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ABSTRACT

Given « € C\ {1}, for a fixed integer n > 1 the Green function of the two
point boundary value problem (—i)"u" =1, au?(0)=u"(1) (0 </ <
n—1) is constructed explicitly by means of the Eulerian polynomial
H,_|(x|a). If |@| = 1, the eigenfunction expansion of the Green function
is applied to obtain certain summation formulas in terms of the central
factorial numbers.

2000 Mathematics Subject Classifications: 11B68; 34B27; 47G10

1. INTRODUCTION

Let o € C\ {1} be given. For a fixed integer n > 1, we consider the two
point boundary value problem

(i)' =1

au(0)=u(1) (0<j<n-1) W
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on [0, 1]. Obviously the homogeneous problem for (1) has only a trivial
solution and hence the Green function k,(x,y|la) for (1) exists (see, e.g.,
[8, p. 194]), so that for f € L0, 1]

1
um=MﬂwE£@mwwmw @)

is the unique solution to the Problem (1), where K] denotes the integral
operator with the kernel k,(x, y|a).

The object of this paper is twofold. We first construct explicitly in §2 the
Green function k,(x, y|la) by means of the Eulerian polynomial H,_;(x|&)
introduced by Euler in 1755 (see, e.g., [3]). We then assume || =1 in §3,
so that Problem (1) becomes self-adjoint. Applying the eigenfunction expan-
sion of the Green function, certain summation formulas are obtained in
terms of the central factorial numbers (see, e.g., [2]), extending a familiar
identity which is the case n = 2.

Recent interest in (1) has come in [4] in connection with some sharp
inequalities for the eigenvalues of integral operators with smooth kernels. We
refer to [5] for an explicit formula of the Green function for the Problem (1)
when « = 1.

2. THE GREEN FUNCTIONS

Given @ € C\ {1}, let H,(x|a) (n =0,1,2,...) be the polynomials in x
defined by the generating function

n

l—a ,, < t
¢ = ZHn(xW);
n=0 :

e —«o

as in [3]. When « = —1, H,(x| — 1) are no other than the Euler polynomials
E,(x) (see, e.g., [1, p. 804]). It is straightforward to verify that H,(x|«) can be
characterized by the properties

Hy(xla) = 1. @
&y (vle) = 0+ DH, (vl @

and the boundary condition

aH,Ola) = H,(1|le) (1= 1) )
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when restricting to the interval [0, 1]. It follows either directly from the gen-
erating function or from the Properties (3—5) that

H,(1 = xlo) = (~1)'H, (x| é) ©)

which may serve as definition of H,(x|1/a) for the case o = 0.
One of the main results is the following:

Theorem 1. The Green function for the Problem (1) is

o Hnor ¥ = V1) if x>

Ko, ) = —- " y
n(x,yle) = —— -t Ao 0=l /e) e
=1 '

Proof. We shall verify directly that for /" € L0, 1], (2) gives indeed a solution
u to (1). Now

0 = o [T a4
< A o ],
Differentiating / times for 1 <j <n— 1 and using (4) we have
(7 = [ O ) P |
oo [
=L o]

where by (5) and (6) the term inside the first bracket vanishes. Moreover, it
follows from (6) that

" 1
)y L@ Hn—"—l(l —yla) )
W) = 25 [ ) dy = aul0)

Finally we have

(—i)'u"(x) = — /() =[] =/ ).

This completes the proof of the theorem.
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By the corresponding property of the boundary value problems in (1),
we have for integers m, n > 1

Ko = KJK: ()
as integral operators. In terms of the Green functions we obtain the following
simple consequence of Theorem 1 (cf. [1, p. 805]).

Corollary. For integers m, n > 0,

m+n+ 1D (=D)" (!
m! n! a—1J

1
Hm+n+1(0|a) = H, (Zla)Hn(Zlol) dz.

3. SUMMATION FORMULAS

We fix an integer n > 1 and assume « € C\ {1}and |a| = 1, so that the
Problem (1) is selfadjoint. As is easily seen, the eigenvalues A, of (1) counting
according to multiplicities, and the corresponding orthonormal eigenfunc-
tions ¢,, are given by

A, =Qrm+B)" and ¢,,(x) =P (m=0, £1, £2,..)),
where
a=¢? =cosp+ising (0 < B <2n).

Since the eigenvalues of (1) are all nonzero, the eigenvalues of the integral
operator K are precisely the reciprocals 1/1,, of that of (1). Using the
eigenfunction expansion of the kernel k,(x, y|a) of K, we obtain the follow-
ing series expansion.

Theorem 2. For an integer n > 2

(04 Hn—l(x|a)_ N = 1 i(2em+p)x
T L G ’

where the series converges absolutely and uniformly on [0, 1].

Proof. We first consider the case n = 2r (r > 1) is even. Then the integral
operator K2 is positive definite as seen from (7) with a continuous kernel. It
follows from Mercer Theorem (see, e.g., [8, p. 376]) that the kernel k,,(x, y|a)
of K* has the eigenfunction expansion

o0

1 -
k2,.(x,y|oz) = Z k—d)m(x)(pm(y)s

m=—o0 "M
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where the series converges absolutely and uniformly on the square [0, 1]°.
Setting y = 0 we obtain

o H21 1(x|oz) l(2nm+ﬂ)x
a—1 2r— = ,,Zw(zn e ’ ®)

where the series converges absolutely and uniformly on [0, 1].
For the case n =2r+ 1 (r > 1) is odd, we replace r by r+ 1 in (8) and
differentiate term by term. Then

a Hy(xla) ICHERR 1 iQrm+B)x
2 (=i S — X, 9
a—1 () (=) m;oo Qam + B> ! 2

This completes the proof of the theorem.

The values of the left hand sides of (8) and (9) at x = 0 can be evaluated
in terms of the central factorial numbers. For this purpose we consider

Rn(a) = (Ol - l)an(O|O{),

which is a polynomial of degree n — 1 expressed by Euler in the powers of «
with the integer coefficients known as the Eulerian numbers (see, e.g., [3]).
Later Frobenius gave another expression for R,(«) in the powers of a — 1
with the coefficients related to the Stirling numbers of the second kind (see,
e.g., [7, p. 244]). Recently a new representation for R,(«) is obtained in terms
of the central factorial numbers 7'(2r, 2k) defined by

o 2k
T(2r,2k) = (Zk)|Z(—) f( J>]

It has been shown in [6] that for r > 1,

Ryi(e) = zr:(zk — Dl (o = 1T (2r, 2K), (10)
k=1
Ry(@) = (1 +a) Z k(2k — D Yo — D> T(2r, 2k). (11)
k=1

We refer to [2] for an interesting exposition on central factorial numbers and
a variety of their applications.
Finally we give the other main result in the following.
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Theorem 3. Let r > 1 be an integer. Then for z € C not an integer

o0

1 1 1
g Dy

m=—

XZ( 1y kL())T(z %),  (12)

1 > 1 __cot(mz)
(2n)2;'+1 Z (Z+m)2r+l - (2,,)!

m=—00

XZ( 1) kmm 2k). (13)

4k sin?* (7rz)
Proof. Since both sides of (12) and (13) are meromorphic functions in z € C,
it suffices to prove them for z = (8/27) (0 < B < 27). Let @ = ¢’. Then
a—1=2i"?sin(B/2) and «+1=2¢"7cos(8/2).

Moreover, we have by (10)

a N kg T(2r,2k)
00 = O

and by (11)

B i T(2r,2k)
(Ola) = zcot( )Z( D k(2k — )'—CSinzk(ﬂ/z)'

The equalities in (12) and (13) follow by setting x = 0 in (8) and (9).
For r =1 (12) reduces to a familiar identity usually derived using the
residue theory.
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