
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

222
All Rights Reserved © 2012 IJARCET

Performance characterization of AODV protocol

in MANET

Ruchi Rani

M.Tech Scholar

Department of Computer Science

Al-Falah School of engineering and Technology

Manisha Dawra

Lecturer

Department of Computer Science

Al-Falah School of engineering and Technology

Abstract— A mobile ad-hoc network (MANET) is a

collection of mobile nodes which communicate over

radio. These networks have an important advantage;

they do not require any existing infrastructure or

central administration. Therefore, mobile ad-hoc

networks are suitable for temporary communication

links. This flexibility, however, comes at a price:

communication is difficult to organize due to frequent

topology changes. In this paper we present a new on-

demand routing algorithm for mobile, multi-hop ad-hoc

networks. The algorithm is based on ant algorithms

which are a class of swarm intelligence. Ant algorithms

try to map the solution capability of ant colonies to

mathematical and engineering problems. The main goal

in the design of the algorithm was to reduce the

overhead for routing. Furthermore, we compare the

performance of AODV with varying the different

parameters through simulation results in ns2 [1].

Index Terms—AODV, MANET, ns2.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) is a self

configuring network of mobile routers (and

associated hosts) connected by wireless links.

Communication must be set up and maintained on the

fly over mostly by wireless links. Each node of a

network can both route and forward data [2]. The

exploding demand for computing and communication

on the move has led to reliance for ad hoc networks.

Although substantial attempts have been made on

research towards design and development of ad hoc

network parameters, there is relatively little

understanding of their behavior.

Fig1. Nodes of MANETS

So, in this paper on demand adhoc routing algorithm

is used for the analysis of AODV protocol using

different parameters in the environment of ns2.

II. AD HOC ON-DEMAND DISTANCE-

VECTOR PROTOCOL (AODV)

The Ad Hoc On-Demand Distance-Vector Protocol

(AODV)[3] is a distance vector routing for mobile

ad-hoc networks. AODV is an on-demand routing

approach, i.e. there are no periodical exchanges of

routing information.

A. AODV Route Discovery

When a node needs to determine a route to a

destination node, it floods the network with a Route

Request (RREQ) message. The originating node

broadcasts a RREQ message to its neighboring

nodes, which broadcast the message to their

neighbors, and so on. To prevent cycles, each node

remembers recently forwarded route requests in a

route request buffer (see next section). As these

requests spread through the network, intermediate

nodes store reverse routes back to the originating

node. Since an intermediate node could have many

reverse routes, it always picks the route with the

smallest hop count. When a node receiving the

request either knows of a “fresh enough” route to the

destination (see section on sequence numbers), or is

itself the destination, the node generates a Route

Reply (RREP) message, and sends this message along

the reverse path back towards the originating node.

As the RREP message passes through intermediate

nodes, these nodes update their routing tables, so that

in the future, messages can be routed though these

nodes to the destination. Notice that it is possible for

the RREQ originator to receive a RREP message

from more than one node. In this case, the RREQ

originator will update its routing table with the most

“recent” routing information; that is, it uses the route

with the greatest destination sequence number.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357393742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

223
All Rights Reserved © 2012 IJARCET

Fig2. . Route discovery of AODV

B. The Route Request Buffer

In the flooding protocol described above, when a

node originates or forwards a route request message

to its neighbors, the node will likely receive the same

route request message back from its neighbors. To

prevent nodes from resending the same RREQs

(causing infinite cycles), each node maintains a route

request buffer, which contains a list of recently

broadcasted route requests. Before forwarding a

RREQ message, a node always checks the buffer to

make sure it has not already forwarded the request.

RREQ messages are also stored in the buffer by a

node that originates a RREP message. The purpose

for this is so a node does not send multiple RREPs

for duplicate RREQs that may have arrived from

different paths. The exception is if the node receives

a RREQ with a better route (i.e. smaller hop count),

in which case a new RREP will be sent. Each entry in

the route request buffer consists of a pair of values:

the address of the node that originated the request,

and a route request identification number (RREQ id).

The RREQ id uniquely identifies a request originated

by a given node. Therefore, the pair uniquely

identifies a request across all nodes in the network.

To prevent the route request buffers from growing

indefinitely, each entry expires after a certain period

of time, and then is removed. Furthermore, each

node’s buffer has a maximum size. If nodes are to be

added beyond this maximum, then the oldest entries

will be removed to make room.

C. Expanding Ring Search

The flooding protocol described above has a

scalability problem, because whenever a node

requests a route, it sends a message that passes

through potentially every node in the network. When

the network is small, this is not a major concern.

However, when the network is large, this can be

extremely wasteful, especially if the destination node

is relatively close to the RREQ originator. Preferably,

we would like to set the TTL value on the RREQ

message to be just large enough so that the message

reaches the destination, but no larger. However, it is

difficult for a node to determine this optimal TTL

without prior global knowledge of the network. To

solve this problem, I have implemented an expanding

ring search algorithm [4], which works as follows.

When a node initiates a route request, it first

broadcasts the RREQ message with a small TTL

value (say, 1). If the originating node does not

receive a RREP message within a certain period of

time, it rebroadcasts the RREQ message with a larger

TTL value (and also a new RREQ identifier to

distinguish the new request from the old ones). The

node continues to broadcast messages with increasing

TTL and RREQ ID values until it receives a route

reply. If the TTL values in the route request have

reached a certain threshold, and still no RREP

messages have been received, then the destination is

assumed to be unreachable, and the messages queued

for this destination are thrown out.

D. Sequence Numbers

Each destination (node) maintains a monotonically

increasing sequence number, which serves as a

logical time at that node. Also, every route entry

includes a destination sequence number, which

indicates the “time” at the destination node when the

route was created. The protocol uses sequence

numbers to ensure that nodes only update routes with

“newer” ones. Doing so, we also ensure loop-

freedom for all routes to a destination. All RREQ

messages include the originator’s sequence number,

and its (latest known) destination sequence number.

Nodes receiving the RREQ add/update routes to the

originator with the originator sequence number,

assuming this new number is greater than that of any

existing entry. If the node receives an identical

RREQ message via another path, the originator

sequence numbers would be the same, so in this case,

the node would pick the route with the smaller hop

count. If a node receiving the RREQ message has a

route to the desired destination, then we use sequence

numbers to determine whether this route is “fresh

enough” to use as a reply to the route request. To do

this, we check if this node’s destination sequence

number is at least as great as the maximum

destination sequence number of all nodes through

which the RREQ message has passed. If this is the

case, then we can roughly guess that this route is not

terribly out-of-date, and we send a RREP back to the

originator. As with RREQ messages, RREP messages

also include destination sequence numbers. This is so

nodes along the route path can update their routing

table entries with the latest destination sequence

number.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

224
All Rights Reserved © 2012 IJARCET

E. Link Monitoring & Route Maintenance

Each node keeps track of a precursor list, and an

outgoing list. A precursor list is a set of nodes that

route through the given node. The outgoing list is the

set of next-hops that this node routes through. In

networks where all routes are bi-directional, these

lists are essentially the same. Each node periodically

sends HELLO messages to its precursors. A node

decides to send a HELLO message to a given

precursor only if no message has been sent to that

precursor recently. Correspondingly, each node

expects to periodically receive messages (not limited

to HELLO messages) from each of its outgoing

nodes. If a node has received no messages from some

outgoing node for an extended period of time, then

that node is presumed to be no longer reachable.

Whenever a node determines one of its next- hops to

be unreachable, it removes all affected route entries,

and generates a Route Error (RERR) message. This

RERR message contains a list of all destinations that

have become unreachable as a result of the broken

link. The node sends the RERR to each of its

precursors. These precursors update their routing

tables, and in turn forward the RERR to their

precursors, and so on. To prevent RERR message

loops, a node only forwards a RERR message if at

least one route has been removed.

Fig3. Route maintenance of AODV

The following flow chart summarizes the action of an

AODV node when processing an incoming message.

HELLO messages are excluded from the diagram for

brevity:

F. Code Explanation

State Variables and Data Structures:

 seqNum (int) – The node’s sequence

number. This value is initialized to

SEQUENCE_NUMBER_START and is

incremented just before broadcasting a

RREQ message.

 routeTable (RouteTable) – The routing table

object. This structure stores route

information in a HashMap, mapping

NetAddress objects to RouteTableEntry

objects. It contains methods for route

addition/lookup/removal. It also contains

methods for removing all routes though a

given next hop, and for removing a list of

route entries.

 RouteTableEntry – This class represents the

route information for some destination. It

includes: a next hop address (MacAddress),

a destination sequence number, and a hop

count.

 messageQueue (MessageQueue) – This

message queue stores messages that are

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

225
All Rights Reserved © 2012 IJARCET

waiting for routes. The messages are stored

in a LinkedList object. The object has

methods for sending queued messages, and

removing messages (in case no route could

be found).

 rreqList (LinkedList) – This structure

contains a list of pending route requests (of

type RouteRequest) originated by the node.

Routes requests (represented as

RouteRequest objects) are added to this list

when the node initially requests a route.

Requests are removed either when a RREP

message is received, or when the RREQ

with the maximum allowable TTL

(TTL_THRESHOLD) times out.

 rreqBuffer (RreqBuffer) – The route request

buffer object. This structure has a

LinkedList of RreqBufferEntry objects,

which keep track of recently sent RREQ

messages so they do not get resent. It also

contains methods for adding entries, and

clearing expired entries. Entries expire after

RREQ_BUFFER_EXPIRE_TIME. The

clearExpireEntries() method gets called in

the periodic timeout() event. The buffer has

a maximum size of

MAX_RREQ_BUFFER_SIZE.

 RreqBufferEntry – This class contains the

RREQ ID and address of the node that

originated the RREQ. It also contains the

time (simulation time) that the message was

sent.

 precursorSet (PrecursorSet) – This structure

stores a list of the node’s

precursors, along with information for each

precursor. This is stored as a HashMap,

mapping the precursor’s MacAddress to a

PrecursorInfo object. The PrecursorInfo

object contains the time that the message

was last sent to the precursor. PrecursorSet

includes a method for sending RERR

messages to all precursors.

 outgoingSet (OutgoingSet) – This structure

stores a list of outgoing nodes, along with a

helloWaitCount for each outgoing node.

helloWaitCount keeps track of the number

of HELLO_INTERVALs that have passed

since the last message was received from the

outgoing node. If helloWaitCount exceeds a

certain threshold specified by

HELLO_ALLOWED_LOSS, then the

outgoing node is considered unreachable.

 rreqIdSeqNum (int) – The sequence number

for RREQ ID’s. When sending a RREQ

message, it assigns rreqIdSeqNum to the

message’s rreqId field, and then increments

rreqIdSeqNum.

G. Core Methods

send (NetMessage) – This method, called by the

network entity, attempts to send a message over the

network. If routing information is available, it simply

forwards the message to the appropriate next hop.

Otherwise, the message is saved in the

messageQueue and a route request is originated.

receive (…) – This method, called by the network

entity, processes incoming

AODV messages. It checks the type of the message

object and passes the message to the appropriate

method:

receiveRouteRequestMessage() – Processes an

incoming RREQ message. Updates routing tables,

and then either sends a RREP message (by calling

generateRouteReplyMessage(), or forwards the

RREQ (by calling forwardRouteRequestMessage()).

receiveRouteReplyMessage() – Processes an

incoming RREP message. Updates routing tables and

precursor and outgoing lists. Then, if the node is the

RREQ originator, it removes the pending route

request, and sends the queued messages along the

new route. If the node is not the RREQ originator, it

forwards the RREP to the next hop.

receiveRouteErrorMessage() – Processes an

incoming RERR message. Removes all affected

routes. If at least one route removed, it calls

precursorSet.sendRERR() to forward the RERR to all

precursors.

receiveHelloMessage() – Processes an incoming

HELLO message. This does nothing. (The peek()

method takes care of the processing of HELLO

messages).

peek () – This method is called by the network entity

for every incoming packet (including non-AODV

messages). If the last-hop of the incoming packet is

in the outgoing set, the helloWaitCount for that

outgoing node is reset (indicating that the node is still

reachable).

timeout() – This method is an event that gets called

every AODV_TIMEOUT for the duration of a

simulation. It clears expired entries in the rreqBuffer

and sends any HELLO messages that need to be sent.

Then it updates the helloWaitCount counters for each

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

226
All Rights Reserved © 2012 IJARCET

outgoing node. If any of these helloWaitCount’s have

surpassed the HELLO_ALLOWED_LOSS, then

routes are removed, and route error messages are

sent.

RREQtimeout() – This timeout event gets scheduled

for a future time whenever the node originates a

RREQ message. When the timeout for a given route

request occurs, if still no reply has been received

(routeFound flag is false), then it sends another

RREQ message with an increased TTL, and

schedules another RREQtimeout(). This process

continues until the routeFound flag has been set to

true, or the TTL cannot be further increased (it is

already at TTL_THRESHOLD).

sendIpMsg() – This method is used whenever a

message needs to be sent over the network. This

method sends the message using netEntity.send()

after a brief, random delay. Additionally, if the next-

hop node is a precursor, it renews the corresponding

precursor entry with the current simulation time.

H. AODV Message Classes

 There following four classes represent the different

AODV messages. Each implements the

jist.swans.misc.Message interface.

 RouteRequestMessage

 RouteReplyMessage

 RouteErrorMessage

 HelloMessage

 Statistics

stats (AodvStats) – The stats object maintains global

statistical information for a simulation. This object

should be instantiated once by the simulation driver

program, and each AODV node should contain a

reference to this object. The reference can be set

using the setStats() method.

 Constants

 The following constants can be set within the AODV

code. Some of these can be used to tune AODV

performance for different networks. All time

durations are in simulation time.

DEBUG_MODE (Boolean) – If true, debugging

statements are printed. Default is false.

HELLO_MESSAGES_ON (Boolean) –

Activate/deactivate HELLO messages. Should

always be true, except possibly for debugging.

Default is true.

SEQUENCE_NUMBER_START (int) – Starting

sequence number at each node. Default is 0.

RREQ_ID_SEQUENCE_NUMBER (int) – Starting

RREQ ID sequence number. Default is 0.

RREQ_BUFFER_EXPIRE_TIME (long) –

Maximum duration an entry may reside in the RREQ

buffer before it may be removed. Default is 5

seconds.

MAX_BUFFER_SIZE (int) – Strict maximum size of

node’s RREQ buffer. Default is 10.

AODV_TIMEOUT (int) – Period of time between

calls to timeout() event. Default is 30 seconds.

HELLO_INTERVAL (long) – Duration of inactivity

after which a HELLO message should be sent to

precursor. Default is 30 seconds.

HELLO_ALLOWED_LOSS (int) – Number of

timeouts that must occur before determining an

outgoing link unreachable. Default is 2.

RREQ_TIMEOUT_BASE (long) – Constant term for

RREQ timeout duration. Default is 1 second.

RREQ_TIME_PER_TTL (long) – Variable term for

RREQ timeout duration, which depends on the TTL

value of the RREQ message. Defaut is 500

milliseconds (per TTL).

III. RESULT

The important performance metrics which were

evaluated are -:

Packet delivery ratio:---- The ratio of data packets

deliver to the destination to those generated by cbr

sources.

Normalized Routing Load:---- The number of routing

packets transmitted per data packet delivered at the

destination. Each hop wise transmission of a routing

packet is counted as one transmission.

Bandwidth Utilization: ---- It is desirable that a

routing protocol keeps this rate at a high level since

efficient bandwidth utilization is important in

wireless network where the available bandwidth is a

limiting factor. This is an important metric because it

reveals the loss rate seen by the transport protocol

and also characterizes the completeness and

correctness of routing protocol.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

227
All Rights Reserved © 2012 IJARCET

Node Misbehavior: ---- The percentage of packet lost

in an adhoc network is called as node misbehavior.

We have evaluated the above parameters on the basis

of varying mobility and varying node density.

Effect of Varying Node Density: ---- In our

simulation, we have varied the numbers of nodes

from 10 to 50 and evaluated the results by comparing

those with the standard result for that variation. In

case of packet delivery ratio as the number of nodes

increases the packet delivery ratio increases. The

presence of only 10 nodes present in the taken.

Simulation area is not sufficient to provide enough

connectivity. This reflects in terms of poor packet

delivery ratio with both protocol variants. But, as the

number of nodes

Increased to 20 and above, the performance of

AODV slightly improves packet delivery ratio.

 As the number of nodes varies bandwidth

utilization will increase. when the no. of nodes is

below 20 then bandwidth utilization is less as

compared to bandwidth utilization with 50 nodes.

 As no. of nodes increases, the no. of

misbehaving nodes are decreases and also normalize

routing load will also decreases.

 Effect of Varying Mobility: In our simulation, we

have varied the speed of nodes from 0 to 20(m/sec)

with keeping no. of nodes constant and evaluated the

results by comparing those with the standard result

for that variation.

 In the presence of high mobility, link

failure can happen very frequently. Link failures

trigger new route discoveries in AODV since it has

almost one route per destination in its routing table.

Thus the frequently occurrences of route discoveries

in AODV is directly proportional to the no. of route

breaks.

 So on varying the speed of nodes increases the

packet delivery ratio will decreases because on

increasing the speed the link between source and

destination will break frequently and the no. of

misbehaving nodes will increase because of link

failure .we will now present the graphs generated in

our simulation environment. These graphs were

prepared by first simulating the MANET’s in ns and

nsnsm.

A. Graphs:

Fig 4 Packet Delivery Ratio Vs Node Density

Fig 5 Packet Delivery ratio vs. Mobility

Fig 6 Packet Delivery Ratio vs. Time

Packet Delivery Ratio Vs. Node Density

0

0.2

0.4

0.6

0.8

1

0 20 40 60

No. of Nodes

P
D

R

AODV

packet delivery ratio vs mobility

0.65

0.7

0.75

0.8

0.85

0 10 20 30

speed(m/sec)

p
d

r

aodv

Packet Delivery Ratio Vs. Time

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Time

P
D

R

10Node

20Node

30Node

40Node

50Node

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

228
All Rights Reserved © 2012 IJARCET

Fig 7 Normalized Routing overhead vs. Mobility

Fig 8 Normalized routing overhead vs. node density

Fig 9 Node Misbehaving vs. Node density

Fig 10 Node misbehaving vs. Mobility

Fig 11 Throughput vs. node density

Fig 12 Throughput vs. Mobility

Fig 13 Bandwidth utilization vs. node density

Fig 14 Bandwidth utilization vs. time

Normalized Routing Overhead Vs.

Mobility

1.15

1.2

1.25

1.3

1.35

0 10 20 30

mobility

n
o

rm
a

li
z
e

d

ro
u

ti
n

g

o
v

e
rh

e
a

d

aodv

Normalized Routing Overhead Vs.

node density

0

0.5

1

1.5

2

0 20 40 60

No. of nodes

N
o

rm
a

li
z
e

d

R
o

u
ti

n
g

O
v

e
rh

e
a

d

AODV

Node Msbehaving Vs. Node Density

0

10

20

30

40

0 20 40 60

No. of nodes

%
P

a
c

k
e

t
L

o
s

s

AODV

Node Msbehaving Vs. Mobility

0

10

20

30

40

0 10 20 30

Speed(m/s)

%
 P

a
c

k
e

t
L

o
s

s

AODV

Throughput Vs. Node Density

0

20

40

60

80

100

0 20 40 60

No. of nodes

T
h

ro
u

g
h

p
u

t

AODV

Throughput Vs. Mobility

65

70

75

80

85

0 10 20 30

Speed(m/s)

T
h

ro
u

g
h

p
u

t

AODV

Bandwidth Utilization Vs. Node

Density

0

0.2

0.4

0.6

0 20 40 60

No. of nodes

B
an

d
w

id
th

(M
b

p
s)

AODV

Bandwidth Utilization Vs. time

0

0.2

0.4

0.6

0 5 10 15 20

Time

B
a

n
d

w
id

th
(M

b
p

s
)

10node

20node

30node

40node

50node

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

229
All Rights Reserved © 2012 IJARCET

IV. CONCLUSION

 AODV perform better results under low

mobility and high node density. As we have seen in

the graphs, the effects of different parameters with

the variation of node density and mobility. Variation

of node density: As the no. of nodes increases the no.

of nodes behaving as intermediate nodes and the

neighbor discovering time minimizes. This results in

quicker path finding. So we obtain the better packet

delivery ratio from source to destination.

Simultaneously it will help in better bandwidth

utilization, lesser node misbehaving, and lower

normalize routing load. Variation of node mobility:

As the speed of nodes increases, the link failure

between the sources to destination occurs frequently.

This will result in low packet delivery ratio, high

normalized routing load, and high node misbehaving.

REFERENCES

[1]. ns-2 http://www.isi.edu/nsnam/ns.

[2]. Tope. M.A, McEachen, J.C, and Kinney. A.C, “Ad-hoc

network routing using co-operative diversity", Advanced

Information Networking and Applications, IEEE Conference, 18-

20 April 2006.

[3]. Charles Perkins, Elizabeth Royer, and Samir Das. “Ad hoc on

demand distance vector (AODV) routing”. IETF RFC No. 3561,

July 2003.

[4] Incheon Park, Jinguk Kim, Ida Pu.” Blocking Expanding Ring

Search Algorithm for Efficient Energy Consumption in Mobile Ad

Hoc Networks”.

http://www.isi.edu/nsnam/ns

