NUMER. FUNCT. ANAL. AND OPTIMIZ., 23(1&2), 61–67 (2002)

THE GREEN FUNCTIONS OF A CLASS OF BOUNDARY VALUE PROBLEMS AND THEIR TRACES

Ching-Hua Chang¹ and Chung-Wei Ha²

¹Department of Mathematics, Hualien Teachers College, Hualien, Taiwan E-mail: chchang@sparc2.nhltc.edu.tw ²Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan E-mail: cwha@math.nthu.edu.tw

ABSTRACT

Given $\alpha \in \mathbb{C} \setminus \{1\}$, for a fixed integer $n \ge 1$ the Green function of the two point boundary value problem $(-i)^n u^{(n)} = f$, $\alpha u^{(j)}(0) = u^{(j)}(1)$ $(0 \le j \le n-1)$ is constructed explicitly by means of the Eulerian polynomial $H_{n-1}(x|\alpha)$. If $|\alpha| = 1$, the eigenfunction expansion of the Green function is applied to obtain certain summation formulas in terms of the central factorial numbers.

2000 Mathematics Subject Classifications: 11B68; 34B27; 47G10

1. INTRODUCTION

Let $\alpha \in \mathbb{C} \setminus \{1\}$ be given. For a fixed integer $n \ge 1$, we consider the two point boundary value problem

$$(-i)^n u^{(n)} = f$$

$$\alpha u^{(j)}(0) = u^{(j)}(1) \quad (0 \le j \le n - 1)$$
(1)

62 CHANG AND HA

on [0, 1]. Obviously the homogeneous problem for (1) has only a trivial solution and hence the Green function $k_n(x, y|\alpha)$ for (1) exists (see, e.g., [8, p. 194]), so that for $f \in L^2[0, 1]$

$$u(x) = K_{\alpha}^{n} f(x) \equiv \int_{0}^{1} k_{n}(x, y|\alpha) f(y) dy$$
 (2)

is the unique solution to the Problem (1), where K_{α}^{n} denotes the integral operator with the kernel $k_{n}(x, y|\alpha)$.

The object of this paper is twofold. We first construct explicitly in §2 the Green function $k_n(x, y|\alpha)$ by means of the Eulerian polynomial $H_{n-1}(x|\alpha)$ introduced by Euler in 1755 (see, e.g., [3]). We then assume $|\alpha| = 1$ in §3, so that Problem (1) becomes self-adjoint. Applying the eigenfunction expansion of the Green function, certain summation formulas are obtained in terms of the central factorial numbers (see, e.g., [2]), extending a familiar identity which is the case n = 2.

Recent interest in (1) has come in [4] in connection with some sharp inequalities for the eigenvalues of integral operators with smooth kernels. We refer to [5] for an explicit formula of the Green function for the Problem (1) when $\alpha = 1$.

2. THE GREEN FUNCTIONS

Given $\alpha \in \mathbb{C} \setminus \{1\}$, let $H_n(x|\alpha)$ (n = 0, 1, 2, ...) be the polynomials in x defined by the generating function

$$\frac{1-\alpha}{e^t-\alpha}e^{xt} = \sum_{n=0}^{\infty} H_n(x|\alpha)\frac{t^n}{n!}$$

as in [3]. When $\alpha = -1$, $H_n(x|-1)$ are no other than the Euler polynomials $E_n(x)$ (see, e.g., [1, p. 804]). It is straightforward to verify that $H_n(x|\alpha)$ can be characterized by the properties

$$H_0(x|\alpha) \equiv 1,\tag{3}$$

$$\frac{d}{dx}H_{n+1}(x|\alpha) = (n+1)H_n(x|\alpha) \tag{4}$$

and the boundary condition

$$\alpha H_n(0|\alpha) = H_n(1|\alpha) \quad (n \ge 1)$$
 (5)

when restricting to the interval [0, 1]. It follows either directly from the generating function or from the Properties (3–5) that

$$H_n(1-x|\alpha) = (-1)^n H_n\left(x|\frac{1}{\alpha}\right),\tag{6}$$

which may serve as definition of $H_n(x|1/\alpha)$ for the case $\alpha = 0$.

One of the main results is the following:

Theorem 1. The Green function for the Problem (1) is

$$k_n(x, y | \alpha) = \frac{i^n}{\alpha - 1} \begin{cases} \alpha \frac{H_{n-1}(x - y | \alpha)}{(n-1)!} & \text{if } x > y \\ (-1)^{n-1} \frac{H_{n-1}(y - x | 1/\alpha)}{(n-1)!} & \text{if } x < y. \end{cases}$$

Proof. We shall verify directly that for $f \in L^2[0, 1]$, (2) gives indeed a solution u to (1). Now

$$u(x) = \frac{i^n}{\alpha - 1} \left[\alpha \int_0^x \frac{H_{n-1}(x - y | \alpha)}{(n-1)!} f(y) \, dy + (-1)^{n-1} \right] \times \int_x^1 \frac{H_{n-1}(y - x | 1/\alpha)}{(n-1)!} f(y) \, dy .$$

Differentiating j times for $1 \le j \le n-1$ and using (4) we have

$$(-i)^{n}u^{(j)}(x) = \frac{1}{\alpha - 1} \left[\alpha \frac{H_{n-j}(0|\alpha)}{(n-j)!} f(x) + (-1)^{n-j-1} \frac{H_{n-j}(0|1/\alpha)}{(n-j)!} f(x) \right]$$

$$+ \frac{1}{\alpha - 1} \left[\alpha \int_{0}^{x} \frac{H_{n-j-1}(x - y|\alpha)}{(n-j-1)!} f(y) \, dy \right]$$

$$+ (-1)^{n-j-1} \int_{x}^{1} \frac{H_{n-j-1}(y - x|1/\alpha)}{(n-j-1)!} f(y) \, dy \right],$$

where by (5) and (6) the term inside the first bracket vanishes. Moreover, it follows from (6) that

$$u^{(j)}(1) = \frac{i^n \alpha}{\alpha - 1} \int_0^1 \frac{H_{n-j-1}(1 - y | \alpha)}{(n - j - 1)!} f(y) \, dy = \alpha \, u^{(j)}(0).$$

Finally we have

$$(-i)^n u^{(n)}(x) = \frac{1}{\alpha - 1} [\alpha f(x) - f(x)] = f(x).$$

This completes the proof of the theorem.

64 CHANG AND HA

By the corresponding property of the boundary value problems in (1), we have for integers m, $n \ge 1$

$$K_{\alpha}^{m+n} = K_{\alpha}^{m} K_{\alpha}^{n} \tag{7}$$

as integral operators. In terms of the Green functions we obtain the following simple consequence of Theorem 1 (cf. [1, p. 805]).

Corollary. For integers $m, n \geq 0$,

$$H_{m+n+1}(0|\alpha) = \frac{(m+n+1)!}{m! \, n!} \frac{(-1)^m}{\alpha - 1} \int_0^1 H_m \left(z | \frac{1}{\alpha} \right) H_n(z|\alpha) \, dz.$$

3. SUMMATION FORMULAS

We fix an integer $n \ge 1$ and assume $\alpha \in \mathbb{C} \setminus \{1\}$ and $|\alpha| = 1$, so that the Problem (1) is selfadjoint. As is easily seen, the eigenvalues λ_m of (1) counting according to multiplicities, and the corresponding orthonormal eigenfunctions ϕ_m are given by

$$\lambda_m = (2\pi m + \beta)^n$$
 and $\phi_m(x) = e^{i(2\pi m + \beta)x}$ $(m = 0, \pm 1, \pm 2, ...),$

where

$$\alpha = e^{i\beta} = \cos \beta + i \sin \beta \quad (0 < \beta < 2\pi).$$

Since the eigenvalues of (1) are all nonzero, the eigenvalues of the integral operator K_{α}^{n} are precisely the reciprocals $1/\lambda_{m}$ of that of (1). Using the eigenfunction expansion of the kernel $k_{n}(x, y|\alpha)$ of K_{α}^{n} , we obtain the following series expansion.

Theorem 2. For an integer $n \ge 2$

$$\frac{\alpha}{\alpha-1}\frac{H_{n-1}(x|\alpha)}{(n-1)!} = (-i)^n \sum_{m=-\infty}^{\infty} \frac{1}{(2\pi m + \beta)^n} e^{i(2\pi m + \beta)x},$$

where the series converges absolutely and uniformly on [0, 1].

Proof. We first consider the case n = 2r $(r \ge 1)$ is even. Then the integral operator K_{α}^{2r} is positive definite as seen from (7) with a continuous kernel. It follows from Mercer Theorem (see, e.g., [8, p. 376]) that the kernel $k_{2r}(x, y|\alpha)$ of K_{α}^{2r} has the eigenfunction expansion

$$k_{2r}(x, y|\alpha) = \sum_{m=-\infty}^{\infty} \frac{1}{\lambda_m} \phi_m(x) \overline{\phi_m(y)},$$

where the series converges absolutely and uniformly on the square $[0, 1]^2$. Setting y = 0 we obtain

$$\frac{\alpha}{\alpha - 1} \frac{H_{2r-1}(x|\alpha)}{(2r-1)!} = (-1)^r \sum_{m=-\infty}^{\infty} \frac{1}{(2\pi m + \beta)^{2r}} e^{i(2\pi m + \beta)x},$$
 (8)

where the series converges absolutely and uniformly on [0, 1].

For the case n = 2r + 1 $(r \ge 1)$ is odd, we replace r by r + 1 in (8) and differentiate term by term. Then

$$\frac{\alpha}{\alpha - 1} \frac{H_{2r}(x|\alpha)}{(2r)!} = (-i)^{2r+1} \sum_{m = -\infty}^{\infty} \frac{1}{(2\pi m + \beta)^{2r+1}} e^{i(2\pi m + \beta)x}.$$
 (9)

This completes the proof of the theorem.

The values of the left hand sides of (8) and (9) at x = 0 can be evaluated in terms of the central factorial numbers. For this purpose we consider

$$R_n(\alpha) = (\alpha - 1)^n H_n(0|\alpha),$$

which is a polynomial of degree n-1 expressed by Euler in the powers of α with the integer coefficients known as the Eulerian numbers (see, e.g., [3]). Later Frobenius gave another expression for $R_n(\alpha)$ in the powers of $\alpha-1$ with the coefficients related to the Stirling numbers of the second kind (see, e.g., [7, p. 244]). Recently a new representation for $R_n(\alpha)$ is obtained in terms of the central factorial numbers T(2r, 2k) defined by

$$T(2r, 2k) = \frac{2}{(2k)!} \sum_{i=1}^{k} (-1)^{k-j} {2k \choose k-j} j^{2r}.$$

It has been shown in [6] that for $r \ge 1$,

$$R_{2r-1}(\alpha) = \sum_{k=1}^{r} (2k-1)! \alpha^{k-1} (\alpha-1)^{2r-2k} T(2r, 2k), \tag{10}$$

$$R_{2r}(\alpha) = (1+\alpha) \sum_{k=1}^{r} k(2k-1)! \alpha^{k-1} (\alpha-1)^{2r-2k} T(2r, 2k).$$
 (11)

We refer to [2] for an interesting exposition on central factorial numbers and a variety of their applications.

Finally we give the other main result in the following.

66 CHANG AND HA

Theorem 3. Let $r \ge 1$ be an integer. Then for $z \in \mathbb{C}$ not an integer

$$\frac{1}{(2\pi)^{2r}} \sum_{m=-\infty}^{\infty} \frac{1}{(z+m)^{2r}} = \frac{1}{(2r-1)!}$$

$$\times \sum_{k=1}^{r} (-1)^{r-k} \frac{(2k-1)!}{4^k \sin^{2k}(\pi z)} T(2r, 2k), \qquad (12)$$

$$\frac{1}{(2\pi)^{2r+1}} \sum_{m=-\infty}^{\infty} \frac{1}{(z+m)^{2r+1}} = \frac{\cot(\pi z)}{(2r)!}$$

$$\times \sum_{k=1}^{r} (-1)^{r-k} \frac{k(2k-1)!}{4^k \sin^{2k}(\pi z)} T(2r, 2k). \qquad (13)$$

Proof. Since both sides of (12) and (13) are meromorphic functions in $z \in \mathbb{C}$, it suffices to prove them for $z = (\beta/2\pi)$ ($0 < \beta < 2\pi$). Let $\alpha = e^{i\beta}$. Then

$$\alpha - 1 = 2ie^{i\beta/2}\sin(\beta/2)$$
 and $\alpha + 1 = 2e^{i\beta/2}\cos(\beta/2)$.

Moreover, we have by (10)

$$\frac{\alpha}{\alpha - 1} H_{2r-1}(0|\alpha) = \sum_{k=1}^{r} (-1)^k (2k - 1)! \frac{T(2r, 2k)}{4^k \sin^{2k}(\beta/2)}$$

and by (11)

$$\frac{\alpha}{\alpha - 1} H_{2r}(0|\alpha) = i \cot\left(\frac{\beta}{2}\right) \sum_{k=1}^{r} (-1)^{k-1} k(2k-1)! \frac{T(2r, 2k)}{4^k \sin^{2k}(\beta/2)}.$$

The equalities in (12) and (13) follow by setting x = 0 in (8) and (9).

For r = 1 (12) reduces to a familiar identity usually derived using the residue theory.

REFERENCES

- 1. Abramowitz, M.; Stegun, A. *Handbook of Mathematical Functions*. Appl. Math. Ser. 55, National Bureau of Standards: Washington D.C., 1972.
- 2. Butzer, P.L.; Schmidt, M.; Stark, E.L.; Vogt, L. Central Factorial Numbers: Their Main Properties and Some Applications. Numer. Funct. Anal. Optimiz. **1989**, *10*, 419–488.
- 3. Carlitz, L. Eulerian Numbers and Polynomials. Math. Mag. 1959, 32, 247–260.
- 4. Chang, C.H.; Ha, C.W. Sharp Inequalities of Singular Values of Smooth Kernels. Integral Equations Operator Theory 1999, *35*, 20–27.
- 5. Chang, C.H.; Ha, C.W. The Green Functions of Some Boundary Value Problems Via the Bernoulli and Euler Polynomials. Arch. Math. **2001**, *76*, 360–365.

- 6. Chang, C.H.; Ha, C.W. Eulerian Polynomials and Related Explicit Formulas. The Fibonacci Quarterly (to appear).
- 7. Comtet, L. Advanced Combinatorics. Reidel, Dordrecht and Boston, 1974.
- 8. Stakgold, I. *Green's Functions and Boundary Value Problems*. John Wiley & Sons: New York, 1979.