the richest of those based principally upon natural

language textual description. Agent-based models also
enable the execution and performance of diverse knowl-
edge work processes to be emulated for analysis and
comparison – including the ability to stop, re-examine
and replay repeatedly the action of knowledge flows –
and the approach is broadly generalizable. This represents
a new contribution to KM research. Agent-based models
can further be employed as analytical tools to assess
computationally the relative performance of alternate
technologies and managerial interventions to enhance
knowledge flows – before committing to implementation
in the physical organization (e.g., via trial and error). This
represents a new contribution to KM practice.

In this article, we take an expository approach to
describing agent-based modeling of knowledge dy-
namics. Such modeling builds upon substantial prior
research (e.g., static model integration, agent-based
model representation). We summarize background re-
search in the first half of the article and cite it liberally to
guide the reader for further reference. Such modeling also
enables a novel computational approach to KM research
and practice. We illustrate the associated dynamic knowl-
edge-flow behaviors through examples from the domain
of software development. The article concludes by
summarizing key directions for the new kinds of KM
research and practice elucidated by this work.

Static model integration
The Spiral Model described by Nonaka (1994) serves as
the cornerstone of model integration in this section.
Figure 1 delineates the interaction between epistemolo-
gical and ontological dimensions used by Nonaka as the
principal means for describing knowledge as it flows
through the enterprise. Four enterprise processes (and
epistemological conversions) characterize this flow: so-
cialization (tacit to tacit), externalization (tacit to
explicit), combination (explicit to explicit), and inter-
nalization (explicit to tacit). The related trigger concept
(Nonaka et al., 1996) is also integrated into the figure to
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Figure 1 Spiral Model (adapted from Nonaka, 1994; Nonaka

et al., 1996).

Agent-based modeling of knowledge dynamics Mark E Nissen and Raymond E Levitt170

Knowledge Management Research & Practice



show where each knowledge-conversion process is ‘in-
duced’ (p 842) by one of four triggers: field building,
dialog, linking explicit knowledge, and learning by
doing, respectively.

Briefly, socialization denotes members of a team
sharing experiences and perspectives, much as one
anticipates through tightly knit workgroups and com-
munities of practice; in terms of the trigger, a ‘field’ of
interaction is seen as facilitating this sharing. Externali-
zation denotes the use of metaphors through dialog that
leads to articulation of tacit knowledge and its subse-
quent formalization to make it concrete and explicit;
such dialog or what Nonaka et al. refer to as ‘collective
reflection’ (p 842) is described as inducing externaliza-
tion. Combination denotes coordination between differ-
ent groups in the organization – along with
documentation of existing knowledge – to link and
combine new intra-team concepts with other explicit
knowledge in the enterprise. Internalization denotes
diverse members in the organization applying the
combined knowledge from above – often through trial
and error – and in turn translating such knowledge into
tacit form at the organization level (e.g., through work
practices and routines); the term learning by doing is used
to describe the trigger for knowledge internalization. As
suggested by the repeating pattern delineated in the
figure, such interaction between ‘triggers’ and conver-
sions enables a continuous ‘spiral’ of knowledge.

We extend this Spiral Model by drawing from Nissen
et al. (2000), who develop their Life Cycle Model by
amalgamating several individual works (e.g., Davenport
& Prusak, 1998; Despres & Chauvel, 1999; Gartner Group,
1998; Nissen, 1999). This amalgamated model describes a
continuous cycle with six phases of knowledge flowing
through the enterprise: (1) creation, (2) organization, (3)
formalization, (4) distribution, (5) application, and (6)
evolution. Briefly, the creation phase begins the life cycle,
as new knowledge is generated within an enterprise;
similar terms from other models include capture and
acquire. The second phase pertains to the organiza-
tion, mapping or bundling of knowledge, often employ-
ing systems such as taxonomies, ontologies, and reposi-
tories. Phase 3 addresses mechanisms for making
knowledge formal or explicit; similar terms from other
models include store and codify. The fourth phase
concerns the ability to share or distribute knowledge in
the enterprise; this also includes terms such as transfer
and access. Knowledge use and application for problem
solving or decision making in the organization constitu-
tes Phase 5. A sixth phase is included to cover knowledge
refinement and evolution, which reflects organiza-
tional learning – and thus a return to knowledge creation
– through time. It is important to note, as in the
familiar life cycle models used in IS design (e.g., System
Development Life Cycle or SDLC), progression through
the various phases of this Life Cycle Model is generally
iterative, and it involves feedback loops between
stages; that is, all steps need not be taken in order, and

the flow through this life cycle is not necessarily
unidirectional.

Integrating the concepts above, the resulting model
can be represented using three dimensions: epistemologi-
cal, ontological, and life cycle. Clearly, many additional
dimensions could also be integrated into this model (e.g.,
declarative and procedural, see Nolan Norton (1998);
practical and theoretical, see Spender (1996); know-what
and know-how, see Ryle (1958); causal, conditional and
relational, see Zack (1998); embodied, encoded, em-
brained, embedded and procedural, see Venzin et al.,
1998). However, using three dimensions strikes a balance
between descriptiveness and parsimony, and the three
dimensions selected for this model all derive from
research focused specifically on knowledge flows. We
use this three-dimensional representation to characterize
in new ways the complex interactions between knowl-
edge in alternate states as it flows through the enterprise.
Yet we also preserve the descriptive and explanatory
abilities of the individual models that underlie (and are
subsumed by) this integrative work.

The three-dimensional representation also enables us
to visualize a diversity of enterprise knowledge flows in
terms of a vector space and to plot dynamic trajectories
for each flow. Drawing from Nissen (2002), three notional
knowledge-flow trajectories are plotted in Figure 2 for
illustration. For instance, the simple linear flow labeled
‘P&P’ depicts the manner in which most large enterprises
inform and attempt to acculturate employees through
the use of policies and procedures: explicit documents
and guidelines that individuals in the organization are
expected to memorize, refer to and observe. As another
instance, the cyclical flow of knowledge through a life
cycle (labeled ‘KMLC’) reflects a more complex dynamic
than its simple linear counterpart – similar to that
expected when an individual participates in a commu-
nity of practice, for instance. The ‘spiral’ dynamic
from above can also be delineated in this space by
the curvilinear vector sequence S–E–C–I (i.e., correspond-
ing to the processes of socialization, externalization,
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combination, and internalization, respectively). Further,
drawing from the Life Cycle Model, we can append
processes to represent knowledge creation and evolution
(labeled as vectors K and V, respectively), which we link
together in turn to depict a serpentine flow that spans the
ranges of all three dimensions.

Notice in this representation that we can depict
explicitly flow times of various magnitudes by adjusting
proportionately the thickness of arrows used to represent
each knowledge-flow vector. This enables us to differ-
entiate graphically between specific flow processes and
states associated with ‘sticky’ and ‘fluid’ knowledge (see
Von Hippel, 1994; Szulanski, 2000), for example. This
enables us also to diagnose organizational work process
areas in which knowledge remains ‘clumped’ and to
identify managerial interventions appropriate to disperse
such knowledge. Notice also that different knowledge
flows delineate discernable patterns in this vector-space
representation (e.g., lines, cycles, spirals). Clearly, a great
many flows and patterns can be depicted in this manner.

Agent-based model representation
Despite the richness of our multidimensional representa-
tion above, the representation itself remains static; that
is, although we use it to describe the dynamics of
knowledge-flow processes, the representation is limited
to a static combination of natural language texts and
diagrams. In this section, we draw upon current advances
in computational organization theory (see Carley &
Prietula, 1994) to describe an agent-based representa-
tional environment used for semi-formal organizational
modeling. We employ such environment first in this
section to describe a computational model of software
development workflow processes. This sets the stage for
subsequent comparison with knowledge-flow models
further below.

Virtual design team research
The Virtual Design Team (VDT) Research Program (VDT,
2004) reflects the planned accumulation of collaborative
research over two decades to develop rich theory-based
models of organizational processes. Using an agent-based
representation (Cohen, 1992; Kunz et al., 1998), micro-
level organizational behaviors have been researched and
formalized to reflect well-accepted organization theory
(Levitt et al., 1999). Extensive empirical validation
projects (e.g., Christiansen, 1993; Thomsen, 1998) have
demonstrated representational fidelity and have shown
how the qualitative behaviors of VDT computational
models correspond closely with a diversity of enterprise
processes in practice.

The VDT research program continues with the goal of
developing new micro-organization theory and embed-
ding it in software tools that can be used to design
organizations in the same way that engineers design
bridges, semiconductors or airplanes: through computa-
tional modeling, analysis, and evaluation of multiple
alternate prototype systems. Clearly, this represents a

significant challenge in the domain of organizations.
Micro-theory and analysis tools for designing bridges and
airplanes rest on well-understood principles of physics
(e.g., involving continuous numerical variables, describ-
ing materials whose properties are relatively easy to
measure and calibrate), and analysis of such physical
systems yields easily to differential equations and precise
numerical computing.

In contrast, theories describing the behavior of organi-
zations are characterized by nominal and ordinal vari-
ables, with poor measurement reproducibility, and verbal
descriptions reflecting significant ambiguity. Unlike the
mathematically representable and analyzable micro-be-
haviors of physical systems, the dynamics of organiza-
tions are: influenced by a variety of social, technical, and
cultural factors; difficult to verify experimentally; and
not amenable to numerical representation, mathematical
analysis, or precise measurement. Moreover, quite dis-
tinct from physical systems, people and social interac-
tions – not molecules and physical forces – drive the
behavior of organizations; hence such behaviors are
fundamentally non-deterministic and difficult to predict
at the individual level. People, organizations, and busi-
ness processes are qualitatively different than bridges,
semiconductors and airplanes are, and it is irrational to
expect the former to ever be as understandable, analyz-
able, or predictable as the latter. This represents a
fundamental limitation of the approach.

Within the constraints of this limitation, however, we
can still take great strides beyond relying upon informal
and ambiguous, natural language textual description of
organizational behavior (e.g., the bulk of extant theory).
For instance, the domain of organization theory is
imbued with a rich, time-tested collection of micro-
theories that lend themselves to qualitative representa-
tion and analysis. Examples include Galbraith’s (1977)
information processing abstraction, March & Simon’s
(1958) bounded rationality assumption, and Thompson’s
(1967) task interdependence contingencies. Drawing
from this theory base, we employ symbolic (i.e., non-
numeric) representation and reasoning techniques from
established research on artificial intelligence to develop
computational models of theoretical phenomena. Once
formalized through a computational model, the symbolic
representation is ‘executable,’ meaning it can emulate
the dynamics of organizational behaviors.

Even though the representation is qualitative (e.g.,
lacking the precision offered by numerical models),
through commitment to computational modeling, it
becomes semi-formal (e.g., people viewing the model
can agree on what it describes), reliable (e.g., the same
sets of organizational conditions and environmental
factors generate the same sets of behaviors), and explicit
(e.g., much ambiguity inherent in natural language is
obviated). Particularly, when used in conjunction with the
descriptive natural language theory of our extant litera-
ture, this represents a substantial advance. Further, once a
model has been validated to emulate accurately the
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qualitative behaviors of the field organization it repre-
sents, it can be used to examine a multitude of cases (e.g.,
many more and diverse than observable in practice)
under controlled conditions (e.g., repeating the same
events multiple times, manipulating only one or a few
variables at a time through repeated trials, stopping the
action for interpretation). This alone offers great promise
in terms of theory development and testing.

Additionally, although organizations are inherently
less understandable, analyzable, and predictable than
physical systems are, and the behavior of people is non-
deterministic and difficult to model at the individual
level, it is known well that individual differences tend to
average out when aggregated cross-sectionally and/or
longitudinally. Thus, when modeling aggregations of
people in the organizational context (e.g., work groups,
departments, firms), one can augment the kind of
symbolic model from above with certain aspects of
numerical representation. For instance, the distribution
of skill levels in an organization can be approximated, in
aggregate, by a Bell curve; the probability of a given task
incurring exceptions and requiring rework can be
specified, organization wide, by a distribution; and the
unpredictable attention of a worker to any particular
activity or event (e.g., new work task, communication,
request for assistance) can be modeled, stochastically, to
approximate collective behavior. As another instance,
specific organizational behaviors can be simulated
hundreds of times – such as through Monte–Carlo
techniques – to gain insight into which results are common
and expected vs those that are rare and exceptional.

Of course, applying numerical simulation techniques
to organizations is nothing new (e.g., see Law & Kelton,
1991). However, this approach enables us to integrate
the kinds of dynamic, qualitative behaviors emulated
by symbolic models with quantitative aggregate dyna-
mics generated through discrete-event simulation. It is
through such integration of qualitative and quantitative
models – bolstered by strong reliance upon well-estab-
lished theory and commitment to empirical validation –
that our approach diverges most from extant research
methods and offers new insight into the dynamics of
organizational behavior.

VDT modeling environment
Here we provide a brief overview of the VDT modeling
environment. The development and evolution of VDT
has been described in considerable detail elsewhere (e.g.,
Cohen, 1992; Christiansen, 1993; Jin & Levitt, 1996;
Thomsen, 1998; Kunz et al., 1998; Levitt et al., 1999;
Nogueira, 2000; VDT, 2004), so we do not repeat such
discussion here. The VDT modeling environment has
been developed directly from Galbraith’s information
processing view of organizations. This information
processing view has two key implications (Jin & Levitt,
1996). The first is ontological: we model knowledge work
through interactions of tasks to be performed, actors
communicating with one another and performing tasks,

and an organization structure that defines actors’ roles and
that constrains their behaviors. In essence, this amounts
to overlaying the task structure on the organization
structure and to developing computational agents with
various capabilities to emulate the behaviors of organiza-
tional actors performing work.

Figure 3 illustrates this view of tasks, actors, and
organization structure. As suggested by the figure, we
model the organization structure as a network of
reporting relations, which can capture micro-behaviors
such as managerial attention, span of control and
empowerment. We represent the task structure as a
separate network of activities, which can capture organi-
zational attributes such as expected duration, complexity,
and required skills. Within the organization structure, we
further model various roles (e.g., marketing analyst,
design engineer, manager), which can capture organiza-
tional attributes such as skills possessed, level of experi-
ence, and task familiarity. Within the task structure, we
further model various sequencing constraints, interde-
pendencies and quality/rework loops, which can capture
considerable variety in terms of how knowledge work is
organized and performed.

As suggested also by the figure, each actor within the
intertwined organization and task structures has a queue
of information tasks to be performed (e.g., assigned work
activities, messages from other actors, meetings to
attend) and a queue of information outputs (e.g.,
completed work products, communications to other
actors, requests for assistance). Each actor processes such
tasks according to how well the actor’s skill set matches
those required for a given activity, the relative priority of
the task, the actor’s work backlog (i.e., queue length), and
how many interruptions divert the actor’s attention from
the task at hand. Collective task performance is con-
strained further by the number of individual actors
assigned to each task, the magnitude of the task, and
both scheduled (e.g., work breaks, ends of shifts, week-
ends, and holidays) and unscheduled (e.g., awaiting
managerial decisions, awaiting work or information
inputs from others, performing rework) downtime.

The second implication is computational: both primary
work (e.g., planning, design, management) and coordi-
nation work (e.g., group tasks, meetings, joint problem

Figure 3 VDT information processing view of knowledge work

(adapted from Jin & Levitt, 1996).
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solving) are modeled in terms of work volume. This
construct is used to represent a unit of work (e.g.,
associated with a task, a meeting, a communication)
within the task structure. In addition to symbolic
execution of VDT models (e.g., qualitatively assessing
skill mismatches, task-concurrency difficulties, decentra-
lization effects) through micro-behaviors derived from
organization theory, the discrete-event simulation engine
enables (virtual) process performance to be assessed (e.g.,
quantitatively projecting task duration, cost, rework,
process quality).

Clearly, quantitative simulation places additional bur-
den on the modeler in terms of validating the representa-
tion of a knowledge-work process, which generally
requires fieldwork to study an organization in action.
The VDT modeling environment benefits from extensive
fieldwork in many diverse enterprise domains (e.g.,
power plant construction and offshore drilling, see
Christiansen (1993); aerospace, see Thomsen (1998);
software development, see Nogueira (2000); healthcare,
see Cheng & Levitt (2001); others). Through the process
of ‘backcasting’ – predicting known organizational
outcomes using only information that was available at
the beginning of a project – VDT models of opera-
tional enterprises in practice have demonstrated dozens
of times that emulated organizational behaviors
and results correspond qualitatively and quantitatively
to their operational counterparts in the field (Kunz
et al., 1998).

Viewing VDT as a validated model of project-oriented
knowledge work, researchers have begun to use this
dynamic modeling environment as a ‘virtual organiza-
tional testbench’ to explore a variety of organizational
questions, such as effects of distance on performance
(Wong & Burton, 2000), or to replicate classic empirical
findings (Carroll & Burton, 2000). Thus, the VDT
modeling environment has been validated repeatedly
and longitudinally as representative of both organization
theory and enterprises in practice. This gives us consider-
able confidence in its results. However, because of its
information processing view of the organization, the VDT
modeling environment was not designed specifically to
represent processes associated with flows of knowledge
through an enterprise.

Baseline computational software development model
Here we employ the VDT modeling environment to
represent work processes associated with software devel-
opment. With its output the product of collabora-
tion between people and computers, software develop-
ment represents a relatively pure form of knowledge
work, and the associated processes and technologies
represent the focus of many KM programs in practice.
This domain also helps to elucidate our multi-
dimensional knowledge-flow representation from above,
and it highlights both differences and linkages between
flows of work in the enterprise and the corresponding
flows of knowledge.

Building upon prior research in this domain (e.g.,
Nogueira, 2000), we specify first the VDT modeling
environment in terms of agents that reflect behaviors
appropriate for software development workflows. For
instance, actor agents in VDT perform work tasks
according to various skill levels (e.g., ‘low’ for novice,
‘medium’ for journeyman, ‘high’ for master), which
affect several qualitative behaviors (e.g., relative task
efforts, quality levels, communication requirements)
through rules, frames, and objects embedded within the
agent-based emulation environment. Empirical field
research indicates skill level exerts a greater influence
on such behaviors in the software domain than it does on
behaviors associated with many other types of work (e.g.,
construction, manufacturing, service). We incorporate
the benefits of such empirical relations into the model by
selecting the behavior file appropriate for software devel-
opment projects. Such behavior file represents a standard
VDT element, which has been validated empirically,
repeatedly, and longitudinally. VDT interprets such
selection to fire rules and instantiate objects appropriate
to emulate software development behaviors.

As another instance, in many work domains managers
tend to be relatively more concerned about product
quality than lower-level workers are. But empirical
research of software processes indicates the opposite
tends to hold; that is, software line and product managers
tend to push more vigorously to meet schedule deadlines
(e.g., at the expense of quality) than developers do. Thus
the effects of different levels of hierarchy and organiza-
tion structures vary between software processes and work
in other domains. Our VDT model specification in terms
of a software project causes the emulation to reflect such
empirically validated behaviors.

We use a relatively simple work process for exposition
of the software development model. Although the
process is relatively simple, however, it does not represent
a toy problem lacking real-world applicability or scal-
ability. Rather, the nature of the work and behaviors of
our agent-based emulation model reflect those of soft-
ware development processes across a wide range of
organizations, technologies, and projects. An overview
of the VDT model for software development is illustrated
through the screenshot presented in Figure 4. In this
example, the organization structure is comprised of three
elements: (1) a knowledge worker (i.e., person icon at top
of diagram labeled ‘S/W arch’) with skills in software
architecture development, (2) a team of (ten) software
engineers (i.e., person icon at top of diagram labeled ‘S/W
engr team1’) with skills in software analysis, design, and
programming, and (3) a project lead (i.e., person icon at
top of diagram labeled ‘S/W PM’) with skills in project
planning, supervision, and software development. The
task structure is comprised of two work elements: (1)
software architecture (i.e., rectangular icon at middle of
diagram labeled ‘S/W arch’), and (2) software engineering
(i.e., rectangular icon at middle of diagram labeled ‘S/W
engr’); the four milestones shown (i.e., project start,
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architecture complete, application complete, project
finish) serve as markers of progress against schedule but
do not involve work.

Five types of connections are delineated between
organization and task elements in this representation:
(1) precedence connections (e.g., between ‘S/W arch’ and
‘S/W engr’ tasks, ‘S/W arch’ task and ‘S/W arch complete’
milestone; shown in black) link tasks and milestones
according to the order in which they must be accom-
plished; (2) communication connections (e.g., between
‘S/W arch’ and ‘S/W engr’ tasks; shown in green) link
tasks associated with reciprocal interdependence, which
require mutual adjustment by actors (Thompson, 1967);
(3) rework connections (e.g., between ‘S/W arch’ and ‘S/
W engr’ tasks; shown in red) link tasks in which
exceptions or failures ‘downstream’ (e.g., in software
engineering activities) feedback to cause rework ‘up-
stream’ (e.g., in software architecture activities); (4)
assignment connections (e.g., between ‘S/W eng team1’
actors and ‘S/W engr’ task; shown in blue) indicate which
organizational actors are assigned responsibility for each
work task; and (5) supervision connections (e.g., between
‘S/W PM’ and ‘S/W arch’ actors) indicate the formal
organizational hierarchy.

The two windows at the left of this figure reveal a tree
structure of the representation (top) and numerous
model parameters (e.g., priority, centralization, team
experience; bottom) used to instantiate a particular work
process (e.g., software development). These parameters
are all set to empirically determined ‘normal’ values for a
software development project. As noted above, these
model parameters, their various settings and influences,

and empirical validation of their corresponding behaviors
are described in considerable detail elsewhere, so we do
not repeat such description here.

The diagram in Figure 4 is representative of the kinds of
models developed to date in the VDT environment. The
diagram itself is clearly static. But by linking to both
symbolic emulation and discrete-event simulation, the
extended representation becomes dynamic. Time varying
states, conditions, and results are projected day by day
through the course of a modeled software development
project. Because all objects, relations, and parameters in
this representation are explicit, this semi-formal model of
organizational behavior has relatively little ambiguity
(esp. compared to textual description). As a commitment
toward less-ambiguous models, the authors will be happy
to send the VDT software development model described
here to any interested scholar upon request. By viewing
and considering in detail the many VDT parameters,
settings, assumptions, and relationships made explicit
through this model, little ambiguity can persist regarding
what the model represents.

It is important to reiterate, the process illustrated in the
figure represents a baseline case, in which only the flows
of work and information are modeled. Each actor is
instantiated with a specific set of skills and level of
experience, which remain constant throughout the
emulated period of process performance; that is, all
knowledge flows are assumed to have completed before the
project begins. We emulate the dynamics of the baseline
software development workflow model below. This
represents the point of departure for our present research
to represent dynamic knowledge behaviors.

Figure 4 VDT software development model – baseline.
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Baseline workflow model dynamics
As noted above, the baseline model does not include any
knowledge-flow effects; that is, knowledge remains static,
even though flows of work, information, and other
dynamic organizational behaviors are emulated. We
describe it here, and review behaviors of the correspond-
ing VDT model, to set up a basis for comparison with the
knowledge-flow models below. Table 1 summarizes some
of the key emulation performance projections. Examin-
ing comparative performance represents a time-tested
approach to measuring flows of knowledge (e.g., consider
use of examinations in university courses). Results for the
baseline workflow model are reported in Column 2.
Detailed derivation and description of the various
performance attributes (Column 1) can be found in Jin
& Levitt (1996). We discuss key summary-level compar-
isons and implications here.

For instance, as shown in the table, the baseline
software development work is projected to require just
over 11 months to complete, and to cost $1187 K.
Performance variables such as project duration and cost
are quite common among contemporary simulation
models. They provide summary measures for comparison
of ‘bottom line’ project results but conceal often the
factors underlying differential performance. The Sche-
dule Growth Risk attribute (80 days) operates also at a
summary level. It compares the projected duration of the
project with the duration that would be achievable
through Critical Path Analysis; that is, if the task were
to take only the amount of time scheduled (i.e., 260
days), this variable would be zero. In the baseline case,
coordination, rework and delay cause the simulated
schedule for this task to grow by 80 days.

Alternatively, the rework fraction (35%) represents a
lower level performance measure. It summarizes the
percentage of total work associated with correcting errors
and defects addressed during project performance. A
complementary lower level performance measure is
functional quality risk (41%). This measure summarizes
the amount of additional work that would be required to
correct defects that were not addressed during project
performance. Latent defects (e.g., design errors, program-
ming bugs) can impact adversely software product
quality, and as such quality is compromised often in an
attempt to reduce project rework, cost, and duration. On
a behavioral level, factors such as actor skill level, task

difficulty, work backlog, organization structure, and
propensity to rework problems interact to influence
dynamic decisions by individual actor agents about
whether or not to correct errors and defects. The inherent
tradeoff between cost and quality represents an impor-
tant management concern. Examining emulated cost–
quality results provides insights into knowledge flows
that would be difficult to obtain from other research
methods.

The maximum backlog variable measures organiza-
tional behavior at a lower level still. Here, it indicates the
architecture actor has nearly 13 days’ work in its input
queue at one point in the project. Coincidentally, the
software engineering team has roughly the same max-
imum backlog (but at a different point in the project).
This dynamic measure is useful to reveal bottlenecks in a
process, which can be used often to diagnose knowledge
that ‘clumps’ in restricted areas instead of flowing as
desired. Such bottlenecks can also present project
managers with tough choices between cost and schedule.
For instance, to ameliorate the effects of a bottleneck,
additional resources (e.g., more software engineers, more
skillful software architect, more team-building time for
software engineers) can be added to speed the processing
of work. But doing so can increase or decrease project
cost. Many other performance attributes are projected
through emulation. But those summarized in the table
represent the key dependent variables for comparison
with the knowledge-flow models below.

Modeling dynamic knowledge
In this section, the VDT modeling environment is
adapted to emulate knowledge dynamics. We illustrate
the use and utility of such an adaptation through agent-
based modeling and emulation of knowledge flows
associated with the software development work process
above. We first outline the kinds of behaviors investi-
gated to represent dynamic knowledge flows. We then
instantiate and ‘execute’ several comparative models to
illustrate such dynamic representation. We use such
comparative illustration to highlight important points
and contributions in terms of KM research and practice.

Dynamic knowledge behaviors
We draw from the organizational learning literature,
business practice, and our own research stream to

Table 1 Emulated performance comparison

Attribute Baseline Sequent train NL Sequent train L Concur train L Team building

Duration (months) 11.1 13.6 12.4 14.6 11.4

Cost ($K) $1187 $1212 $1041 $1125 $908

Schedule growth risk (days) 80 89 54 102 0

Rework fraction (%) 35 33 18 24 13

Functional quality risk (%) 41 41 41 41 41

Max backlog arch (days) 13 13 6 84 5

Max backlog engr (days) 13 13 9 9 31
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represent the dynamic knowledge. We illustrate briefly an
instance from each source here. From the literature, for
instance, we find that experience represents a highly
prized and widely studied knowledge-flow phenomenon.
As people and organizations gain experience performing
some kind of work task, their corresponding performance
of such a task generally improves over time and with
repetition or practice. The learning curve (Argote, 1999)
is an empirical formulation used to measure and predict
such performance improvement, which can be negative
(e.g., associated with forgetting, task disruption, person-
nel change and like organizational events; see Epple et al.,
1991) as well as positive. Through mathematical relation
of performance (e.g., measured in terms of cost, cycle
time, quality) to the logarithm of experience (e.g.,
measured in terms of task repetition, practice or time),
one can estimate the rate at which task performance
improves through flows of knowledge associated with
learning.

Studies dating back to the early days of aviation
(Wright, 1936) have produced time-tested empirical
relations of learning for different kinds of tasks (e.g.,
assembly, fabrication, procurement, negotiation), which
involve knowledge flows at different rates (Ingram &
Simons, 2002). We draw upon the learning curve in our
VDT research to specify how knowledge flows relate to
experience. Specifically, the rate of knowledge flows can
be specified by a learning parameter – expressed in the
form of a percentage (e.g., 80%) – to depict the dynamic
performance improvement associated with each dou-
bling of experience.

The classic expression of a learning curve is via
logarithmic function: Y¼Axb. Here Y refers to unit
performance; x signifies cumulative experience; b is the
learning parameter; and A is a constant. The learning
percentage (e.g., 80%) relates directly to the learning
parameter b (e.g., b¼�0.3219¼ log 0.80/log 2) and
indicates performance in some unit of measure (e.g.,
cost, time, quality) will become predictably better (e.g.,
20%) with each doubling of experience.

When specified as such, each sequential module
developed for a software application would require
predictably less time and cost as the first one did (e.g.,
Module 2 requires 80% as much as Module 1; Module 4
requires 80% as much as Module 2; and so forth). Factors
such as increasing familiarity with the application code,
understanding of the project requirements and develop-
ment environment, and object reuse account in part for
improvements in performance. A different learning rate
may apply to each VDT actor’s individual task perfor-
mance, as well as performance of teams.

From business practice, as another instance, we find
formal training courses are common in many organiza-
tions. Myriad knowledge workers are sent to relatively
short internal or external courses to learn specific skills
(e.g., use of some IT tool, maintenance procedures,
employee diversity sensitivity). Such learning of specific
skills represents a flow of knowledge, which can be

measured by a knowledge worker’s relative performance
of a task before and after training. Learning specific skills
vs general problem solving helps differentiate in part
training courses from educational programs (e.g., college
degrees), the latter of which are generally broader in
scope and more time-consuming to complete. Such focus
on specific skills also makes the effects of training courses
on task performance easier to measure than the corre-
sponding impacts of educational programs are.

Specifically, several large organizations (e.g., the U.S.
Military, IBM, Motorola) have collected empirical mea-
sures of employee task performance before and after
training courses are completed. We draw upon such
empirical measures in our VDT research to represent the
knowledge flows associated with training courses. Speci-
fically, the magnitude of knowledge flow can be specified
by adjusting the parameter skill level for specific actors
(e.g., after completing a training course). Because differ-
ent training courses can be relatively more effective in
terms of knowledge flows, the skill-level parameter in
VDT can be set up to change by fractional (e.g., 25, 88%)
as well as unit increments. Notice such dynamic change
in skill level reflects a one-time flow of knowledge, which
differs from the continuous counterpart dynamics dis-
cussed above in terms of learning through experience.
Clearly, there are multiple processes responsible for flows
of knowledge (e.g., experience, training). Our process-
level approach to representing knowledge dynamics can
capture several corresponding performance effects inde-
pendently.

From our research stream, as a third instance, we find
groups of knowledge workers can improve their collective
performance simply by working together over time.
Hence a group’s experience working together as a team
can lead to the same kind of predictable performance
improvement noted above in terms of the learning curve.
However, here such experience and improvement both
pertain to the group, as opposed to individuals. The VDT
modeling environment has a standard, empirically
validated parameter used to represent such performance
effects of teams with various level of group experience.
Specifically, we can represent in VDT the knowledge
flows associated with such group experience by dynamic
changes in the parameter team experience for specific work
groups (e.g., a particular software development team).

Interestingly, not all experience is necessarily positive.
For instance, a group of people can work together and
become dysfunctional over time. In terms of knowledge
flows, this could connote negative learning. If a group
learns to work together and has a positive experience,
then it would make sense to have the parameter team
experience change for the better to reflect such experience.
Alternatively, where such experience is negative, the
parameter could be adjusted in the reverse direction to
reflect this. A case for neutral experience arises as well.
This could be addressed through no change to the
parameter. Notice the similarity to the kind of ‘forgetting’
discussed above in reference to learning curves. This
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raises the issue negative knowledge flows. Conceptually, we
can model such flows by reversing the signs and
directions of model parameters and influences. But
theoretically, we need to investigate this phenomenon
further. Hence we include this as a topic for future
research.

Clearly, these techniques and instances represent only
a beginning to representing knowledge dynamics. But
they serve to illustrate the approach and suffice to
instantiate several comparative dynamic knowledge
models discussed below. Research to represent the
dynamics of other important knowledge-flow phenom-
ena (e.g., mentoring, education, communities of practice)
continues in parallel with this adaptation of the VDT
agent-based modeling environment.

Comparative dynamic knowledge models
Using these representations of dynamic knowledge
behaviors, we illustrate some knowledge-flow effects
through four cases derived from the baseline software
development workflow model above. Each case repre-
sents a one-off representation of the baseline model; that
is, in each case we modify only one parameter associated
with dynamic knowledge. This provides a relatively clear
basis for comparison and isolation of knowledge-flow
effects. Notice such controlled manipulation of indivi-
dual parameters reflects the kind of design and control
associated with laboratory experimentation. Indeed, here
we are able to conduct computational experiments using
a validated emulation model such as VDT.

Case 1 – knowledge clumps in formal training course. The
formal training approach from above is illustrated in
Figure 5. Here we extend the baseline model to incorpo-

rate a specific knowledge-flow task associated with formal
training. We depict the training course as a task, because
it requires effort, consumes time, and is similar in most
respects to other work tasks such as those corresponding
to software architecture and development. In terms of
knowledge distributed unevenly through the enterprise,
one can view these specific knowledge work skills as
‘clumped’ in a training course: people must complete the
course, and learn effectively, for the corresponding
knowledge to flow. But a question arises as to whether
the time and cost of an employee taking the course will
be offset by performance improvement enabled by the
corresponding knowledge flow. In this first case, we set
the skill improvement parameter to zero (i.e., zero
learning), which sets a lower bound for knowledge flows.
This provides sharp comparison with both the baseline
above and Case 2 below, in the latter of which more
effective knowledge flows enable a quantum increase in
skill level for the software architect.

From our theoretical framework above, formal training
represents the flow of relatively explicit knowledge along
the epistemological dimension, from an organization
(e.g., a firm contracted to perform the training) to an
individual (e.g., student) or group (e.g., class) along the
ontological dimension, at the distribution phase of the
life cycle. For comparison with the baseline and other
cases, say the software architecture actor requires 3
months’ training to learn a new tool being adopted by
the enterprise for specifying architectures. The corre-
sponding training task is represented in a fashion
comparable to the other tasks (e.g., with predecessor,
successor and assignment links). In this case, we assume
that the training starts at project inception and that it

Figure 5 VDT software development model – with sequential architecture training.
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must be completed before the software architecture task
can begin. Predictably, the schedule for the software
development project is extended by about 3 months.
Emulated performance results for this case are presented
in Column 3 of the table (i.e., labeled ‘Sequent train NL’)
above for comparison with the baseline model.

As would be expected for addition of a new sequential
task, both the project duration (i.e., now 13.6 months)
and cost (i.e., now $1212 K) reflect appreciable change;
these are highlighted in bold print in the table. Some of
the other values are slightly different, due principally to
random variations in the emulation runs and the
addition of the training task. Despite modeling dynami-
cally the additional time and cost associated with this
knowledge-flow process, however, the case does not
reflect any benefit in terms of new knowledge acquired
by the software architecture actor; that is, this scenario
does not show improvement in the actor’s skill level.
Clearly, if this situation could be anticipated, there would
be little reason to invest in the training course.

Case 2 – knowledge flows through formal training course.
The fourth column in Table 1 (i.e., labeled ‘Sequent train
L’) includes the knowledge-flow benefit: after completing
the training course, the software architect actor has a
quantum increase in skill level (e.g., from ‘medium’ to
‘high’) and performs better on the architecture task. In
other words, here we change the skill-level parameter to
reflect knowledge flows associated with the training
course. In other words, knowledge that was ‘clumped’
in the training course for Case 1 above has flowed to the
software architect actor here in Case 2. Notice the
knowledge-flow (i.e., learning) effect brings the schedule

growth down to 54 days. Both project duration (i.e., 12.4
months) and cost (i.e., $1041 K) reflect this learning also.
Notice too the level of rework is down considerably (i.e.,
to 18%), as is the architecture actor’s backlog (i.e., to 6
days). These effects derive from the improved knowledge
flows and corresponding work performance improve-
ment of the architect.

Alternatively, this training course has no direct effect
on the software engineering team or performance of the
other project task; that is, the knowledge flow is restricted
to the individual architect actor. Hence the overall
simulation results do not show dramatic improvement.
Indeed, even with the knowledge-flow effect, the project
takes longer to complete with the training course than in
the baseline case summarized above. This represents
another good point of comparison.

Case 3 – knowledge flows through concurrent formal
training and project work. Case 3 continues with the
architecture training example from above. Figure 6 shows
the same situation depicted in Case 2 (i.e., actor takes the
training course; actor’s skills improve), except to ‘save
time,’ the software architect actor is expected to accom-
plish the training concurrently (e.g., via an online course
accomplished in the office) with its assigned project work
task. This corresponds to a case common in practice,
where a project leader figures such approach will reduce
project time through concurrent training and project
work. From the screenshot presented in the figure, this
scenario reveals just one difference with that in Figure 5:
the architecture work task no longer has to wait for
the architecture training course to be completed.
Instead, architecture training (i.e., knowledge flows)

Figure 6 VDT software development model – with concurrent architecture training.
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and architecture development (i.e., workflow) are now
performed concurrently. Other than this, the models are
identical.

The simulated performance is summarized in Column
5 of the table (i.e., labeled ‘Concur train L’) above. Notice
the project duration increases to 14.6 months, and
project cost increases to $1125 K. Contrary to the project
leader’s plan, requiring the software architect actor to
learn the new architecture specification system while
performing the architecture development task itself
would require more time and money than sending the
person to the course for 3 months would. This kind of
result is not apparent from the static representation. Nor
would concurrent work and training such as this
necessarily always extend project cost and schedule.
Rather, numerous factors – such as length of the training
course, learning efficacy of the architect actor, difficulty
of the architecture task, concurrency of the software
architecture and engineering tasks, level of project
staffing, organization structure, and others – interact in
a complex manner that would be difficult to evaluate
without a computational model. Cause–effect interac-
tions such as these can defy managerial intuition often.

For instance, notice the backlog for the software
architect actor has increased to 84 days. Consistent with
practical experience, when a knowledge worker is
required to accomplish two tasks in concurrence – as
opposed to serially – a boundedly rational individual
(e.g., limited cognitive capability) with constrained
resources (e.g., a 40-h workweek) may experience more
difficulties with both tasks and expend more time and
effort overall. A manager in practice could use the VDT
model to analyze computationally the sensitivity of this

result by trying other managerial interventions such as
authorizing overtime (e.g., 60-h workweeks) for the
architect, reducing concurrency between the software
architecture and engineering tasks, hiring or assigning a
more experienced software architect to the task (i.e., to
obviate the need for training), and others.

Further, we can stop the VDT model emulation at
arbitrary points and examine various factors of interest to
gain additional insight into the dynamics of knowledge
flows. For instance, when the architecture training course
first begins, one can analyze the situation: the architect
actor’s backlog is low; this actor is able to keep up with its
communications and work tasks; this actor is completing
the training coursework on schedule; and the team of
engineering actors is not impacted by the architect’s
training course. Hence, the project is progressing accord-
ing to plan. We restart the emulation and stop it again in
midcourse to see how the situation has changed: the
architect actor gets increasingly behind in terms of both
assignments for the training course and work activities
for the architecture development tasks; errors and
miscommunications begin to accumulate, requiring in-
creasing levels of rework and retransmission; the engi-
neering actors must wait longer for outputs from the
architecture task; and the architecture actor does not
increase its skill level as rapidly as in the case above.
Hence the project is falling well behind schedule now.
These represent fine-grained, dynamic, knowledge-flow
effects that would be difficult to observe – particularly in
a longitudinal manner – without being able to stop,
analyze and replay the computational model.

Case 4 – knowledge flows through formal training and team
building. Figure 7 displays our final case, in which the

Figure 7 VDT software development model – with engineer team building.
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equivalent of 1 month’s time each (i.e., 10 person-
months in total) is allocated for members of the software
engineering team to meet, share experiences, and engage
in the kinds of non-project activities associated often
with a community of practice. This instantiates the
socialization process articulated by Nonaka. As with the
architecture training course discussed in the cases above,
this team building activity pertains to the flow of
knowledge as opposed to the flow of work. Indeed, many
managers (and organization scholars) would consider
such activity to be non-productive and such time to be
wasted. Yet other managers (and scholars) would antici-
pate performance benefits in terms of team learning. As
above, it is unclear whether the investment in team
building will be offset by productivity gains in team
performance. We include here also the effects of indivi-
dual-level knowledge flows through learning curves
associated with experience; that is, we model both
group-level knowledge flows through team learning and
individual-level flows through experience.

Specifically, we separate the software engineering task
into two phases – one can think of these as separate
releases, a common practice in software development –
and we represent the software engineering team differ-
ently for each release. The first team of actors (i.e., labeled
‘S/W eng team1’) is responsible for Release 1 of the
software and is specified as before: the software develop-
ment group has low team experience; individual actors in
the group have medium-level software engineering skills.
This same team of actors – but at a later point in time,
and benefiting from experience working individually and
together (i.e., labeled ‘S/W eng team Lrn’) – is responsible
for Release 2 of the software and is specified to reflect the
dynamics of (positive) knowledge flows: the software
development group develops higher team experience;
individual actors in the group develop high-level soft-
ware engineering skills. The other elements delineated in
Figure 7 remain the same as in the sequential training
case above (i.e., Case 2).

Notice the simulated results in Column 6 of Table 1
(i.e., labeled ‘Team building’). Despite introducing
some slack into the software engineers’ work schedule,
the overall project duration contracts to 11.4 months.
This is roughly equivalent to the original schedule
that included no knowledge-flow processes (e.g., no
architecture training, no team building). Further,
because the knowledge and performance levels of both
the software architect actor and software engineering
team have increased, the project cost is less than the
baseline (i.e., $908 K). One key is the rework statistic,
which has dropped to 13%. Notice also the schedule
growth of zero. This indicates that the project has
now converged onto the critical path: another improved
result over the original project baseline. Alternatively,
one can see the effect of the engineers’ investment in
team building through its increased backlog (i.e., 31
days). This quantifies the intuitive notion of mounting
project work that accumulates as team members are

engaged in non-project (i.e., team building) knowledge-
flow activities.

In this particular case, the positive knowledge-flow
effects of team building more than compensate for the
negative effects of ‘non-productive’ time invested in such
team building. This assumes that the team composition
remains relatively stable through both software releases
and that neither the software development tools nor
major requirements of the software product change
abruptly during this time. It also assumes that the team
as a whole, and each software engineer as an individual,
effects a quantum increase in experience. Personnel
turnover would impact negatively such learning, as
would major changes in the work environment or
requirements. Clearly where the group is not effective
at learning to work as a team, or where individuals fail to
learn as predicted, the knowledge-flow benefits would be
less (or possibly even negative).

It should also be clear, many of the factors examined
through these cases are under management control and
depend upon workers’ collective goals as well as organi-
zation designs and technologies. We now have a method
and tool to examine explicitly the knowledge-flow effects
of different organization designs, tools, teams and
management approaches. The researcher gains new
insight into how to separate performance effects of
knowledge flows and workflows. The manager gains
new insight into performance tradeoffs between invest-
ing in workflows and investing in knowledge flows.

Additionally, through agent-based modeling and emu-
lation, we improve our understanding of how knowledge
flows differ from flows of work and information. We also
understand better how various knowledge-flow processes
(e.g., learning by experience, formal training, group
interaction) affect work performance in different ways
and with different impacts. By stopping the model
emulation, and analyzing relatively fine-grained variables
(e.g., work backlog, requests for information, rework), we
are able to develop new knowledge of how flows of
knowledge affect flows of work and information. By using
computational models that reflect well-established orga-
nization theory as input and that benefit from extensive
empirical validation of output, we also develop con-
fidence that emulation results such as these – along with
the research and managerial capabilities they enable –
can generalize well to operational organizations in
practice. This represents a contribution to new knowl-
edge in the KM field.

Conclusion
Knowledge is distributed unevenly through most enter-
prises. Hence flows of knowledge (e.g., across time,
people, locations, organizations) are critical to organiza-
tional efficacy and performance under a knowledge-based
view of the firm. However, supported principally by
narrative textual theory in the emerging knowledge
management (KM) field, the researcher has difficulty
describing how different kinds of knowledge will flow
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through various parts of an organization. This causes
difficulty also for predicting the effects of alternate
approaches to dispersing knowledge that ‘clumps’ in
various areas. This problem is also manifest for the KM
professional, who lacks clear theory or tools to anticipate
how any particular information technology or other
managerial intervention may enhance or impede specific
knowledge flows in the enterprise. In this expository
article, we build upon a steady stream of research in
computational organization theory to develop agent-
based models of knowledge dynamics. This work draws
from emerging theory for multidimensional representa-
tion of the knowledge-flow phenomenon, which enables
the dynamics of enterprise knowledge flows to be
formalized and emulated through computational models.
This approach provides the means for knowledge-flow
processes to be visualized and analyzed in new ways.
Computational experimentation enables the perfor-
mance of many alternate process designs and technolo-
gical interventions to be compared through examination
of dynamic models, before committing to a specific
approach in practice. We illustrate this research
method and modeling environment through semi-formal
representation and agent-based emulation of several
knowledge-flow processes from the domain of
software development. We also outline key directions
for the new kinds of KM research and practice elucidated
by this work.

The VDT agent-based modeling environment con-
tinues its development and refinement to incorporate
better the kinds of dynamic knowledge-flow behaviors

described above. When this research associated with
knowledge flows began, for instance, the VDT environ-
ment had to be ‘tricked’ into emulating the effects of
learning, training, group interaction, and other related
phenomena. The next major version of VDT, which is
under development at the time of this writing, has been
specified to incorporate such knowledge-flow behaviors
through simple parameterization, and we continue
investigating the effects of other knowledge-flow phe-
nomena such as mentoring, education, and communities
of practice. We plan to investigate also the phenomenon
forgetting and the class of behaviors associated with
negative knowledge flows.

However, our key point in describing VDT and several
of its agent-based models above is not to showcase VDT
or to suggest that the tool is necessary for understanding
knowledge-flow dynamics. Rather, we use VDT to help us
understand such dynamics better. We can isolate specific
learning effects and emulate the dynamic knowledge
behaviors of myriad different organizations – many of
which may not yet exist in concept or practice – in a
manner analogous to controlled laboratory experimenta-
tion. Through such isolation, emulation and computa-
tional experimentation, we gain the ability to examine
semi-formal models of organizations, to stop the action
of a process for examination, to replay the same process
many times, and to visualize the dynamics of knowledge
flows in a new way. It is through the use of a tool such as
VDT that we are learning more about the dynamics of
knowledge flows. Such learning, not the tool, represents
our primary contribution through this article.
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