
Characterization of Isospectral Graphs Using Graph Invariants and Derived Orthogonal
Parameters

Krishnan Balasubramanian† and Subhash C. Basak*,‡

Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604, and
Natural Resources Research Institute, University of Minnesota, Duluth, Duluth, Minnesota 55811

Received July 1, 1997

Numerical graph theoretic invariants or topological indices (TIs) and principal components (PCs) derived
from TIs have been used in discriminating a set of isospectral graphs. Results show that lower order
connectivity and information theoretic TIs suffer from a high degree of redundancy, whereas higher order
indices can characterize the graphs reasonably well. On the other hand, PCs derived from the TIs had no
redundancy for the set of isospectral graphs studied.

1. INTRODUCTION

Graph theoretical and topological techniques have been
harnessed in numerous practical applications in recent years.
In particular, the use of graph theoretical techniques for the
characterization of structures and for the exploration of
structure-property relations have received considerable
attention.1-24 The intimate relation between the structure
of a molecule and its activity has been the topic of
exploration for many years. Several novel techniques based
primarily on graph theory and topology have been proposed
for predicting activities from the structure, and such tech-
niques have been successfully applied to molecules of
pharmacological relevance.
Since graph theoretical techniques are based on the

topological connectivity of a molecule rather than its three-
dimensional molecular structure, there is always a question
as to the suitability of a graph theoretically based technique
for the characterization or prediction of properties that may
depend on more complex factors than simple connectivity.
For this reason techniques based on the three-dimensional
molecular geometry have been proposed.21-23

A recognized problem with graph-theoretically based
technique is in dealing with graphs called isospectral
graphs.24-27 Isospectral graphs are graphs with the same
characteristic polynomial which is simply the secular deter-
minant of the adjacency matrix of a graph. Thus isospectral
graphs would have the same graph eigenvalues or spectra,
which could be visualized as the Huckel energy levels
associated with the molecule corresponding to the graphs
under consideration. The isospectral graphs have thus
received much attention due to their “pathological” nature.
Prior to the discovery of isospectral graphs it was surmised
that the characteristic polynomials or spectra might uniquely
characterize graphs, but examples of isospectral graphs
revealed that there are pairs of nonisomorphic graphs which
are topologically distinct and yet they have the same
characteristic polynomials and spectra. As a result of this

isospectral graphs pose several problems. As discussed in
the work of Liu et al.,24 some of the vertex partitioning
algorithms fail for isospectral graphs. Likewise, the topo-
logically based indices such as the Wiener index3 become
identical for isospectral graphs.
Basak et al.28 used a combination of graph invariants to

characterize a large collection of complex graphs. The
principal component analysis (PCA) which is performed on
the basis of these indices and the Euclidian distance method
have provided a promising avenue for the characterization
of structures and structure-activity relationships. Thus, it
is interesting to explore if these techniques are satisfactory
for isospectral graphs which are considered to be pathological
in a graph theoretical sense. The objective of this study is
to consider a series of isospectral graphs for the purpose of
computing these indices and the PCA on those indices. We
show that while lower-order indices often fail to discriminate
isospectral graphs, the PCs derived from indices discriminate
all isospectral graphs considered here.

2. CALCULATION OF GRAPH THEORETICAL
PARAMETERS

The calculation of the topological indices (TIs) used in
this study has previously been described in detail.1 The TIs
for the isospectral pairs of graphs were calculated by
POLLY.2 The POLLY 2.3 version is capable of calculating
97 TIs from the SMILES line notation input of chemical
structures. The TIs calculated by POLLY 2.3 include the
Wiener index,3 connectivity indices,4,5 and information
theoretic indices defined on distance matrices of graphs6,7

as well as a set of parameters derived on the neighborhood
complexity of vertices in hydrogen-filled molecular graphs.8-11

We describe below the methods for the calculation of the
TIs used in this paper.
The Wiener indexW,3 the first topological index reported

in the chemical literature, may be calculated from the distance
matrixD(G) of a hydrogen-suppressed chemical graph G as
the sum of the entries in the upper triangular distance
submatrix. The distance matrixD(G) of a nondirected graph
G with n vertices is a real symmetricn × n matrix with
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elementsdij equal to the distance between verticesVi andVj
in G. Each diagonal elementdii of D(G) is zero. We give
below the distance matrixD(G1) of the unlabeled hydrogen-
suppressed graphG1 of isobutane (Figure 1):

W is calculated as

wheregh is the number of unordered pairs of vertices whose
distance ish.
Randićs4 connectivity index as well as the higher-order

path, cluster, and path-cluster types of simple and valence
connectivity indices developed by Kier and Hall5 were
calculated by the computer program POLLY.2 Ph param-
eters, the number of paths of lengthh (h ) 0-10) in the
hydrogen-suppressed graph, are calculated using standard
algorithms.
Information-theoretic topological indices are calculated by

the application of information theory to chemical graphs. An
appropriate set A ofn elements is derived from a molecular
graphG depending upon certain structural characteristics.
On the basis of an equivalence relation defined on A, the
set A is partitioned into disjoint subsetsAi of orderni (i )
1,2, ... h; ∑ni ) n). A probability distribution is then
assigned to the set of equivalence classes

wherepi ) ni/n is the probability that a randomly selected
element of A will occur in theith subset.
The mean information content of an element of A is

defined by Shannon’s12 relation

The logarithm is taken at base 2 for measuring the informa-

tion content in bits. The total information content of the set
A is thenn times IC.
Rashevsky13 was the first to calculate the information

content of graphs where “topologically equivalent” vertices
are placed in the same equivalence class. In Rashevsky’s
approach, two verticesu and V of a graph are said to be
topologically equivalent if and only if for each neighboring
vertexui (i ) 1, 2, ...,k) of the vertexu, there is a distinct
neighboring vertexVi of the same degree for the vertexV.
Subsequently, Trucco14 defined topological information of
graphs on the basis of graph orbits. In this method, vertices
which belong to the same orbit of the automorphism group
are considered topologically equivalent. While Rashevsky13

used simple linear graphs with indistinguishable vertices to
symbolize molecular structure, weighted linear graphs or
multigraphs are better models for conjugated or aromatic
molecules because they more properly reflect the actual
bonding patterns,i.e., electron distribution.
To account for the chemical nature of vertices as well as

their bonding pattern, Sarkaret al.15 calculated the informa-
tion content of chemical graphs on the basis of an equiva-
lence relation where two atoms of the same element are
considered equivalent if they possess an identical first-order
topological neighborhood. Since properties of atoms or
reaction centers are often modulated by physicochemical
characteristics of distant neighbors,i.e.,neighbors of neigh-
bors, it was deemed essential to extend this approach to
account for higher-order neighbors of vertices. This can be
accomplished by defining open spheres for all vertices of a
chemical graph. Ifr is any non-negative real number andV
is a vertex of the graphG. then the open sphereS(V,r) is
defined as the set consisting of all verticesVi in G such that
d(V,Vi) < r. Then,S(V,0) ) φ, S(V,r) ) V for 0 < r < 1,
andS(V,r) is the set consisting ofV and all verticesVi of G
situated at unit distance fromV for 1 < r < 2.
One can construct such open spheres for higher integral

values ofr. For a particular value ofr, the collection of all
such open spheresS(V,r), whereV runs over the whole vertex
setV, forms a neighborhood system of the vertices ofG. A
suitably defined equivalence relation can then partitionV
into disjoint subsets consisting of topological neighborhoods
of vertices of up torth order neighbors. Such an approach
has already been initiated, and the information-theoretic
indices calculated are called indices of neighborhood sym-
metry.10

In this method, chemical species are symbolized by
weighted linear graphs. Two verticesuo and Vo of a
molecular graph are said to be equivalent with respect to
the rth order neighborhood if, and only if, corresponding to
each pathuo, u1, ...,ur of lengthr, there is a distinct pathVo,
V1, ...,Vr of the same length, such that the paths have similar
edge weights, and bothuo andVo are connected to the same
number and type of atoms up to therth order bonded
neighbors. The detailed equivalence relation is described
in our earlier studies.
Once partitioning of the vertex set for a particular order

of neighborhood is completed, ICr is calculated from eq 2.
Basak, Roy, and Ghosh9 defined another information-
theoretic measure, structural information content (SICr),
which is calculated as

Figure 1. Hydrogen suppressed graph of isobutane.
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where ICr is calculated from eq 2 andn is the total number
of vertices of the graph.
Another information-theoretic invariant, complementary

information content (CICr),11 is defined as

CICr represents the difference between the maximum possible
complexity of a graph (where each vertex belongs to a
separate equivalence class) and the realized topological
information of a chemical species as defined by ICr.
The information-theoretic index on graph distance,ID

W, is
calculated from the distance matrixD(G) of a chemical graph
G by the method of Bonchev and Trinajstic´:7

The mean information index,IhD
W is found by dividing the

information indexID
W by W. ICr, SICr, CICr, ID

W, and IhD
W

were calculated by Polly.6 The information theoretic pa-
rameters defined on the distance matrix, HD and Hv were
calculated by the method of Raychaudhury etal. Sixty TIs
were calculated for each of the 38 molecular graphs in Figure
2.

3. STATISTICAL ANALYSIS

3.1. Data Reduction. The TIs used in this paper are
shown in Table 1. Initially, all TIs were transformed by the
natural logarithm of the value of the index plus one. This
was done because the scale of some TIs may be several
orders of magnitude greater than others.
3.2. Principal Components Analysis.The data for the

isospectral graphs analyzed in this paper may be viewed as
n (number of isospectral graphs) vectors inp (number of
calculated parameters) dimensions. The data for each set
can be represented by a matrixX which hasn rows andp
columns. For each of the graphs, the number of calculated
parameters was 60 (TIs of Table 1). Each graph is therefore
represented by a point inR60, whereR is the field of real
numbers. If each graphs was represented inR2, then one
could plot and investigate the extent of relationship between
individual parameters. InR60 such a simple analysis is not

possible. However, since many of the TIs are highly
intercorrelated, the points inR60 can likely be represented
by a subspace of fewer dimensions. The method of PCA or
the Karhunen-Loeve transformation is a standard method for
reduction of dimensionality.29 The first principal component
(PC) is the line which comes closest to the points in the
sense of minimizing the sum of the squared Euclidean
distances from the points to the line. The second PC is given
by projections onto the basis vector orthogonal to the first
PC. For points inRp, the firstr PCs give the subspace which
comes closest to approximating then points. The first PC
is the first axis of the points. Successive axes are major
directions orthogonal to previous axes. The PCs are the
closest approximating hyperplane, and because they are
calculated from eigenvectors of ap × p matrix, the
computations are relatively accessible. But there are im-
portant scaling choices, because PCs are scale dependent.
To control this dependence, the most commonly used
convention is to rescale the variables so that each variable
has a mean of zero and a standard deviation of one. The
covariance matrix for these rescaled variables is the correla-
tion matrix. The PCA on the TIs for isospectral graphs has
been carried out using SAS software.30

4. RESULTS

The summary of PCA using 60 calculated TIs is shown
in Table 2. The first three PCs explain nearly 90% of the
variance in the data and the first six PCs with eigenvalue
greater than 1.0 explain about 97% of the variance in the
original data.
In Table 3 we give the values for PC1-PC6 for the 38

graphs analyzed in this paper. It is interesting to note that
almost all PCs have distinct values for pairs (e.g., 1.1 and
1.2; 2.1 and 2.2, etc.) of isospectral graphs.
Table 4 presents the values of connectivity indices0ø-2ø

and neighborhood complexity indices IC0-IC2 for the graphs.

Table 1. Topological Indexes: Symbols and Definitions

IwD information index for the magnitudes of distances between all possible pairs of vertices of a graph
IhwD mean information index for the magnitude of distance
W Wiener index) half-sum of the off-diagonal elements of the distance matrix of a graph
ID degree complexity
Hv graph vertex complexity
HD graph distance complexity
IC information content of the distance matrix partitioned by frequency of occurrences of distanceh
O order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph
IORB information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices
M1 a Zagreb group parameter) sum of square of degree over all vertices
M2 a Zagreb group parameter) sum of cross-product of degrees over all neighboring (connected) vertices
ICr mean information content or complexity of a graph based on therth (r ) 0-6) order neighborhood of vertices in a hydrogen-filled graph
SICr structural information content forrth (r ) 0-6) order neighborhood of vertices in a hydrogen-filled graph
CICr complementary information content for rth (r) 0-6) order neighborhood of vertices in a hydrogen-filled graph
hø path connectivity index of orderh) 0-6
høC cluster connectivity index of orderh) 3-6
høCh chain connectivity index of orderh) 5-6
høPC path-cluster connectivity index of orderh) 4-6
Ph number of paths of lengthh) 0-10
J Balaban’sJ index based on distance

Table 2. Summary of Principal Components Analysis

eigenvalue
% cumulative
varnce explnd eigenvalue

% cumulative
varnce explnd

PC1 34.1 56.8 PC4 2.8 93.2
PC2 14.4 80.8 PC5 1.3 95.3
PC3 4.6 88.5 PC6 1.1 97. 1CICr ) log2 n-ICr (4)

ID
W ) W log2W- ∑

h

gh‚h log2 h (5)
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For most of the isospectral pairs,0ø, 1ø, IC0, and IC1 could
not discriminate between the isospectral pairs, whereas2ø
as well as complexity parameter IC2 could discriminate the
isospectral pairs reasonably well in most cases.
We retained the first six PCs with eigenvalues> 1.0. This

is a substantial reduction in the number of parameters or the
dimensionality of the parameter space as compared to the
60-dimensional space corresponding to the 60 TIs calculated
originally. Our earlier work on PCA using large and diverse
sets of molecular graphs show that a few first PCs explain
a large fraction of the variance.16-20

In some of their earlier papers, Basaket al.16-20 used the
Euclidean distance (ED) in then-dimensional PC-space in
characterizing structural similarity/dissimilarity of molecules.
In Table 5 we give the ED between 19 isospectral pairs of
graphs. For all pairs of graphs considered in this paper, the
value of ED was nonzero which shows the discriminating
ability of the six-dimensional PC-space generated out of the
calculated PCs.
Results and Discussion.We have considered a series of

pairs of isospectral graphs shown in Figure 2. In this figure
we have used the numbering conventioni.j.k, wherei is the
same for two isospectral graphs. Based on the relation
between the isospectral graphs, the indexj will be kept the
same if the two are closely related; in this case only the index
kwould differ. Thus we have isospectral graphs 9.1.1., 9.1.2,

9.2.1, 9.2.2, 9.3.1, and 9.3.2. As seen from Figure 2, 9.3.1
and 9.3.2 are more closely related compared to 9.1.1 and
9.3.1. Recall that the isospectral graphs have the same
characteristic polynomials and spectra. Furthermore, many
parameters computed based on the adjacency matrices of two
isospectral graphs are identical. Commonly used topological
indices such as the Wiener index, Randic´’s connectivity
index, spectral index, indices based on path numbers, etc.,
become identical for such graphs. Consequently, many
ordinary graph-theoretically based indices fail to discriminate
isospectral graphs.
We have computed the connectivity indices0ø, 1ø, and2ø

as well as the neighborhood complexity indices IC0, IC1, and
IC2 that are defined in the previous section for these

Table 3. First Six PCs for the Set of 38 Isospectral Graphs (Figure
2)

graph PC1 PC2 PC3 PC4 PC5 PC6

1.1 -10.6828 -1.5214 0.0283-2.3056 -0.2901 -0.7411
1.2 -11.2419 -0.7289 0.6454-2.4077 -1.3287 -1.2562
2.1 -7.5623 -2.8765 0.4809 0.4976-1.4914 1.6824
2.2 -7.6856 1.4163- 1.0238 -0.9141 -0.5908 -0.4823
3.1 1.6223-1.7614 -4.5762 -0.4737 1.3809 0.1826
3.2 1.4956-3.7201 -2.6087 0.5261 0.4641 2.0115
4.1.1 -2.1141 0.3656 -2.2068 0.2315-0.1458 -0.3351
4.1.2 -2.5286 2.2386 -1.0309 -0.4577 -0.5908 -0.4608
4.2.1 -2.5555 -3.2923 3.9820 1.9017-0.0220 0.5264
4.2.2 -2.4859 0.7047 -0.5478 0.1951-1.4380 0.5363
5.1 -7.4612 -0.3102 -0.9097 -0.3816 0.8077 0.1601
5.2 -7.7603 0.9300 -0.9975 -1.7106 -0.3964 -1.3015
6.1 -5.8986 -0.5274 -0.4014 -1.1701 -0.3234 -0.3493
6.2 -5.8739 -5.7170 1.7090 0.1934-0.2359 1.5281
7.1.1 4.1610 2.2536 0.1775 1.0976-2.6734 0.1861
7.1.2 4.2882 4.4784-1.1182 0.2768 0.0386-2.4036
7.2.1 4.3117 3.0509-0.2194 0.9898 0.1809-1.9833
7.2.2 4.3284 3.2733-0.9286 0.7415-1.0757 -1.0430
8.1 -8.8239 5.4954 1.2720 4.7684-0.1428 1.0801
8.2 -8.0694 4.3139 -1.5231 5.6667 3.1130 0.5582
9.1.1 0.6468 4.4113 3.3448-2.6882 1.9146-0.3797
9.1.2 1.2862 5.5270 1.7360-3.5416 2.8117 3.1329
9.2.1 0.1561 0.2784-0.9364 -0.8100 -0.5981 0.0892
9.2.2 -0.1287 0.9325 1.8555-0.6934 0.5959-1.1643
9.3.1 -0.3873 -0.1603 3.0373-0.3006 -3.1157 0.9897
9.3.2 -0.2827 -0.6395 2.8592-0.3025 -0.7054 -0.9675
10.1.1 7.5296-3.0998 3.9813 1.5925 0.9975-2.0763
10.1.2 7.6726 1.3574-1.8310 -0.5161 -0.4564 -0.9028
10.2.1 8.3168 0.2849 4.3189-0.5465 1.2660 0.6830
10.2.2 8.8218 3.3376 0.1809-1.8163 0.8456 2.0753
10.3.1 7.9681 0.0713-2.0128 0.5599-1.5890 0.9229
10.3.2 7.5192-2.1439 2.0070 1.3297-1.9649 0.1591
10.4.1 7.9848-1.1899 -1.6830 0.4285-1.7291 1.5518
10.4.2 8.0537-1.6182 -2.0384 0.4788 0.1030-0.6392
11.1.1 1.2742-2.3342 -2.4558 -1.0802 1.2188-0.2514
11.1.2 1.2530-7.5213 2.1144 0.9705 3.0859-1.1629
11.2.1 1.5423-3.1237 -3.2945 -0.4177 1.3260 0.1898
11.2.2 1.3098-3.7138 -1.3866 0.0878 0.7538-0.3457

Table 4. Selected Topological Indices for 38 Isospectral Graphs
(Figure 2)

graph 0ø 1ø 2ø IC0 IC1 IC2

1.1 8.690 5.219 3.859 0.898 1.368 2.665
1.2 8.690 5.240 3.812 0.898 1.368 2.701
2.1 8.975 5.812 4.424 0.918 1.418 2.675
2.2 8.975 5.791 4.502 0.918 1.418 2.828
3.1 11.380 7.847 6.318 0.932 1.384 2.726
3.2 11.380 7.826 6.396 0.932 1.384 2.664
4.1.1 9.966 6.847 5.610 0.934 1.417 2.784
4.1.2 9.966 6.826 5.689 0.934 1.417 2.765
4.2.1 9.966 6.864 5.526 0.934 1.417 2.684
4.2.2 9.966 6.864 5.526 0.934 1.417 2.684
5.1 8.975 5.753 4.643 0.918 1.418 2.807
5.2 8.975 5.774 4.575 0.918 1.418 2.717
6.1 9.682 6.291 4.856 0.918 1.404 2.789
6.2 9.682 6.312 4.766 0.918 1.404 2.565
7.1.1 11.121 7.809 6.906 0.946 1.457 2.794
7.1.2 11.121 7.809 6.908 0.946 1.457 2.982
7.2.1 11.121 7.809 6.896 0.946 1.457 2.856
7.2.2 11.121 7.809 6.896 0.946 1.457 2.856
8.1 7.845 5.326 4.628 0.938 1.469 2.802
8.2 7.845 5.326 4.618 0.938 1.469 2.995
9.1.1 10.889 7.232 6.134 0.933 1.517 2.978
9.1.2 10.889 7.220 6.193 0.933 1.517 2.885
9.2.1 10.836 7.258 6.116 0.933 1.458 2.928
9.2.2 10.836 7.236 6.194 0.933 1.458 2.928
9.3.1 10.836 7.274 6.041 0.933 1.458 2.864
9.3.2 10.836 7.274 6.004 0.933 1.458 2.974
10.1.1 12.535 8.847 7.431 0.943 1.429 2.664
10.1.2 12.535 8.809 7.594 0.943 1.429 2.729
10.2.1 12.588 8.805 7.518 0.943 1.483 2.764
10.2.2 12.588 8.815 7.482 0.943 1.483 2.764
10.3.1 12.535 8.847 7.443 0.943 1.429 2.760
10.3.2 12.535 8.847 7.441 0.943 1.429 2.729
10.4.1 12.535 8.847 7.431 0.943 1.429 2.664
10.4.2 12.535 8.830 7.516 0.943 1.429 2.769
11.1.1 11.380 7.809 6.458 0.932 1.384 2.589
11.1.2 11.380 7.830 6.378 0.932 1.384 2.438
11.2.1 11.380 7.847 6.306 0.932 1.384 2.622
11.2.2 11.380 7.847 6.308 0.932 1.384 2.595

Table 5. Euclidean Distance in 7-Dimensional Principal
Component Space for 19 Isospectral Graph Pairs

isospectral pairs isospectral pairsEuclidean
distance

Euclidean
distance

1.1 1.2 0.2142 9.1.1 9.1.2 0.6877
2.1 2.2 0.5781 9.2.1 9.2.2 0.4352
3.1 3.2 0.4627 9.3.1 9.3.2 0.5281
4.1.1 4.1.2 0.2230 10.1.1 10.1.2 0.8340
4.2.1 4.2.2 0.6627 10.2.1 10.2.2 0.5988
5.1 5.2 0.3705 10.3.1 10.3.2 0.5130
6.1 6.2 0.5929 10.4.1 10.4.2 0.4958
7.1.1 7.1.2 0.6831 11.1.1 11.1.2 0.7672
7.2.1 7.2.2 0.2773 11.2.1 11.2.2 0.2627
8.1 8.2 0.6324
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Figure 2. Structures of 38 isospectral graphs.
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isospectral graphs shown in Figure 2. The isospectral graphs
in Figure 2 are generated by attaching the same fragment at
vertices called the isospectral vertices. As discussed before
in the literature, certain vertices in some graphs are called
isospectral vertices. For example, consider the graphs 2.1
and 2.2 in Figure 2. These two graphs are generated by
attaching a fragment containing two vertices connected by
a bond to either the para position of the six-membered ring,
as in the graph 2.1 in Figure 2 (where the para position is
defined as the fourth vertex in 2.1) or by attaching the same
fragment to the other circled vertex of the pending fragment
which results in the graph 2.2 in Figure 2. All of the
isospectral graphs in Figure 2 are constructed in this manner
by attaching an identical fragment to one of the isospectral
vertices.
Table 4 shows the computed values for the indices0ø, 1ø,

and2ø as well as the neighborhood complexity indices IC0,
IC1, and IC2. First let us discuss the discriminating powers
of these indices before proceeding to the PCA. As seen from
Table 4, the index0ø is the least discriminating while2ø is
somewhat more discriminating. For all isospectral pairs of
graphs the0ø indices are identical as expected since the0ø
index is based on simple topological connectivity.
It is seen from Table 4 that although the2ø index is

relatively more discriminating compared to the0ø index, the
actual2ø values are numerically too close for some of the
isospectral graphs to consider these values to be truly
discriminating. This is particularly exemplified by the graphs
11.2.1 and 11.2.2 whose2ø values are 6.306 and 6.308,
respectively (see Table 4). Likewise the2ø values for the
graphs 10.3.1 and 10.3.2 are 7.443 and 7.441, respectively.
The 2ø values for the graphs 7.2.1 and 7.2.2. are identical
(6.896). Likewise the2ø values for the graphs 4.2.1 and
4.2.2 are the same (5.526). However, for other graphs
considered here the2ø values are more discriminating.
Consequently, it is concluded that although the2ø values
are more discriminating than the zeroth-order index, these
values are still not sufficiently discriminating for more
complex isospectral graphs, although these indices work well
for simpler isospectral graphs, as seen from Table 4.
As evidenced from Table 4, the neighborhood complexity

indices IC0, IC1, and IC2 have some similarity to theø indices
in that the higher-order indices are slightly more discriminat-
ing compared to the lower-order indices. Thus the IC0 and
the IC1 indices do not discriminate isospectral graphs at all
(see, Table 4). When2ø is identical, IC2 is as well. When
2ø is nearly identical, IC2 is slightly more discriminating.
Since neither thenø indexes nor the ICr indexes seem to

be fully satisfactory in terms of discriminating complex
isospectral graphs, it was decided to carry out the PCA on
these graphs using the indices computed thus far. The
philosophy behind the PCA technique and the algorithms
derived from the technique have been illustrated in the
previous section. The procedure uses ann-dimensional space
of these indices and computes the Euclidian distances.
Table 3 shows the numerical values for the first six PCs

which are labeled PC1 through PC6 in Table 4 for the
isospectral graphs that are considered in this study. In this
analysis we retained only the first six PCs with eigenvalues
> 1.0 which leads to a substantial reduction in the number
of parameters or the dimensionality of the parameter space
as compared to the original 60-dimensional parameter space

that we begin with. Earlier work on PCA using large and
diverse sets of molecular graphs show that the first few PCs
explain a large fraction of the variance.17-20

As seen from Table 3, the PC indices are far more
powerful and discriminating compared to the simple topo-
logical indices considered in Table 4. Let us consider graphs
11.2.1 and 11.2.2 which are considered to be “pathological”
from numerical and similarity standpoints in that theø values
and ICr values are virtually the same. However, as seen from
Table 3, the PC1 and PC2 values are very different (PC1:
1.5423, 1.3098; PC2: -3.1237,-3.7138). As a matter of
fact all of the PC1 through PC6 values are sufficiently
different to discriminate these isospectral graphs.
Let us consider graphs 7.2.1 and 7.2.2 that are not

discriminated by their2ø values. As seen from Table 3, while
the PC1 values for these two graphs are somewhat close
(4.3117 and 4.3284) their PC2 values are 3.0509 and 3.2733.
Other higher order PC values differ even more thereby
providing a sound and powerful basis for discriminating
isospectral graphs.
Next we consider the pairs 4.2.1 and 4.2.2. These two

graphs have identical2ø values and IC2 values. However,
as seen from Table 4 these graphs have very different PC
values for alln. Thus PCA seems to be a powerful technique
to discriminate even isospectral graphs that are not so easily
contrasted by topologically based techniques.
It should be pointed out that for a few isospectral graphs

the first principal component value, PC1 is not as discrimi-
nating as the higher-order PCs values. For example, the PC1

values for the isospectral graphs 2.1 and 2.2 are-7.5623
and-7.6856, respectively. However, the PC2 values are
-2.8764 and 1.4163 for the same graphs. Likewise the
graphs 7.2.1 and 7.2.2 have the PC1 values of 4.3117 and
4.3284. However their PC2 values are 3.0509 and 3.2733.
We thus conclude that one needs more than the PC1 value
to discriminate complex isospectral graphs, but often the PC2

values for those graphs are sufficiently different to contrast
them.
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