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Abstract— A mobile ad-hoc network (MANET) is a 

collection of mobile nodes which communicate over 

radio. These networks have an important advantage; 

they do not require any existing infrastructure or 

central administration. Therefore, mobile ad-hoc 

networks are suitable for temporary communication 

links. This flexibility, however, comes at a price: 

communication is difficult to organize due to frequent 

topology changes. In this paper we present a new on-

demand routing algorithm for mobile, multi-hop ad-hoc 

networks. The algorithm is based on ant algorithms 

which are a class of swarm intelligence. Ant algorithms 

try to map the solution capability of ant colonies to 

mathematical and engineering problems. The main goal 

in the design of the algorithm was to reduce the 

overhead for routing. Furthermore, we compare the 

performance of AODV with varying the different 

parameters through simulation results in ns2 [1].  

Index Terms—AODV, MANET, ns2. 

I. INTRODUCTION 

Mobile ad hoc networks (MANETs) is a self 

configuring network of mobile routers (and 

associated hosts) connected by wireless links. 

Communication must be set up and maintained on the 

fly over mostly by wireless links. Each node of a 

network can both route and forward data [2]. The 

exploding demand for computing and communication 

on the move has led to reliance for ad hoc networks. 

Although substantial attempts have been made on 

research towards design and development of ad hoc 

network parameters, there is relatively little 

understanding of their behavior. 

 

 
Fig1.  Nodes of MANETS 

So, in this paper on demand adhoc routing algorithm 

is used for the analysis of AODV protocol using 

different parameters in the environment of ns2. 

II.  AD HOC ON-DEMAND DISTANCE-

VECTOR PROTOCOL (AODV) 

The Ad Hoc On-Demand Distance-Vector Protocol 

(AODV)[3] is a distance vector routing for mobile 

ad-hoc networks. AODV is an on-demand routing 

approach, i.e. there are no periodical exchanges of 

routing information.  

A. AODV Route Discovery 

When a node needs to determine a route to a 

destination node, it floods the network with a Route 

Request (RREQ) message. The originating node 

broadcasts a RREQ message to its neighboring 

nodes, which broadcast the message to their 

neighbors, and so on. To prevent cycles, each node 

remembers recently forwarded route requests in a 

route request buffer (see next section). As these 

requests spread through the network, intermediate 

nodes store reverse routes back to the originating 

node. Since an intermediate node could have many 

reverse routes, it always picks the route with the 

smallest hop count. When a node receiving the 

request either knows of a “fresh enough” route to the 

destination (see section on sequence numbers), or is 

itself the destination, the node generates a Route 

Reply (RREP) message, and sends this message along 

the reverse path back towards the originating node. 

As the RREP message passes through intermediate 

nodes, these nodes update their routing tables, so that 

in the future, messages can be routed though these 

nodes to the destination. Notice that it is possible for 

the RREQ originator to receive a RREP message 

from more than one node. In this case, the RREQ 

originator will update its routing table with the most 

“recent” routing information; that is, it uses the route 

with the greatest destination sequence number.  
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Fig2. . Route discovery of AODV 

B. The Route Request Buffer 

In the flooding protocol described above, when a 

node originates or forwards a route request message 

to its neighbors, the node will likely receive the same 

route request message back from its neighbors. To 

prevent nodes from resending the same RREQs 

(causing infinite cycles), each node maintains a route 

request buffer, which contains a list of recently 

broadcasted route requests. Before forwarding a 

RREQ message, a node always checks the buffer to 

make sure it has not already forwarded the request. 

RREQ messages are also stored in the buffer by a 

node that originates a RREP message. The purpose 

for this is so a node does not send multiple RREPs 

for duplicate RREQs that may have arrived from 

different paths. The exception is if the node receives 

a RREQ with a better route (i.e. smaller hop count), 

in which case a new RREP will be sent. Each entry in 

the route request buffer consists of a pair of values: 

the address of the node that originated the request, 

and a route request identification number (RREQ id). 

The RREQ id uniquely identifies a request originated 

by a given node. Therefore, the pair uniquely 

identifies a request across all nodes in the network. 

To prevent the route request buffers from growing 

indefinitely, each entry expires after a certain period 

of time, and then is removed. Furthermore, each 

node’s buffer has a maximum size. If nodes are to be 

added beyond this maximum, then the oldest entries 

will be removed to make room. 

C. Expanding Ring Search 

The flooding protocol described above has a 

scalability problem, because whenever a node 

requests a route, it sends a message that passes 

through potentially every node in the network. When 

the network is small, this is not a major concern. 

However, when the network is large, this can be 

extremely wasteful, especially if the destination node 

is relatively close to the RREQ originator. Preferably, 

we would like to set the TTL value on the RREQ 

message to be just large enough so that the message 

reaches the destination, but no larger. However, it is 

difficult for a node to determine this optimal TTL 

without prior global knowledge of the network. To 

solve this problem, I have implemented an expanding 

ring search algorithm [4], which works as follows. 

When a node initiates a route request, it first 

broadcasts the RREQ message with a small TTL 

value (say, 1). If the originating node does not 

receive a RREP message within a certain period of 

time, it rebroadcasts the RREQ message with a larger 

TTL value (and also a new RREQ identifier to 

distinguish the new request from the old ones). The 

node continues to broadcast messages with increasing 

TTL and RREQ ID values until it receives a route 

reply. If the TTL values in the route request have 

reached a certain threshold, and still no RREP 

messages have been received, then the destination is 

assumed to be unreachable, and the messages queued 

for this destination are thrown out. 

D. Sequence Numbers 

Each destination (node) maintains a monotonically 

increasing sequence number, which serves as a 

logical time at that node. Also, every route entry 

includes a destination sequence number, which 

indicates the “time” at the destination node when the 

route was created. The protocol uses sequence 

numbers to ensure that nodes only update routes with 

“newer” ones. Doing so, we also ensure loop- 

freedom for all routes to a destination. All RREQ 

messages include the originator’s sequence number, 

and its (latest known) destination sequence number. 

Nodes receiving the RREQ add/update routes to the 

originator with the originator sequence number, 

assuming this new number is greater than that of any 

existing entry. If the node receives an identical 

RREQ message via another path, the originator 

sequence numbers would be the same, so in this case, 

the node would pick the route with the smaller hop 

count. If a node receiving the RREQ message has a 

route to the desired destination, then we use sequence 

numbers to determine whether this route is “fresh 

enough” to use as a reply to the route request. To do 

this, we check if this node’s destination sequence 

number is at least as great as the maximum 

destination sequence number of all nodes through 

which the RREQ message has passed. If this is the 

case, then we can roughly guess that this route is not 

terribly out-of-date, and we send a RREP back to the 

originator. As with RREQ messages, RREP messages 

also include destination sequence numbers. This is so 

nodes along the route path can update their routing 

table entries with the latest destination sequence 

number. 
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E. Link Monitoring & Route Maintenance 

Each node keeps track of a precursor list, and an 

outgoing list. A precursor list is a set of nodes that 

route through the given node. The outgoing list is the 

set of next-hops that this node routes through. In 

networks where all routes are bi-directional, these 

lists are essentially the same. Each node periodically 

sends HELLO messages to its precursors. A node 

decides to send a HELLO message to a given 

precursor only if no message has been sent to that 

precursor recently. Correspondingly, each node 

expects to periodically receive messages (not limited 

to HELLO messages) from each of its outgoing 

nodes. If a node has received no messages from some 

outgoing node for an extended period of time, then 

that node is presumed to be no longer reachable. 

Whenever a node determines one of its next- hops to 

be unreachable, it removes all affected route entries, 

and generates a Route Error (RERR) message. This 

RERR message contains a list of all destinations that 

have become unreachable as a result of the broken 

link. The node sends the RERR to each of its 

precursors. These precursors update their routing 

tables, and in turn forward the RERR to their 

precursors, and so on. To prevent RERR message 

loops, a node only forwards a RERR message if at 

least one route has been removed. 

 

Fig3. Route maintenance of AODV 

The following flow chart summarizes the action of an 

AODV node when processing an incoming message. 

HELLO messages are excluded from the diagram for 

brevity: 

F. Code Explanation 

State Variables and Data Structures: 

 seqNum (int) – The node’s sequence 

number. This value is initialized to 

SEQUENCE_NUMBER_START and is 

incremented just before broadcasting a 

RREQ message. 

 routeTable (RouteTable) – The routing table 

object. This structure stores route 

information in a HashMap, mapping 

NetAddress objects to RouteTableEntry 

objects. It contains methods for route 

addition/lookup/removal. It also contains 

methods for removing all routes though a 

given next hop, and for removing a list of 

route entries. 

 

 

 RouteTableEntry – This class represents the 

route information for some destination. It 

includes: a next hop address (MacAddress), 

a    destination sequence number, and a hop 

count. 

 messageQueue (MessageQueue) – This 

message queue stores messages that are 
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waiting for routes. The messages are stored 

in a LinkedList object. The object has 

methods for sending queued messages, and 

removing messages (in case no route could 

be found). 

 rreqList (LinkedList) –  This structure 

contains a list of pending route requests (of 

type RouteRequest) originated by the node. 

Routes requests (represented as 

RouteRequest objects) are added to this list 

when the node initially requests a route. 

Requests are removed either when a RREP 

message is received, or when the RREQ 

with the maximum allowable TTL 

(TTL_THRESHOLD) times out. 

 rreqBuffer (RreqBuffer) – The route request 

buffer object. This structure has a 

LinkedList of RreqBufferEntry objects, 

which keep track of recently sent RREQ 

messages so they do not get resent. It also 

contains methods for adding entries, and 

clearing expired entries. Entries expire after 

RREQ_BUFFER_EXPIRE_TIME. The 

clearExpireEntries() method gets called in 

the periodic timeout() event. The buffer has 

a maximum size of 

MAX_RREQ_BUFFER_SIZE. 

 RreqBufferEntry – This class contains the 

RREQ ID and address of the node that 

originated the RREQ. It also contains the 

time (simulation time) that the message was 

sent. 

 precursorSet (PrecursorSet) – This structure 

stores a list of the node’s 

precursors, along with information for each 

precursor. This is stored as a HashMap, 

mapping the precursor’s MacAddress to a 

PrecursorInfo object. The  PrecursorInfo 

object contains the time that the message 

was last sent to the precursor. PrecursorSet 

includes a method for sending RERR 

messages to all precursors. 

 outgoingSet (OutgoingSet) – This structure 

stores a list of outgoing nodes, along with a 

helloWaitCount for each outgoing node. 

helloWaitCount keeps track of the number 

of HELLO_INTERVALs that have passed 

since the last message was received from the 

outgoing node. If helloWaitCount exceeds a 

certain threshold specified by 

HELLO_ALLOWED_LOSS, then the 

outgoing node is considered unreachable. 

 rreqIdSeqNum (int) – The sequence number 

for RREQ ID’s. When sending a RREQ 

message, it assigns rreqIdSeqNum to the 

message’s rreqId field, and then increments 

rreqIdSeqNum. 

G. Core Methods 

send (NetMessage) – This method, called by the 

network entity, attempts to send a message over the 

network. If routing information is available, it simply 

forwards the message to the appropriate next hop. 

Otherwise, the message is saved in the 

messageQueue and a route request is originated. 

receive (…) – This method, called by the network 

entity, processes incoming 

AODV messages. It checks the type of the message 

object and passes the message to the appropriate 

method: 

receiveRouteRequestMessage() – Processes an 

incoming RREQ message. Updates routing tables, 

and then either sends a RREP message (by calling 

generateRouteReplyMessage(), or forwards the 

RREQ (by calling forwardRouteRequestMessage()). 

receiveRouteReplyMessage() – Processes an 

incoming RREP message. Updates routing tables and 

precursor and outgoing lists. Then, if the node is the 

RREQ originator, it removes the pending route 

request, and sends the queued messages along the 

new route. If the node is not the RREQ originator, it 

forwards the RREP to the next hop. 

receiveRouteErrorMessage() – Processes an 

incoming RERR message. Removes all affected 

routes. If at least one route removed, it calls 

precursorSet.sendRERR() to forward the RERR to all 

precursors. 

receiveHelloMessage() – Processes an incoming 

HELLO message. This does nothing. (The peek() 

method takes care of the processing of HELLO 

messages). 

peek () – This method is called by the network entity 

for every incoming packet (including non-AODV 

messages). If the last-hop of the incoming packet is 

in the outgoing set, the helloWaitCount for that 

outgoing node is reset (indicating that the node is still 

reachable). 

timeout() – This method is an event that gets called 

every AODV_TIMEOUT for the duration of a 

simulation. It clears expired entries in the rreqBuffer 

and sends any HELLO messages that need to be sent. 

Then it updates the helloWaitCount counters for each 
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outgoing node. If any of these helloWaitCount’s have 

surpassed the HELLO_ALLOWED_LOSS, then 

routes are removed, and route error messages are 

sent. 

RREQtimeout() – This timeout event gets scheduled 

for a future time whenever the node originates a 

RREQ message. When the timeout for a given route 

request occurs, if still no reply has been received 

(routeFound flag is false), then it sends another 

RREQ message with an increased TTL, and 

schedules another RREQtimeout(). This process 

continues until the routeFound flag has been set to 

true, or the TTL cannot be further increased (it is 

already at TTL_THRESHOLD). 

sendIpMsg() – This method is used whenever a 

message needs to be sent over the network. This 

method sends the message using netEntity.send() 

after a brief, random delay. Additionally, if the next- 

hop node is a precursor, it renews the corresponding 

precursor entry with the current simulation time. 

H. AODV Message Classes 

 There following four classes represent the different 

AODV messages. Each implements the 

jist.swans.misc.Message interface. 

 RouteRequestMessage 

 RouteReplyMessage 

 RouteErrorMessage 

 HelloMessage 

 Statistics 

stats (AodvStats) – The stats object maintains global 

statistical information for a simulation. This object 

should be instantiated once by the simulation driver 

program, and each AODV node should contain a 

reference to this object. The reference can be set 

using the setStats() method. 

 Constants 

 The following constants can be set within the AODV 

code. Some of these can be used to tune AODV 

performance for different networks. All time 

durations are in simulation time. 

DEBUG_MODE (Boolean) – If true, debugging 

statements are printed. Default is false. 

HELLO_MESSAGES_ON (Boolean) – 

Activate/deactivate HELLO messages. Should 

always be true, except possibly for debugging. 

Default is true. 

SEQUENCE_NUMBER_START (int) – Starting 

sequence number at each node. Default is 0. 

RREQ_ID_SEQUENCE_NUMBER (int) – Starting 

RREQ ID sequence number. Default is 0. 

RREQ_BUFFER_EXPIRE_TIME (long) – 

Maximum duration an entry may reside in the RREQ 

buffer before it may be removed. Default is 5 

seconds. 

MAX_BUFFER_SIZE (int) – Strict maximum size of 

node’s RREQ buffer. Default is 10. 

AODV_TIMEOUT (int) – Period of time between 

calls to timeout() event. Default is 30 seconds. 

HELLO_INTERVAL (long) – Duration of inactivity 

after which a HELLO message should be sent to 

precursor. Default is 30 seconds. 

HELLO_ALLOWED_LOSS (int) – Number of 

timeouts that must occur before determining an 

outgoing link unreachable. Default is 2. 

RREQ_TIMEOUT_BASE (long) – Constant term for 

RREQ timeout duration. Default is 1 second. 

RREQ_TIME_PER_TTL (long) – Variable term for 

RREQ timeout duration, which depends on the TTL 

value of the RREQ message. Defaut is 500 

milliseconds (per TTL). 

III. RESULT 

The important performance metrics which were 

evaluated are -: 

Packet delivery ratio:---- The ratio of data packets 

deliver to the destination to those generated by cbr 

sources. 

Normalized Routing Load:---- The number of routing 

packets transmitted per data packet delivered at the 

destination. Each hop wise transmission of a routing 

packet is counted as one transmission. 

Bandwidth Utilization: ---- It is desirable that a 

routing protocol keeps this rate at a high level since 

efficient bandwidth utilization is important in 

wireless network where the available bandwidth is a 

limiting factor. This is an important metric because it 

reveals the loss rate seen by the transport protocol 

and also characterizes the completeness and 

correctness of routing protocol. 
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Node Misbehavior: ---- The percentage of packet lost 

in an adhoc network is called as node misbehavior. 

We have evaluated the above parameters on the basis 

of varying mobility and varying node density. 

Effect of Varying Node Density: ---- In our 

simulation, we have varied the numbers of nodes 

from 10 to 50 and evaluated the results by comparing 

those with the standard result for that variation. In 

case of packet delivery ratio as the number of nodes 

increases the packet delivery ratio increases. The 

presence of only 10 nodes present in the taken. 

Simulation area is not sufficient to provide enough 

connectivity. This reflects in terms of poor packet 

delivery ratio with both protocol variants. But, as the 

number of nodes 

Increased to 20 and above, the performance of 

AODV slightly improves packet delivery ratio.  

          As the number of nodes varies bandwidth 

utilization will increase. when the no. of nodes is 

below 20 then bandwidth utilization is less as 

compared to bandwidth utilization with 50 nodes. 

          As no. of nodes increases, the   no. of 

misbehaving nodes are decreases and   also normalize 

routing load will also decreases. 

    Effect of Varying Mobility: In our simulation, we 

have varied the speed of nodes from 0 to 20(m/sec) 

with keeping no. of nodes constant and evaluated the 

results by comparing those with the standard result 

for that variation.  

                  In the presence of high mobility, link 

failure can happen very frequently. Link failures 

trigger new route discoveries in AODV since it has 

almost one route per destination in its routing table. 

Thus the frequently occurrences of route discoveries 

in AODV is directly proportional to the no. of route 

breaks.                      

 So on varying the speed of nodes increases the 

packet delivery ratio will decreases because on 

increasing the speed the link between source and 

destination will break frequently and the no. of 

misbehaving nodes will increase because of link 

failure .we will now present the graphs generated in 

our simulation environment. These graphs were 

prepared by first simulating the MANET’s in ns and 

nsnsm.  

 

A. Graphs: 

 

 

Fig 4 Packet Delivery Ratio Vs Node Density 

 

 

Fig 5 Packet Delivery ratio vs. Mobility 

 

 

Fig 6 Packet Delivery Ratio vs. Time 
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Fig 7 Normalized Routing overhead vs. Mobility 

 

Fig 8 Normalized routing overhead vs. node density  

 

Fig 9 Node Misbehaving vs. Node density 

 

Fig 10 Node misbehaving vs. Mobility 

 

Fig 11 Throughput vs. node density 

 

Fig 12 Throughput vs. Mobility 

 

Fig 13 Bandwidth utilization vs. node density 

Fig 14 Bandwidth utilization vs. time 
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IV. CONCLUSION 

         AODV perform better results under low 

mobility and high node density. As we have seen in 

the graphs, the effects of different parameters with 

the variation of node density and mobility. Variation 

of node density: As the no. of nodes increases the no. 

of nodes behaving as intermediate nodes and the 

neighbor discovering time minimizes. This results in 

quicker path finding. So we obtain the better packet 

delivery ratio from source to destination. 

Simultaneously it will help in better bandwidth 

utilization, lesser node misbehaving, and lower 

normalize routing load.   Variation of node mobility: 

As the speed of nodes increases, the link failure 

between the sources to destination occurs frequently. 

This will result in low packet delivery ratio, high 

normalized routing load, and high node misbehaving. 
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