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Abstract— This paper presents periodic solutions for a
quadrocopter maintaining a height around a position in space
despite having lost a single, two opposing, or three propellers.
In each case the control strategy consists of the quadrocopter
spinning about a primary axis, fixed with respect to the vehicle,
and tilting this axis for translational control. A linear, time-
invariant description of deviations from the attitude equilibrium
is derived, allowing for a convenient cascaded control design.
The results for the cases of losing one and two propellers
are validated in experiment, while the case of losing three
propellers is validated in a nonlinear simulation. These results
have application in multicopter fault-tolerant control design,
and also point to possible design directions for novel flying
vehicles.

I. INTRODUCTION

Multicopters have found broad use as research platforms,
used e.g. for vision based pose estimation with quadro-
copters [1] and hexacopters [2], and also as platforms
allowing for new capabilities. For example, the use of
both quadrocopters and hexacopters for whale monitoring
is investigated in [3], and hexacopters are used in [4] for
weed research; a team of quadrocopters is used to carry a
slung load in [5] and an octocopter is used to calibrate radio
telescope antennae in [6].

Amongst others, a motivation for using a multicopter with
six or more propellers, instead of a four propeller quadro-
copter, is that the vehicle is able to maintain normal flight if
one of the propellers fails (see e.g. [7] for a hexacopter design
and [8] for an octocopter rotor failure strategy). A survey on
research on fault detection and diagnosis and fault-tolerant
control strategies for unmanned rotary wing vehicles is given
in [9], and an example of currently available commercial
solutions are the emergency parachutes of [10].

Partial failure of a quadrocopter actuator is investigated for
example in [11], [12] and [13]. A complete propeller failure
for a quadrocopter is investigated in [14], where the strategy
is to give up controlling the vehicle’s yaw angle, and use the
remaining propellers to achieve a horizontal spin.

This paper presents periodic solutions for a quadrocopter
experiencing one, two opposing, or three complete rotor
failures. The strategy employed is to define an axis, fixed
with respect to the vehicle body, and have the vehicle rotate
freely about this axis. By tilting this axis, and varying the
total amount of thrust produced, the vehicle’s position can be
controlled. A linear, time invariant description of the attitude
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is used, allowing for straight-forward analysis of the system’s
controllability characteristics, and for controller synthesis.

The control strategy presented here for a single failed
propeller is broadly similar to that of [14] in that the vehicle
rotates freely about an axis, but differs in that the designer
has an additional degree of freedom, to choose a ratio of the
forces produced in equilibrium.

The methods presented in this paper could also be applied
to design novel, rotating body vehicles. Such vehicles could
be designed using as few as one propeller, and would thus
be cheaper to produce than a quadrocopter, at the cost of not
being able to control the full vehicle attitude. When equipped
with a camera, such a vehicle could be used as a low-cost
omnidirectional flying camera, similar to e.g. [15] or [16] .

This paper is organised as follows: Section II presents the
equations governing the quadrocopter dynamics. Section III
then presents periodic solutions to the equations of motion
for the three different loss cases, while Section IV investi-
gates under which conditions the system is controllable about
these solutions. These results are then validated in Section V,
and the paper concludes with an outlook in Section VI.

II. EQUATIONS OF MOTION

The equations governing the motion of a quadrocopter are
derived in this section. First, the translational and rotational
dynamics are presented, followed by some simplifications
for the sake of tractability. The kinematics of the reduced
attitude, which is used later to describe the equilibria of
the system and to design the controllers, are presented next.
Boldface symbols like g are used throughout this paper to de-
note three-dimensional vectors, while non-boldface symbols
like m will generally be used for scalars, with exceptions
made explicit. The short-hand notation ωB = (p, q, r) will
be used to denote the elements p, q, and r of the vector ωB .

Fig. 1. A quadrocopter in controlled flight despite having lost one complete
propeller.
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Fig. 2. (A) A dynamic model of a quadrocopter with four propellers
arranged symmetrically about the vehicle centre of mass, showing a body-
fixed reference frame consisting of the directions x, y and z. Propellers 1
and 3 rotate in the opposite sense of propellers 2 and 4. A drag torque τd
acts to oppose the vehicle’s angular velocity ωB expressed in the body-
fixed frame as ωB = (p, q, r). The vehicle has a weight force mg. (B)
shows a detail of a propeller i rotating at angular velocity ωi with respect
to the body. Each propeller produces a thrust force fi and torque τi, both
in the direction of the propeller’s axis of rotation. As drawn in (B), ωi > 0,
and τi < 0.

A. Dynamics

Fig. 2 shows a quadrocopter, with four propellers, and a
total mass m. Five forces act on the vehicle: the weight mg,
and the four propeller forces of magnitude fi which act in the
body-fixed direction z = (0, 0, 1) as defined in the figure.
Additionally, five torques act on the vehicle: one for each
propeller (captured by the scalar τi) and a drag torque τd.
The propeller torques oppose the propellers’ rotation, and the
vehicle drag torque τd opposes the vehicle’s angular velocity.
Expressed in a body-fixed reference frame, the vehicle’s
angular velocity is ωB = (p, q, r). The rotation of the body-
fixed frame with respect to some inertial frame is described
by the rotation matrix R.

The position of the quadrocopter’s centre of mass, ex-
pressed in the inertial frame, is denoted d = (d1, d2, d3).
Then, the quadrocopter’s translational dynamics are:

md̈ = Rz

4∑
i=1

fi +mg (1)

with g = (0, 0,−9.81) m s−2 the acceleration due to gravity.
The vehicle is assumed to consist of five rigid bodies:

the vehicle body as such, and the four propellers (which
are taken to include any rotating part of the motors). The
vehicle body inertia tensor IB is assumed to be diagonal
when expressed in the body-fixed frame:

IB =

IBxx 0 0
0 IByy 0
0 0 IBzz

 . (2)

It is assumed that each propeller can be treated as a
disk that is symmetric about its axis of rotation. This
means that the propeller’s rotational inertia expressed in the
quadrocopter-fixed frame is independent of the orientation of
the propeller, and equals

IP =

IPxx 0 0
0 IPxx 0
0 0 IPzz

 . (3)

The differential equation governing the evolution of the
body’s angular velocity is now [17]

IBω̇B +

4∑
i=1

IP ω̇Pi+

JωB×K

(
IBωB +

4∑
i=1

IP
(
ωB + ωPi

))
= τres

(4)

with τres the resultant torque acting on the body. The first two
terms are the time derivative of the body rates and propeller
speeds, respectively, and evaluate to

IBω̇B =
(
IBxxṗ, I

B
yy q̇, I

B
zz ṙ
)

(5)

IP ω̇Pi =
(
0, 0, IPzzω̇i

)
. (6)

The second term of (4) expresses the cross-coupling of the
angular momentum in the system, due to taking the derivative
in a non-inertial frame. Multiplying out the term yields

JωB×K

(
IBωB +

4∑
i=1

IP
(
ωB + ωPi

))
= (ITzz − ITyy) qr + IPzzqωΣ

−
(
ITzz − ITxx

)
pr − IPzzpωΣ(

ITyy − ITxx
)
pq

 (7)

having introduced the total inertias ITxx = IBxx + 4IPxx,
ITyy = IByy + 4IPxx, ITzz = IBzz + 4IPzz , and the sum of motor
speeds ωΣ = ω1 + ω2 + ω3 + ω4.
τres, on the right hand side of (4), represents all the

moments acting upon the body, which consist of the torques
produced by the motors, and the moments due to the rotor
forces. The centre of each rotor, through which the forces are
assumed to act, is taken to lie at distance l from the centre
of mass, such that

τres =

 (f2 − f4) l + τdx
(f3 − f1) l + τdy

τ1 + τ2 + τ3 + τ4 + τdz

 (8)

with τd =
(
τdx , τdy , τdz

)
the components of the drag torque.

B. Further simplifying assumptions

There is a strong linear relationship between a propeller’s
reaction torque and thrust force (characterised by the coeffi-
cient κτ with the sign given by the sense of rotation). The
thrust force of a stationary propeller is proportional to the
angular velocity squared with coefficient κf , such that [18]

τi = (−1)i+1κτfi (9)

fi = κfω
2
i . (10)

For simplicity, the aerodynamic drag acting on the quadro-
copter is assumed to act only to oppose the yaw rate r, with
proportionality constant γ > 0 such that

τd = (0, 0,−γr) (11)

with the assumption of a linear drag term supported by
experimental data. The fact that a term linear in the speed
dominates, instead of a quadratic term, can possibly be
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explained by the asymmetric relative air velocity over the
advancing and retreating propeller blades (an effect exploited
in a different context in [19]).

It is assumed that the propeller speeds are controlled
by high bandwidth motors, such that the motor speed is
unaffected by the vehicle motion. Furthermore, it is assumed
that IP � IB , such that the term IP ω̇ can be neglected.
Note that the angular momentum of the rotors might still be
comparable to that of the body, such that the term IPωPi

may not be negligible compared to IBωB . The quadrocopter
body is assumed to be symmetric, such that IBxx = IByy.

Expanding (4) with (2)-(3), (5)-(8) and applying the above
assumptions yields the following three differential equations
for the vehicle’s body rates:

IBxxṗ = κf
(
ω2

2 − ω2
4

)
l−(

ITzz − ITxx
)
qr − IPzzq (ω1 + ω2 + ω3 + ω4) ,

(12)

IBxxq̇ = κf
(
ω2

3 − ω2
1

)
l+(

ITzz − ITxx
)
pr + IPzzp (ω1 + ω2 + ω3 + ω4) ,

(13)

IBzz ṙ = −γr + κτκf
(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
. (14)

C. Reduced attitude kinematics
A typical quadrocopter controller (see e.g. [20]) allows

for control of the quadrocopter’s full attitude R to some
desired attitude as part of the control strategy. The strategy
adopted herein is to give up control of the full attitude once
a propeller has failed, and instead control only a single
direction of the attitude (or, the attitude to within one degree
of freedom), often referred to as a reduced attitude [21],
which can be described by a unit vector.

The differential equation governing the evolution of a unit
vector stationary in the inertial frame but expressed in the
body-fixed frame as n = (nx, ny, nz) is given by the cross
product

ṅ = −ωB × n. (15)

III. PERIODIC SOLUTIONS AND EQUILIBRIA

This section presents periodic solutions for the position
and attitude of a quadrocopter experiencing the loss of one,
two (opposing) or three propellers. For the case of one
and three lost propellers, the resultant forces and torques
acting on the vehicle will not be zero, such that no static
equilibrium exists for the vehicle’s centre of mass. However,
in each case the reduced attitude of the vehicle is constant,
such that the controllability of the system’s attitude can be
investigated with methods well-established for linear, time-
invariant, systems in Section IV. An overbar will be used to
express values constant along the periodic solution (e.g. p̄).

The goal is to find periodic solutions in which a constant
primary axis n̄ exists about which the vehicle rotates with
constant angular velocity ω̄B . The primary axis is fixed with
respect to the vehicle body, and is expressed in the body fixed
frame as n̄ = (n̄x, n̄y, n̄z). From (15), the requirement that
˙̄n = 0, and the properties of the cross product, it follows
that

n̄ = ε ω̄B (16)

with the norm constraint on n expressed by

‖n̄‖ =
∥∥ε ω̄B∥∥ = 1 (17)

where ‖·‖ is the Euclidean norm.
The primary axis is taken to point opposite to gravity

along the periodic solution, and the vehicle is required to
not accelerate in the direction of gravity. The fraction of the
total thrust force f̄Σ = f̄1 + f̄2 + f̄3 + f̄4 pointing opposite
to gravity is thus n̄z , such that

f̄Σ n̄z = m ‖g‖ . (18)

If n̄z < 1, a part of the total thrust force will point
perpendicular to gravity, imparting an acceleration of the
vehicle in this direction. In this case, the vehicle will move
along a horizontal circular trajectory with a period of

Tps =
2π

‖ω̄B‖
(19)

and a radius of

R̄ps =

√
1− n̄2

z

n̄z

‖g‖
‖ω̄B‖2

. (20)

The solutions will now be presented for each case of a
quadrocopter losing one propeller, two opposing propellers,
and three propellers. This involves solving for the eleven
unknowns n̄x, n̄y , n̄z , p̄, q̄, r̄, ε, ω̄1, ω̄2, ω̄3 and ω̄4 by
utilising the eight algebraic equations (12) - (14) (with the
angular accelerations set to zero) and (16) - (18).

The symmetry properties of the quadrocopter mean that
the equilibrium yaw rate is independent of the pitch and roll
rates from (14), and can be solved independently as

r̄ =
κτκf
γ

(
ω̄2

1 − ω̄2
2 + ω̄2

3 − ω̄2
4

)
. (21)

Each lost motor/propeller will add a constraint of the form
ωi = 0, and the solutions for each of the loss cases will be
considered in more detail below.

A. Solution with one lost propeller
Without loss of generality it will be assumed that propeller

4 has failed, such that f4 = τ4 = 0, and specifically that
ω̄4 = 0, leaving two degrees of freedom for solving for the
periodic solution. An intuitive way of specifying them is for
the two opposing propellers to produce equal thrust (thus
f̄1 = f̄3), and choosing a ratio ρ = f̄2/f̄1 between the thrust
of propellers 1 and 2, such that ρ becomes a tuning factor.
This leaves eleven nonlinear equations to solve for eleven
unknowns.

From (13), one solution is p̄ = 0 and thus n̄x = 0, for all
choices of ρ. For small ρ, as ρ grows, n̄z decreases and thus
the total force required increases by (18). The radius R̄ps
of the horizontal orbit (20) will be zero at ρ = 0, but the
relationship between the angular velocity and ρ is harder
to predict, and numerical results are given for a specific
quadrocopter in Section V, specifically Fig. 3. Note that for
ρ = 0 the two-propeller solution of Section III-B, below,
is recovered, while as ρ tends to infinity the single propeller
solution of Section III-A is recovered (with instead propellers
1, 3 and 4 taken as failed).
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B. Solution with two lost propellers

It is assumed that two opposing propellers have failed,
taken without loss of generality to be 2 and 4. Note that the
case of two adjacent propellers failing will not be addressed
here, and is a topic to be investigated in future work.

Setting ω̄2 = ω̄4 = 0 leaves one degree of freedom,
which can be resolved by requiring that the remaining motors
produce equal thrust, i.e. ω̄1 = ω̄3. The equilibrium can now
be solved for as follows:

f̄1 = f̄3 =
1

2
m ‖g‖ (22)

ω̄1 = ω̄3 = −

√
m ‖g‖
2κf

(23)

ω̄B =

(
0, 0,

κτm ‖g‖
γ

)
(24)

n̄ = (0, 0, 1) . (25)

For the two-propeller case, R̄ps = 0 and the vehicle will
be stationary at a point in space with its z axis pointing
vertically.

C. Solution with three lost propellers

Propellers 2, 3 and 4 are taken to have failed, again without
loss of generality, such that the system is fully constrained.
From (12) follows that one solution is for q̄ = n̄y = 0, and
then p̄ 6= 0 and thus n̄x 6= 0. The solution for a specific
vehicle is given in Section V.

IV. CONTROLLABILITY

It is shown below that the vehicle’s reduced attitude is
controllable near the equilibrium solutions of the preceding
section. This is done by exploiting the time invariant nature
of the attitude equilbria and linearising about them, and
examining the rank of the controllability matrix [22]. The
state vector s = (p, q, nx, ny) is introduced to describe the
vehicle’s reduced attitude, and the conditions under which
this reduced attitude is controllable are derived below for
the three different propeller loss cases discussed in this paper.
The actual design and implementation of a controller for a
specific vehicle is deferred until Section V. Given that the
total vehicle thrust can be specified, and that simultaneously
the direction of the vehicle’s thrust can be controlled, the
vehicle’s acceleration can be controlled (at least quasi-
statically) and thus also its position.

The attitude deviation from the equilibrium is written as
s̃ = s− s̄, and will evolve to first order as

˙̃s = As̃+Bu (26)

A =
∂ṡ

∂s

∣∣∣∣
s=s̄

=


0 ā 0 0
−ā 0 0 0
0 −n̄z 0 r̄
n̄z 0 −r̄ 0

 (27)

defining the coupling constant ā as

ā =
ITxx − ITzz
IBxx

r̄ − IPzz
IBxx

(ω̄1 + ω̄2 + ω̄3 + ω̄4) (28)

and introducing an input u, which enters the system through
the matrix B. The definition of B and u will be deferred to
the sections below, depending on the number of remaining
propellers.

A. Control with one lost propeller

With three propellers remaining, the input vector u =
(u1, u2) is introduced as a function of the deviations of the
actual motor forces from the equilibrium, with units of force

u1 =
(
f3 − f̄3

)
−
(
f1 − f̄1

)
(29)

u2 =
(
f2 − f̄2

)
. (30)

The remaining degree of freedom is resolved by specifying
that the total thrust matches the desired thrust:

f1 + f2 + f3 = f̄1 + f̄2 + f̄3. (31)

The system (26) is expanded to include these inputs as

˙̃s = As̃+B(3)u (32)

B(3) =
l

IBxx


0 1
1 0
0 0
0 0

 . (33)

Examining the rank of the controllability matrix
C(3) =

[
B(3) AB(3) A2B(3) A3B(3)

]
it is easy to

show that (32) is controllable if l 6= 0 and n̄z 6= 0.

B. Control with two lost propellers

Having lost two opposing propellers, the system has a
single input u1, defined as in (29), which is now added to
(26) to give

˙̃s = As̃+B(2)u (34)

B(2) =
l

IBxx


0
1
0
0

 . (35)

Again, the total thrust produced must match the commanded
thrust

f1 + f3 = f̄1 + f̄3. (36)

The two propeller system (34) is controllable if
C(2) =

[
B(2) AB(2) A2B(2) A3B(2)

]
has full rank, or

equivalently if the determinant of C(2) is non-zero, i.e.

ā r̄ n̄2
z (ā+ r̄)

2

(
l

IBxx

)4

6= 0. (37)

Combining this with (24), and assuming l 6= 0 this leaves

ā n̄2
z (ā+ r̄)

2 6= 0. (38)

Note that for the two-propeller case, by (25), nz = 1. Thus
the system is uncontrollable if ā = 0, or(

ITxx − ITzz
)
r̄ = 2IPzzω̄1 (39)

in which case the vehicle roll rate p is uncontrollable.
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If instead ā+ r̄ = 0, or(
ITxx + IBxx − ITzz

)
r̄ = 2IPzzω̄1 (40)

the linearised system has two uncontrollable modes corre-
sponding to p+ ānx and ny .

C. Control with three lost propellers

The description of the linearised attitude system when
using only a single propeller is the same as that for two
propellers (see Section IV-B) except that now f3 = 0
and ω3 = 0. The controllability requirement is then the
same as (37). Noting that n̄z = 0 is not a physically
meaningful possibility as the total force given by (18) would
then be undefined, the linearised quadrocopter attitude is not
controllable with a single propeller if either of the two below
equalities hold: (

ITzz − ITxx
)
r̄ = IPzzω̄1 (41)(

ITzz − ITxx − IBxx
)
r̄ = IPzzω̄1. (42)

Note that in the one-propeller case the total thrust will vary
with u1 as this can not be specified as in (31) and (36).

V. VALIDATION

The preceding analysis is validated in experiment and
simulation in this section. A cascaded control design is
implemented for each case of a quadrocopter losing one,
two opposing, or three propellers, with a slow outer loop
controlling the vehicle’s position, and a fast inner loop
controlling the reduced attitude. An LQR controller [23] is
implemented in each case for the inner loop control.

A. Experimental platform

The work was validated using quadrocopters based on the
Ascending Technologies Hummingbird [24], in the Flying
Machine Arena [25], which will be referred to here simply
as “the quadrocopter”. The attitude controller of Section IV
is executed at 1000 Hz on board the vehicle, while the
translational controller presented below is executed at 50 Hz.

The quadrocopter’s inertia was measured by measuring its
period of oscillation when suspended around three different
axes, and was found to be ITxx = 3.2 × 10−3kg m2, ITzz =
5.5 × 10−3kg m2. The propeller inertia was estimated by
approximating the propeller and motor rotor as disks and
cylinders, respectively, to get IPzz = 1.5 × 10−5kg mm2,
while the other propeller inertia was neglected IPxx = 0. The
vehicle’s mass was measured to be 0.50 kg, and the distance
from the centre of mass to the centre of the propellers is
l = 0.17 m.

The propellers used were characterised using a force-
torque sensor, and the thrust and reaction torque coeffi-
cients were estimated as κf = 6.41 × 10−6Ns2 /rad2 and
κτ = 1.69× 10−2Nm/ N, respectively. The propellers are
able to produce thrust forces in the range

fi ∈ [0.2, 3.8] N. (43)

The quadrocopter’s drag coefficient was estimated to be
γ = 2.75× 10−3N m s rad−1.

B. Translational controller

When using fewer than four propellers, only the direction
of the primary axis n is controlled, in contrast to the nominal
quadrocopter case where the full attitude R is controlled. The
direction of the primary axis, and the total thrust that the
vehicle produces, affect the vehicle acceleration through (1).
A cascaded control strategy is designed, with a fast inner
loop controlling the vehicle’s reduced attitude, and a slow
outer loop controlling the vehicle’s position.

The translational deviation of the quadrocopter from a
desired point in space is written as d. The goal of the
translational controller is to make this deviation behave like
a second-order system, with damping ratio ζ and natural
frequency ωn, by introducing the desired acceleration d̈des
such that

d̈des + 2ζωnḋ+ ω2
nd = 0. (44)

The damping ratio was set to ζ = 0.7, and ωn was chosen for
each of the cases such that the translational system responds
much slower than the attitude system. The direction of the
instantaneously desired direction of the primary axis ndes,
and the total thrust produced fΣ, are defined as

ndesn̄zfΣ = mR−1
(
d̈des − g

)
(45)

fΣ = f1 + f2 + f3 + f4. (46)

This can be easily adapted, so that the horizontal and
vertical degrees of freedom have different natural frequen-
cies/damping ratios.

The fast inner controller, as described in Section IV, must
then make the vehicle’s primary axis align with ndes while
producing a total thrust fΣ. Note that for d̈des = 0, the
solutions of Section III are recovered.

C. Motor time constants

It was found in experiment that the motor dynamics have a
large influence on the system behaviour. For this reason, the
reduced attitude system (26) of Section IV was extended as
follows. The currently produced force deviations were added
as states, each tracking its respective command as a first order
system with time constant σmot. Thus the linearised system
for i propellers now becomes

ṡe = Aese +B(i)eue (47)

Ae =

[
A B(i)

0 −σ−1
mot1

]
(48)

Be =

[
0

σ−1
mot1

]
(49)

with 0 and 1 being zero and identity matrices of the
appropriate dimension, respectively.

The time constant for the quadrocopter was estimated to
be σmot = 0.015 s.

D. Implementation for one lost propeller

The equilibrium for the quadrocopter with three pro-
pellers for different values of ρ = f̄2/f̄1 is investigated
in Fig. 3. The absolute body rate has a minimum of

49



Fig. 3. The equilibrium state for the quadrocopter when using three
propellers, as a function of the ratio ρ = f̄2/f̄1, showing from top to bottom
the angular velocity, the direction of the primary axis, the thrust forces and
the radius of the horizontal motion. Note that by design f̄3 = f̄1. As the
force f̄2 increases, it can be seen that the primary axis n̄ of the vehicle
initially moves farther away from the body z axis, while the resultant pitch
rate q̄ increases. Note the discontinuity at ρ = 2, when r̄ = n̄z = 0, and
after which the sense of rotation reverses. At ρ = 0 the solution is that of
the two-propeller case, while for large ρ the solution approaches that of the
single propeller case.

∥∥ω̄B∥∥ = 19.0 rad s−1 at ρ = 0.655, while the propeller force
f̄1 has a minimum in the region ρ ∈ [0, 2] of f̄1 = 2.04 N
at ρ = 0.563, with both minima being shallow. A value
of ρ = 0.5 was chosen for the implementation, placing
all steady-state thrust forces some distance away from the
saturation values (43). In this case, the attitude equilibrium
values are

f̄1 = f̄3 = 2.05 N, f̄3 = 1.02 N (50)

ω̄B = (0, 5.69, 18.89) rad s−1 (51)
n̄ = (0, 0.289, 0.958) (52)

R̄ps = 8 mm. (53)

An LQR controller was designed on the extended system,
with a diagonal state and input cost matrices, with the cost
value of 1 s2 rad−2 on the angular rates, 20 on the deviation
from the primary axis, zero on the extended motor states,
and 1 N−2 on the inputs. The translational controller natural
frequency was set to ωn = 1 rad s−1.

The resulting controller was implemented on the system,
and results are shown in Fig. 4 for a quadrocopter starting at
hover at a height of 2 m. At time 0, the fourth propeller
is disabled, and the vehicle initially uses only the two
opposing propellers to produce an angular velocity about
the z axis. Once this angular velocity exceeds 10 rad s−1,
the LQR controller is used to control the vehicle (at 0.62 s).
The control strategy stabilises the vehicle around the desired

Fig. 4. Experimental results for a quadrocopter at hover, with propeller 4
disabled at time 0. The first three plots show the two horizontal directions,
and the vertical. The desired position setpoint is shifted hoizontally by 1 m
after 7.7 s, and the height setpoint is set to zero after 19.8 s, and the vehicle
lands at 21.5 s. Initially, the vehicle only uses two opposing propellers to
build up angular momentum, and the controller is enabled when the vehicle
angular velocity exceeds 10 rad s−1 (at 0.62 s). The oscillatory motion of
the vehicle about the setpoint can be seen clearly on the top plot.

position, also when the position is shifted 1 m horizontally,
and also allows the vehicle to perform a soft landing.

When maintaining a position, the vehicle’s state is approx-
imately as below:

f1 = 2.2 N, f2 = 2.1 N, f3 = 0.8 N (54)

ωB = (2.1, 3.7, 13.7) rad s−1 (55)
n = (0.14, 0.26, 0.96) . (56)

Fig. 1 shows a quadrocopter in flight with one lost
propeller, and the video accompanying this paper shows a
quadrocopter taking off despite the loss of one propeller,
translating 2 m horizontally, and then landing.

E. Implementation for two lost propellers

The equilibrium condition for the quadrocopter flying with
two opposing propellers with equal equilibrium thrusts is
calculated by (22) - (25) as

f̄1 = f̄3 = 2.45 N (57)

ω̄1 = ω̄3 = −619 rad s−1 (58)

ω̄B = (0, 0, 30.1) rad s−1 (59)

Again, an LQR controller was designed on the extended
two-propeller system, with a diagonal state and input cost
matrices, with the cost value of 0 on the angular rates,
1000 on the deviation from the primary axis along x, 2
on the deviation from the primary axis along y, zero on
the extended motor states, and 0.75 N−2 on the inputs. The
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Fig. 5. Experimental results for a quadrocopter flying with only two
propellers. The quadrocopters starts at rest, on the ground, at time zero.
After 5.6 s the horizontal setpoint is shifted by 1 m. Note that the vehicle
does not reach the desired height, and has a height error of approximately
2.4 m.

translational controller was left as for the single propeller
loss case: ωn = 1 rad s−1.

The resulting controller was implemented on the system,
and results are shown in Fig. 5 for a quadrocopter taking
off from the ground with only two propellers. After 5.6 s,
the horizontal setpoint is shifted by 1 m. Notable is that
the vehicle has a large steady-state offset in the height,
indicating that the propellers produce significantly less thrust
than expected when the body is rotating at high angular
velocities. In practise, this could be solved by implementing
an integral controller on the vehicle height, or by more
accurately modelling the behaviour of the propellers when
rotating. When maintaining a position, the following states
were measured:

f1 = 2.98 N, f3 = 3.10 N (60)

ωB = (0.22,−0.72, 27.1) rad s−1. (61)

A quadrocopter taking off with two propellers, translating
two metres horizontally, and then landing can be seen in the
accompanying video.

F. Implementation for three lost propellers

When utilising only a single propeller, the equilibrium
condition was calculated as

f̄1 = 5.37 N, ω̄1 = −915 rad s−1 (62)

ω̄B = (14.7, 0, 33.0) rad s−1 (63)
n̄ = (0.41, 0, 0.91) . (64)

Because the required force f̄1 exceeds the thrust limits
(43) this equilibrium could not be implemented on the

Fig. 6. Nonlinear simulation results for a quadrocopter flying with only one
propeller. The simulation is started with the vehicle at the reduced attitude
solution of Section III-C, but with a 1 m offset both in the horizontal and
vertical directions. The controller successfully reduces the horizontal error,
but a vertical offset of 0.75 m remains. Note that the maximum producible
thrust in this simulation was set to double that of the true system.

quadrocopter. Furthermore, when starting from a hover, a
vehicle losing propellers 2, 3 and 4 will have a much stronger
tendency to accelerate about the y axis than the z axis
(because l� κτ ). This implies that it is non-trivial to bring
a vehicle from a stationary state to a state sufficiently close
to equilibrium for a linear control strategy to be effective.

A nonlinear simulation was used to validate the single
propeller case. The simulator implemented the dynamic
equations of Section II with the properties of the quadro-
copters as given above, except that the maximum thrust force
limit was doubled to 7.6 N. In the simulation, the simulated
motor speeds track the commanded speeds as first order
systems with time constant 0.015 s.

The LQR controller was designed with a cost of 1 s2rad−2

on the angular rates, 100 on the attitude deviations, zero on
the extended motor state, and 4 N−2 on the input. The trans-
lational controller was parametrised with ωn = 0.5 rad s−1.

The simulation was started with the vehicle’s attitude at
the periodic solution, but with a 1 m horizontal error, and
a 1 m vertical error. The results are shown in Fig. 6 – the
vehicle is brought to the correct horizontal position, but the
vehicle height shows a steady state offset of approximately
0.75 m.

G. Discussion

The implemented two-propeller solution uses only slightly
more thrust per propeller than the three propeller solution,
but has significantly less total thrust at the periodic solution
(due to using only two propellers, and having n̄z = 1) and
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could thus be expected to be more energy efficient. However,
the three propeller case has two independent inputs on the
attitude system compared to one independent input for the
two-propeller case – the attached video shows a close-up
of the two cases, and it can be clearly seen that the three-
propeller solution remains closer to the setpoint than the
two-propeller solution. This effect can also be seen when
comparing Fig. 4 and Fig. 5. A future topic of research
will be to quantify the sensitivity of the system to noise
for different values of ρ.

VI. OUTLOOK

This paper presents equilibrium states and controllers that
allow a quadrocopter to maintain a position in space after
losing one, two (opposing), or three propellers. The strategy
in each case is to have the vehicle rotate freely about an axis,
fixed with respect to the body. The remaining motor forces
are then used to rotate this axis in inertial space, which allows
the vehicle to translate in space when combined with the
total thrust produced. A cascaded control scheme exploiting
time scale separation was used to control the translation. The
strategy is implemented and validated with data gathered by
experiment for the cases of losing a single and two opposing
propellers, while the case of losing three propellers was
validated in a nonlinear simulation.

In future work, the authors intend to more accurately
characterise the vehicle, specifically the aerodynamic effects
affecting the propellers, and to construct a flying single
propeller vehicle. The authors also intend to implement
the presented results with a fault detection scheme, and
investigate different switching strategies for transitioning
from e.g. four propellers to three.
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