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The role played by parallelism in the theory of computation depends
on the particular paradigm or computational environment considered,
but its importance has been confirmed with the emergence of each
novel computing technology. In this paper we study the implications
of parallelism in quantum information theory and show that a parallel
approach can make the difference between success and failure when
trying to distinguish among (entangled) quantum states. A (perhaps
surprising) consequence of this fact is the impossibility of constructing
a Universal Computer, as defined herein.
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1 INTRODUCTION

Parallel computing was originally motivated by the need to speed up
computation, especially for those tasks whose sequential running time is
prohibitively long. This traditional view of the role played by parallelism
in computation has since evolved dramatically, with implications almost
impossible to foresee when the field originated.

We know today that there are tasks and computational paradigms for
which a parallel approach offers much more than just a faster solution. A
real-time environment, constraining the input data provided and the output
produced at various moments in time, can have drastic effects on the
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quality of the solution obtained for a certain problem, unless parallelism is
employed [12,14]. A general framework is developed in [3] to show how
a superlinear (with respect to the number of processors employed in the
parallel approach) improvement in the quality of the solution computed to
a real-time problem can be obtained.

In other cases, a sequential machine fails to tackle a certain task altogether,
and parallelism is the only hope to see that task accomplished. Examples
of this kind include measuring the parameters of a dynamical system [1] or
setting them in such a way as to avoid pushing the system into a chaotic
behavior [5]. Also, some geometric transformations can only be performed
successfully if we act simultaneously on a certain number of objects [2].

Progress in science and technology influences the way computations are
carriedandtheemergenceofnovelcomputationalenvironmentsandparadigms
continually broadens the applicability and importance of parallelism. In this
paper we exhibit an example of a problem from quantum information theory
that clearly emphasizes the role of parallelism in this relatively new field of
computation governed by the principles of quantummechanics. The example
we present also reinforces the argument developed in [4] demonstrating
the infeasibility of a Universal Computer obeying certain conditions.

The remainder of the paper is organized as follows. The next section
is intended to make the reader familiar with the fundamental notions of
quantum computation. Section 3 introduces the problem of distinguishing
quantum states and analyzes the instance defined by the four Bell states.
A generalization to an arbitrary number of qubits entangled together is
developed in section 4. Section 5 discusses the relevance of the problem
investigated, in the context of Universal Computation. The contributions of
this paper, stressing the importance of parallelism for quantummeasurements
and the consequences concerning the concept of a Universal Computer are
summarized in the last section. We also mention a possible continuation
of this work, with interesting implications.

2 FUNDAMENTALS OF QUANTUM COMPUTATION
AND QUANTUM INFORMATION

This section introduces the basic elements of quantum computation and
quantum information to the extent needed for a clear exposition of the
main ideas presented in this paper. For a detailed survey of the field the
reader is referred to [13].

Quantum information theory was developed much in analogy with
classical information theory, enlarging the scope of the latter. Thus, quantum
information theory deals with all the static resources and dynamical processes
investigated by classical information theory, as well as additional static and
dynamic elements that are specific to quantum mechanics.
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2.1 The qubit
Probably, the most fundamental quantum resource manipulated by quantum
information theory is the quantum analogue of the classical bit, called the
qubit.

Though it may have various physical realizations, as a mathematical
object the qubit is a unit vector in a two-dimensional state space, for which
a particular orthonormal basis, denoted by{|0〉, |1〉} has been fixed. The
basis vectors correspond to the two possible values a classical bit can take.
However, unlike classical bits, a qubit can also take many other values. In
general, an arbitrary qubit|ψ〉 can be written as a linear combination of
the computational basis states:

|ψ〉 = α|0〉 + β|1〉, (1)

where α and β are complex numbers such that|α|2 + |β|2 = 1 (the
normalization condition ensuring that|ψ〉 is a unit vector). In order to
describe the state of a qubit or ensemble of qubits in a compact way, we have
adopted here the well-establishedbra/ketnotation introduced by Dirac [9].

For a single qubit, there is a very intuitive geometric representation of its
state as a point on a sphere. Takingα = eiγ cos(θ/2) andβ = eiγ eiϕ sin(θ/2)
in equation (1), we can rewrite the state of qubit|ψ〉 as

|ψ〉 = eiγ (cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉), (2)

where θ , ϕ and γ are real numbers. Note that this is always possible
since |α|2 + |β|2 = 1. Also, because a global phase factor likeeiγ has no
observable effects (i.e. it does not influence the statistics of measurement
predicted for qubit|ψ〉), we can effectively ignore it. Consequently, the
pair (θ, ϕ) uniquely identifies a point (cosϕ sinθ, sinϕ sinθ, cosθ ) on a
unit three-dimensional sphere called theBloch sphere[15,19].

Figure 1 depicts four possible states of a qubit using the Bloch sphere
representation. Note that the states corresponding to the points on the
equatorial circle have all equal contributions of 0-ness and 1-ness. What
distinguishes them is thephase. For example, the two states displayed
above, 1/

√
2(|0〉 + |1〉) and 1/

√
2(|0〉 − |1〉) are the same up to a relative

phase shift ofπ , because the|0〉 amplitudes are identical and the|1〉
amplitudes differ only by a relative phase factor ofeiπ = −1.

2.2 Measurements
We now turn our attention to the amount of information that can be stored
in a qubit and, respectively, retrieved from a qubit. Since any point on
the Bloch sphere can be characterized by a pair of real-valued parameters
taking continuous values, it follows that, theoretically, a qubit could hold an
infinite amount of information. As it turns out, however, we cannot extract
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FIGURE 1
The Bloch sphere representation of a qubit.

more information from such a qubit than we are able to extract from a
classical bit. The reason is that we have tomeasurethe qubit in order to
determine in which state it is. Yet, according to a fundamental postulate of
quantum mechanics (Postulate 3 in [15]), the amount of information that
can be gained about a quantum state through measurement is restricted.
Thus, when we measure a qubit|ψ〉 = α|0〉 + β|1〉 with respect to the
standard basis for quantum computation{|0〉, |1〉}, we get either the result
0 with probability |α|2, or the result 1 with probability|β|2.

Furthermore, measurement alters the state of a qubit, collapsing it from
its superposition of|0〉 and |1〉 to the specific state consistent with the
result of the measurement. For example, if we observe|ψ〉 to be in state
|0〉 through measurement, then the post-measurement state of the qubit will
be |0〉, and any subsequent measurements (in the same basis) will yield 0
with probability 1.

Naturally, measurements in bases other than the computational basis
are always possible, but this will not help us in determiningα and β
from a single measurement. In general, measurement of a state transforms
the state into one of the measuring device’s associated basis vectors. The
probability that the state is measured as basis vector|u〉 is the square of
the norm of the amplitude of the component of the original state in the
direction of the basis vector|u〉. Unless the basis is explicitly stated, we
will always assume that a measurement is performed with respect to the
standard basis for quantum computation.
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2.3 Putting qubits together
Let us examine now more complex quantum systems, composed of multiple
qubits. In classical physics, individual two-dimensional state spaces ofn

particles combine through the Cartesian product to form a vector space of
2n dimensions, representing the state space of the ensemble ofn particles.
However, this is not how a quantum system can be described in terms
of its components. Quantum states combine through the tensor product to
give a resulting state space of 2n dimensions, for a system ofn qubits.

For a system of two qubits, each with basis{|0〉, |1〉}, the resulting
state space is the set of normalized vectors in the four dimensional space
spanned by basis vectors{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}, where
|x〉 ⊗ |y〉 denotes the tensor product between column vectors|x〉 and
|y〉. It is customary to write the basis in the more compact notation
{|00〉, |01〉, |10〉, |11〉}. This generalizes in the obvious way to ann-qubit
system with 2n basis vectors.

2.4 Entanglement
Similar to single qubits, multiple-qubit systems can also be in a superposition
state. The vector

|�〉 = 1√
2
|00〉 + 1√

2
|11〉 (3)

describes such a superposition state for a two-qubit system. But the state
|�〉 has a very interesting property. It is not possible to find complex
numbersα, β, γ and δ such that

(α|0〉 + β|1〉)⊗ (γ |0〉 + δ|1〉) =
= αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉
= 1√

2
|00〉 + 1√

2
|11〉 (4)

Consequently, the state of the system cannot be decomposed into a product
of the states of the constituents. Even though the state of the system is
well defined (through the state vector|�〉), neither of the two component
qubits is in a well-defined state. This is again in contrast to classical
systems, whose states can always be broken down into the individual states
of their components. Furthermore, if we try to measure the two qubits, the
superposition will collapse into one of the two basis vectors contributing to
the superposition, and the outcomes of the two measurements will always
coincide. Therefore, we say that the two qubits areentangled1 and |�〉
describes an entangled state of the system.

1 It was Schr̈odinger who actually named the phenomenonentanglementin 1935 [17].
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Entanglement defines the strong correlations exhibited by two or more
particles when they are measured, and which cannot be explained by
classical means. This does not imply that entangled particles will always
be observed in the same state, as entangled states like

1√
2
|01〉 ± 1√

2
|10〉 (5)

prove it. States like these or the one in equation (3) are known asBell
statesor EPR pairsafter some of the people [7,10] who pointed out their
strange properties.

3 QUANTUM DISTINGUISHABILITY

We introduce the problem of distinguishing quantum states through a
metaphor involving two prototypical characters, named Alice and Bob.
Suppose we have a fixed set of quantum states described using the usual Dirac
notation |�i〉 (1≤ i ≤ n) known to both Alice and Bob. Alice randomly
chooses a state from the set and prepares a qubit (or set of qubits) in that
particular state. She then gives the qubit(s) to Bob who is free to investigate
them in any way he likes. To be more specific, Bob can apply any kind
of measurement on the qubit(s) and possibly process and/or interpret the
information acquired through measurement. In the end, his task is to identify
the indexi of the state characterizing the qubit(s) Alice has given him.

The only case in which a set of quantum states can be reliably (that is,
100% of the time) distinguished from one another is if they are pairwise
orthogonal. For example, the four states|00〉, |01〉, |10〉 and |11〉 form an
orthonormal basis (each vector is a unit vector and distinct vectors have a
zero inner product) for the state space spanned by two qubits. Consequently,
they can be reliably distinguished by an appropriate measurement. In this
case, we can simply measure each qubit (sequentially) in the computational
basis (defined by the basis vectors|0〉 and |1〉).

On the other hand, it is impossible to reliably distinguish|0〉 from
1√
2
|0〉 + 1√

2
|1〉. While the first state will consistently yield a 0 upon

measurement, the second state also has a 50% chance to be observed as a
0. It is this component in the direction of the basis vector|0〉 which is
present in both quantum states that prevents us from distinguishing them
reliably. If the vectors describing the quantum states would be orthogonal,
then a measurement basis would exist with respect to which the quantum
states share no common components.

Consider now the case in which we try to distinguish among the four
Bell states 1√

2
|00〉 + 1√

2
|11〉, 1√

2
|00〉 − 1√

2
|11〉, 1√

2
|01〉 + 1√

2
|10〉, 1√

2
|01〉 −

1√
2
|10〉. No sequential approach (that is, measuring the qubits one after
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the other) will be of any help here, regardless of the basis in which the
measurements are performed. By measuring the two qubits, in sequence,
in the computational basis, Bob can distinguish the states1√

2
(|00〉 ± |11〉)

from 1√
2
(|01〉 ± |10〉). He does this by checking if the outcomes of the two

measurements are the same or not. But this kind of measurement makes it
impossible to differentiate between1√

2
(|00〉 + |11〉) and 1√

2
(|00〉 − |11〉),

or between 1√
2
(|01〉 + |10〉) and 1√

2
(|01〉 − |10〉).

Alternatively, Bob can decide to perform his measurements in a different
basis, like (|+〉, |−〉), where the basis vectors are

|+〉 = 1√
2
|0〉 + 1√

2
|1〉,

|−〉 = 1√
2
|0〉 − 1√

2
|1〉.

Due to the fact that

|00〉 + |11〉√
2

= | + +〉 + | − −〉√
2

and

|00〉 − |11〉√
2

= | + −〉 + | − +〉√
2

,

Bob can now reliably distinguish the quantum state1√
2
(|00〉 + |11〉) from

1√
2
(|00〉 − |11〉). Indeed, if the two qubits yield identical outcomes when

measured in this new basis, then we can assert with certainty that the state
was not 1√

2
(|00〉 − |11〉). Similarly, if the measurement outcomes for the

qubits are different, the original state could not have been1√
2
(|00〉 + |11〉).

Unfortunately, in this new setup, the quantum states1√
2
(|00〉 + |11〉) and

1√
2
(|01〉 + |10〉) become indistinguishable and the same is true about

1√
2
(|00〉 − |11〉) and 1√

2
(|01〉 − |10〉).

The computational bases (|0〉, |1〉) and (|+〉, |−〉) are, respectively, the
two extremities of an (theoretically) infinite number of choices for the basis
relative to which the quantum measurements are to be performed. But even
though the separation line between the four Bell states will drift with the
choice of the basis vectors, the two extreme cases discussed above offer
the best possible distinguishability.

Intuitively, this is due to the entanglement exhibited between the two
qubits in all four states. As soon as the first qubit is measured (regardless
of the basis), the superposition describing the entangled state collapses to
the specific state consistent with the measurement result. In this process,
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some of the information originally encapsulated in the entangled state is
irremediably lost. Consequently, measuring the second qubit cannot give a
complete separation of the four EPR states. But the Bell states do form
an orthonormal basis, which means that (at least theoretically) they can
be distinguished by an appropriate quantum measurement. However, this
measurement must be ajoint measurement of both qubits simultaneously,
in order to achieve the desired distinguishability. Not surprisingly, this is
very difficult to accomplish in practice.

The distinguishability of the four Bell (or EPR) states is the key feature in
achieving superdense coding [8]. However, in the experimental demonstration
of this protocol [11] two of the possibilities cannot be distinguished from one
another, precisely because of the difficulties associated with implementing
a joint measurement.

4 GENERALIZATION

A more compact representation of the Bell basis is through a square matrix
where each column is a vector describing one of the Bell states:

1√
2



1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1




The elements of each column are the amplitudes or proportions in which
the computational basis states|00〉, |01〉, |10〉 and |11〉 are present in the
respective EPR state.

This scenario can be extended to ensembles of more than two qubits.
The following matrix describes eight different entangled states that cannot
be reliably distinguished unless a joint measurement of all three qubits
involved is performed:

1√
2




1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1




In general, for a quantum system composed ofn qubits, one can define
the following 2n entangled states of the system:
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1√
2
(|000· · ·0〉 ± |111· · ·1〉)

1√
2
(|000· · ·1〉 ± |111· · ·0〉)

...
1√
2
(|011· · ·1〉 ± |100· · ·0〉) (6)

These vectors form an orthonormal basis for the state space corresponding
to then-qubit system. The only chance to differentiate among these 2n states
using quantum measurement(s) is to observe then qubits simultaneously,
that is, perform a single joint measurement of the entire system. In the
given context,joint is really just a synonym forparallel. Indeed, the device
in charge of performing the joint measurement must posses the ability
to “read” the information stored in each qubit, in parallel, in a perfectly
synchronized manner. In this sense, at an abstract level, the measuring
apparatus can be viewed as havingn probes. With all probes operating in
parallel, each probe can “peek” inside the state of one qubit, in a perfectly
synchronous operation. The information gathered by then probes is seen
by the measuring device as a single, indivisible chunk of data, which is
then interpreted to give one the 2n entangled states as the measurement
outcome.

From a mathematical (theoretical) point of view, such a measurement
operator can be easily constructed by defining each of the 2n states that
are to be distinguished to be a projector associated with the measurement
operation. We are well aware though, that a physical realization of this
mathematical construction is extremely difficult, if not impossible to achieve
in practice, with today’s technology. The experimental demonstration of
the superdense coding protocol mentioned at the end of previous section
clearly shows this difficulty (for just two qubits!). Yet, if there is any hope
to see a joint measurement performed in the future, then only a device
operating in a parallel synchronous fashion on alln qubits (as explained
above) would succeed.

It is perhaps worth emphasizing that if such a measurement cannot
be applied then the desired distinguishability can no longer be achieved
regardless of how many other measuring operations we are allowed to
perform. In other words, even an infinite sequence of measurements touching
at mostn− 1 qubits at the same time cannot equal a single joint measurement
involving all n qubits.

Furthermore, with respect to the particular distinguishability problem that
we have to solve, a single joint measurement capable of observingn− 1



0031(Nagy) International Journal of Unconventional Computing October 11, 2005 16:3

82 Nagy and Akl

qubits simultaneously offers no advantage whatsoever over a sequence of
n− 1 consecutivesingle qubit measurements. This is due to the fact that
an entangled state like

1√
2
(|000· · ·0〉 + |111· · ·1〉)

cannot be decomposed neither as a product ofn− 1 individual states nor
as a product of two states (one describing a single qubit and the other
describing the subsystem composed of the remainingn− 1 qubits). Any
other intermediate decomposition is also impossible.

Overall, our distinguishability problem can only be tackled successfully
within a parallel approach, where we can measure all qubits simultaneously.
In this sense, distinguishing among entangled quantum states can be viewed
as a quantum variant of the measure-compute-set problem formulated in
[1], which also admits only a parallel solution.

5 UNIVERSAL COMPUTATION

Finally, we relate the example presented in this paper with the hypothetical
notion of a Universal Computer, introduced in [4]. Such a machine must
be able to follow (execute) the steps of any program made up of basic
input, output and internal processing operations. The Universal Computer is
intended to be themost general possiblemodel of computation, encompassing
all existing or imagined computational paradigms. Specifically, its internal
processing capabilities include (but are not limited to) basic arithmetic and
logical operations, unitary quantum gates, operations specific to DNA and
natural computing, etc. It must also have a means of communicating with
the outside world at any time during a computation, either for receiving
input or producing output (results). The machine is endowed with the ability
to acquire input data through measurements on outside-world systems,
performed by a set of probes (or sensors). The program, the input data
(either received or acquired), the output and all intermediate results are
stored in (and can be retrieved from) a memory which is generously allowed
to be unlimited.

To make this Universal Computer a “realistic” model of computation,
it is subjected to thefiniteness condition: In one step, requiring one time
unit, the Universal Computer can execute a finite and fixed number of basic
operations (including measurements). It is precisely this limitation (quite
natural and reasonable) that makes theUniversal Computer a utopian concept.
Specifically, three classes of computable functionsF are described in [4],
which cannot be computed by any machine obeying the finiteness condition.

One of these classes of problems involves measuring a set of interacting
variables. Formally, suppose there aren variablesx0, x1, · · ·, xn−1. Although
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these variables may represent the parameters of a physical or biological
system, the following formalism is abstracted away from any particular
realization and does not necessarily describe the dynamics of a quantum
system. The dependence of each variable on all others induces the system
to continually evolve until a state of equilibrium may eventually be reached.
In the absence of any external perturbations, the system can remain in a
stable state indefinitely. We can model the interdependence between then

variables through a set of functions, as follows:

x0(t + 1)= f0(x0(t), x1(t), . . . , xn−1(t))

x1(t + 1)= f1(x0(t), x1(t), . . . , xn−1(t))
...

xn−1(t + 1)= fn−1(x0(t), x1(t), . . . , xn−1(t)) (7)

This system of equations describes the evolution of the system from state
(x0(t), x1(t), . . . , xn−1(t)) to state (x0(t + 1), x1(t + 1), . . . , xn−1(t + 1)), one
time unit later. In the case where the system has reached equilibrium,
its parameters will not change over time. It is important to emphasize
that, in most cases, the dynamics of the system are very complex, so the
mathematical description of functionsf0, f1, . . . , fn−1 is either not known
to us or we only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure
its parameters in order to compute a functionF , possibly a global property
of the system at equilibrium. In other words, we need the values of
x0(τ ), x1(τ ), . . . , xn−1(τ ) at momentτ , when the system is in a stable state,
in order to compute

F(x0(τ ), x1(τ ), . . . , xn−1(τ )).

We can try to estimate the value ofx0(τ ), for instance2, by measuring
the respective parameter at timeτ . Although, for some systems, we can
acquire the value ofx0(τ ) easily in this way, the consequences for the entire
system can be dramatic. Unfortunately, any measurement is an external
perturbation for the system, and in the process, the parameter subjected to
measurement may be affected unpredictably.

Thus, the measurement operation will change the state of the system
from (x0(τ ), x1(τ ), . . . , xn−1(τ )) to (x ′

0(τ ), x1(τ ), . . . , xn−1(τ )), wherex ′
0(τ )

denotes the value of variablex0 after measurement. In those cases where
the measurement process has a non-deterministic effect upon the variable
being measured, we cannot estimatex ′

0(τ ) in any way. But, regardless of

2The choice ofx0 here is arbitrary. The argument remains the same regardless of which of
the n parameters we choose to measure first.
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the particular instance of the model, the transition from (x0(τ ), x1(τ ), . . . ,
xn−1(τ )) (that is, the state before measurement) to (x ′

0(τ ), x1(τ ), . . . , xn−1(τ ))
(that is, the state after measurement) does not correspond to the normal
evolution of the system according to its dynamics described by functions
fi , 0≤ i < n.

However, because the equilibrium state was perturbed by themeasurement
operation, the system will react with a series of state transformations,
governed by equations (7). Thus, at each time step afterτ , the parameters
of the system will evolve either towards a new equilibrium state or maybe
fall into a chaotic behavior. In any case, at timeτ + 1, all n variables have
acquired new values, according to the expressions of functionsfi :

x0(τ + 1)= f0(x
′
0(τ ), x1(τ ), . . . , xn−1(τ ))

x1(τ + 1)= f1(x
′
0(τ ), x1(τ ), . . . , xn−1(τ ))

...

xn−1(τ + 1)= fn−1(x
′
0(τ ), x1(τ ), . . . , xn−1(τ )) (8)

Consequently, unless we are able to measure alln variables, in parallel, at
time τ , some of the values composing the equilibrium state

(x0(τ ), x1(τ ), . . . , xn−1(τ ))

will be lost without any possibility of recovery.
The finiteness condition restricts in this case the number of variables

that can be measured in parallel. So, if the Universal Computer is able
to measuren variables in parallel (that is, during one step), wheren can
be arbitrarily large, but finite, then the Universal Computer will fail to
solve the same problem for a system involvingn+ 1 variables. In other
words, the Universal Computer cannot simulate a computation that is
perfectly possible for another machine. However, it is exactly the principle
of simulation that lies at the heart ofuniversality.

Choosing a machine endowed withn+ 1 probes (and therefore capable
of measuringn+ 1 variables in parallel) as the Universal Computer is not
a solution. By an adversary argument, we can construct an instance of the
above problem, only this time involvingn+ 2 parameters to be measured,
and the Universal Computer will fail once again to compute the required
functionF , although it can be trivially computed by a machine withn+ 2
probes. This argument is valid forany given Universal Computer, having
a fixed (and finite) number of probes and therefore a limited degree of
parallelism to tackle such inherently parallel tasks.

It is important to emphasize that the computational paradigm to which
the above setting belongs is not a conventional one. The input data necessary
to computeF is not available at the outset and have to be acquired through
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measurement operations. Perhaps some readers may object to labeling
the process of obtaining the necessary information ascomputation. They
may be accustomed to seeing computation from the conventional point
of view (like, for example, performing a basic arithmetic operation on a
pair of numbers). However, the qualitatively new ways of manipulating
information nowadays is forcing us to challenge the limitations of the
classical computational paradigm and adopt a broader perspective (often
called unconventionalor non-classical) on computation [18].

From this new perspective, a computing machine is seen as an open
system whose output depends on the interaction with its environment, a
system capable of taking on new information (either communicated to
it by an external agent or acquired directly through measurements). The
emergence of this new model of computation is motivated by applications
as diverse as data acquisition in signal processing [16] and the control of
nuclear power plants [6]. Furthermore, such a computational paradigm can
be realized through various physical means including, of course, a quantum
mechanical one.

Coming back to the example presented in this paper, it is easy to see that
a device capable of measuring at mostn qubits simultaneously (wheren is a
fixed, finite number) will fail to solve the distinguishability problem forn+ 1
qubits. Our example, taken from the quantum information area is similar in
nature with the interacting variables example formalized above and supports
the idea advanced in [4] about the impossibility of realizing the concept of
a Universal Computer. In the case that we have described, interdependence
between variables takes the form of entanglement between qubits, the
phenomenonultimately responsible formakingaparallel approach imperative.

6 CONCLUSIONS

We have exhibited an example of a task which cannot be successfully
completed unless a parallel approach is employed. The task is to distinguish
among the elements of a set of quantum states, using any quantum
measurements that can be theoretically applied. There are no restrictions
concerning the number of measurements allowed or the time when the task
has to be completed. We have shown that there exists a set of entangled
states, forming an orthonormal basis in the state space spanned byn qubits,
for which only ajointmeasurement (in that respective basis) of all the qubits
composing the system can achieve perfect distinguishability. An important
characteristic of the task is that if the degree of parallelism necessary to
successfully solve the problem is not available, then the solution is no
better than a purely sequential approach. Such inherently parallel tasks
have been shown to exist in a variety of environments, namely, real-time
systems [3], dynamical systems [1,5] and geometric problems [2].
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In this paper, we have shown that parallelism is equally important
for yet another computational paradigm, essentially different from the
classical theory of computation, namely quantum computation and quantum
information. It is important to note that we refer here to the common
understanding of the termparallelismand not toquantum parallelism. The
latter syntagm is used to denote the ability to perform a certain computation
simultaneously on all terms of a quantum superposition, regardless of the
number of qubits composing the quantum register whose state is described by
that superposition. As opposed to this interpretation, we refer to parallelism
as the ability to act simultaneously on a certain number of qubits. Thus,
we can rightfully assert that parallelism transcends the laws of physics and
represents a fundamental aspect of computation, regardless of the particular
physical way chosen to embody information.

The second contribution of the paper addresses the notion of a Universal
Computer obeying the finiteness condition [4]. Distinguishing among
entangled quantum states is, conceptually, a quantum example of measuring
interdependent variables. This problem, arising in quantum information
theory, strengthens the conclusion that there is nofinite3 computing device
(conventional or unconventional) upon which the attributeuniversalcan be
bestowed.

This result holds as long as the candidate Universal Computer cannot
apply its (internal) set of basic processing operations (“gates”) onto systems
from the outside world. In other words, its processing capabilities can
only be exercised on data already stored in its (internal) memory. For the
problem we have analyzed in this paper, all the input data on which the
machine can work must be acquired through measurement(s).

An interesting research hypothesis is to allow the computing device to
execute its program (set of operations) on systems belonging to the outside
world. Then, the machine could first apply a series of quantum gates
that changes the entangled basis ( 6) into the usual computational basis
for n qubits, that is{|i〉, 0 ≤ i ≤ 2n − 1}. Then, measuring each qubit in
sequence is enough to distinguish among the 2n states of the new basis.
Such a scenario may reveal an example of a problem that can only be
solved by a quantum computer and never by a classical one.

Distinguishing among entangled quantum states turns out to be of pivotal
importance in defining a whole class of information processing tasks that
clearly separates a quantum computer from a classical one, in terms of
computational power (function evaluation). The superiority of the quantum
machine is not given by its ability to perform quantum measurements, but
by the ability to process information (compute) at the quantum level.

3 in the sense introduced in [4] and briefly described in the previous section.
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There are cases in which this ability is mandatory in order to successfully
tackle problems involving non-determinism and entanglement, features that
are specific to quantum mechanics but not to classical physics. Therefore,
much in the same way the physical theory of quantum mechanics subsumes
classical physics as a particular case, the computational power of a quantum
computer is strictly greater than that of a classical computer. The way
information isphysically represented inacertainmodelofcomputationdirectly
determines its computational power, because information is intrinsically
physical and cannot be abstracted away from its physical support.
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