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A Methodology to Manage
System-level Uncertainty During
Conceptual Design
Current design decisions must be made while considering uncertainty in both models of
the design and inputs to the design. In most cases, high fidelity models are used with the
assumption that the resulting model uncertainties are insignificant to the decision making
process. This paper presents a methodology for managing uncertainty during system-
level conceptual design of complex multidisciplinary systems. This methodology is based
upon quantifying the information available in a set of observations of computationally
expensive subsystem models with more computationally efficient kriging models. By using
kriging models, the computational expense of a Monte Carlo simulation to assess the
impact of the sources of uncertainty on system-level performance parameters becomes
tractable. The use of a kriging model as an approximation to an original computer model
introduces model uncertainty, which is included as part of the methodology. The meth-
odology is demonstrated as a decision-making tool for the design of a satellite system.
�DOI: 10.1115/1.2204975�
1 Introduction
The conceptual design of complex multidisciplinary systems

requires the combination of information from many sources in
order to make decisions between technology choices and sizing of
subsystems �1�. The choice of a technology for a subsystem and
the parametric sizes for that technology results in a corresponding
performance measurement that is frequently estimated from a de-
terministic computer model �2�. Lewis and Mistree �3�, in their
review of the state of the art in multidisciplinary design optimiza-
tion, discuss how design decisions need to be made with limited
amounts of information, introducing uncertainty in all aspects of
the design of real systems. Uncertainty exists in design from both
a lack of knowledge about the specifications of the system and the
models used to measure system-level performance being imper-
fect estimates of reality. In deterministic approaches, these uncer-
tainties are ignored and not quantified. The need to include uncer-
tainties in design has led to the introduction of robust design, the
selection of a design that is insensitive to design uncertainties, and
reliability-based design optimization �RBDO�, the selection of a
design that satisfies system and subsystem constraints with a
specified probability.

The sources of uncertainty in a design can come from uncer-
tainty in �1� the parameters that control the design or the inputs to
the design �aleatoric� and �2� the models used to relate these in-
puts to system performance measurements �epistemic�. Parametric
uncertainties can include the uncertainty in a size in the system,
the cost of an item in the system, or the requirement on a perfor-
mance measurement of the system. The process of uncertainty
assessment quantifies the uncertainty in the system performance
by applying a probability distribution, such as normal, log-normal,
or uniform, to the uncertain parameters and propagating this un-
certainty through the system model.

The proposed methodology includes model uncertainty in its
uncertainty assessment and quantifies the impact of model uncer-
tainty along with input parameter uncertainty on the uncertainty of
the system performance measurements. This is achieved by using
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a collection of probabilistic kriging models to estimate the perfor-
mance of each subsystem. The kriging models are surrogates or
approximations of more computationally expensive computer
models �4�. The probabilistic nature of the kriging model is used
to quantify the uncertainty that results from using it as an approxi-
mation to the original model. Using separate models for the many
subsystem has two advantages: �1� it reduces the number of vari-
ables used as inputs to the kriging models and �2� it enables the
identification of the sources of uncertainty within the system dur-
ing sensitivity analysis �5�.

The use of a kriging model as a metamodel during design is
motivated by three factors. The first is its ability to reproduce
nonlinear response surfaces by capturing the trend information
across a surface in a manner similar to linear regression and by
quantifying the spatial correlation that exists between nearby
points in a manner similar to radial basis functions. The second is
the ability of kriging model parameters to be estimated using sta-
tistical techniques based upon the set of observations, allowing the
comparison of alternative forms of the kriging model to determine
the most appropriate form given the current set of observations.
The third motivating factor is its probabilistic model definition
that enables it to quantify model uncertainty. In most applications
of using a kriging model in design �6–11�, it is used as a deter-
ministic approximation of a computationally expensive model that
does not quantify the model uncertainty introduced into the sys-
tem by using an approximation to the original model. The proba-
bilistic version of the kriging model that is traditionally used in
geostatistics to simulate ore yield �12� or contamination level �13�
is used in this work to quantify model uncertainty in the system-
level uncertainty evaluation �14,15�.

This paper is divided into five sections, the second of which
provides background on the technical elements used in the meth-
odology. An overview of the proposed methodology follows in
Sec. 3. A case study on the uncertainty assessment and sensitivity
analysis of a satellite using the proposed methodology is in Sec. 4.
The paper finishes with some concluding remarks and future work
in Sec. 5.

2 Background of Methodology
The use of metamodels in the proposed methodology is moti-

vated by the idea that repeated evaluations of computationally

expensive subsystem models during engineering design can be
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minimized. The information present in subsystem models that is
used to make design decisions can be represented in a more com-
putationally efficient manner with metamodels. During engineer-
ing design, subsystem models are evaluated many times while the
design space is investigated to quantify the trade-offs that exist in
the design. These evaluations are frequently used to make the
current decision at hand, such as which direction to move the
design, and are then forgotten. By using a metamodel during the
investigation, all of the currently available observations are used
to approximate the response of the original subsystem model.

The uncertainty that is introduced by using a kriging model as
an approximation of the original computer model comes from two
sources. The first and most often the largest of the uncertainty
sources is the stochastic process that models the variation of the
observations from the underlying trend surface model. The second
source of uncertainty, and one that is seldom considered, is the
uncertainty that results from using estimated model parameters.
The estiamted model parameters are random variables. A Monte
Carlo simulation �MCS� that takes into account all of the sources
of uncertainty in the system—the uncertainty from the inputs to
the design and the uncertainty that comes from using estimates of
the model parameters—should be performed. Including all of
these random variables in a MCS could potentially require the
random sampling of a large number of random variables.

This proposed methodology simplifies the MCS by reducing the
number of random variables that must be sampled. By sampling
from the output distribution of the kriging model, using the best
estimated of the kriging model parameters it is possible to elimi-
nate the random sampling of the kriging model parameters. The
output distribution of a kriging model that includes the uncertainty
in model parameters that are estimated from the observations has
its variance underestimated by the traditional mean square error
�MSE� estimate �16� and is no longer multivariate Gaussian;
rather, it is well approximated by a Student-t distribution �17�.
The probability distribution of the model’s output is estimated
using a Bayesian analysis via a Markov chain Monte Carlo
�MCMC� method �17,18�. The resulting estimate of the model’s
probability distribution includes both the structural and parametric
uncertainty associated with the metamodel.

Evaluating system-level uncertainty in design can be divided
into two separate, yet related, tasks: uncertainty assessment and
sensitivity analysis. Uncertainty assessment is concerned with
quantifying the effect of input and model uncertainties on the
output uncertainty. Sensitivity analysis determines the uncertainty
factors that most influence the uncertainty of the output. Uncer-
tainty assessment is a major task completed during reliability-
based design optimization, whereas sensitivity analysis is the ma-
jor task completed during robust design.

Uncertainty assessment methods can generally be divided into
two techniques: �1� first-order �or second-order� reliability meth-
ods referred to as FORM �or SORM� and �2� Monte Carlo simu-
lation methods �19�. FORM and Monte Carlo simulation are
methods used by RBDO to find the point in the design space that
satisfies all design constraints—given the uncertainty of the input
variables—and to optimize the performance function of the sys-
tem being designed.

In most FORM methods, the system uncertainty assessment
consists of three steps. The system being assessed is linearized
about the current design point of interest. The input uncertainties
are transformed into independent standard normal, N�0,1�, ran-
dom variables. The transformed variables are then projected into
the output space by the linearized system. This approach is quite
computationally efficient and accurate for systems that have input
uncertainties that are nearly independent normal and have system-
level responses that are nearly linear over the range of input un-
certainties investigated. Unfortunately many systems do not have
sensitivities that are linear throughout the region of variations of
the design parameters, thus requiring the need to determine global

sensitivities �20�.
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Monte Carlo simulation methods do not require any transfor-
mations of the random variables to an uncorrelated standard nor-
mal space. A Monte Carlo simulation draws samples directly from
the probability distributions of the random variables and generates
the probability space of the output variables through integration.
Monte Carlo simulation requires a large number of performance
evaluations in order to properly estimate the resulting probability
distributions of the system performance. The result is that Monte
Carlo simulation is often too computationally expensive to be
used with detailed performance models. In this work, the detailed
performance models are replaced with kriging models, using the
probabilistic form of the kriging model to quantify the model
uncertainty introduced by using the approximation to the original
model. The output of each kriging model is sampled during the
Monte Carlo simulation to include both the structural and para-
metric contributions to the model uncertainty with a single ran-
dom variable rather than sample all of the kriging model param-
eters during the Monte Carlo simulation, greatly reducing the
computational expense of including all of the sources of model
uncertainty �21�.

A sensitivity analysis �SA� is used to determine the sources of
uncertainty that most influence the resulting uncertainty of the
design �22,23�. This information is critical to understanding the
robustness of a potential design to uncontrollable variability of the
design parameters and to specifying tolerances on those param-
eters that can be controlled. Additionally, it is important during the
design process to identify the design parameters that most directly
control the system’s overall performance. The large number of
design parameters present in most complex system designs fre-
quently makes it computationally infeasible to assess system un-
certainty. Identifying the most important design parameters and
using only those parameters in system uncertainty assessment en-
ables a more computationally efficient method. This work is con-
cerned with performing global sensitivity analysis using
sampling-based methods with approximations to the original com-
puter models to complete the SA for a complex system design by
taking advantage of the computational efficiency and accuracy of
kriging models along with the flexibility of Monte Carlo simula-
tion �24,25�.

3 Overview of the Methodology
The proposed methodology to evaluate system-level uncertainty

is shown in Fig. 1. The input to the methodology is the informa-
tion that is available to quantify the results of making design
decisions. The output of the methodology is a probability distri-
bution of the system performance to quantify the uncertainty that
exists at a possible design point. The resulting uncertainty can be
used to make decisions to: �1� reduce the model uncertainty, �2�
improve the design, or �3� reduce the input uncertainty in the
current design. The methodology is composed of six steps, which
are described as follows.

Step 1: Establish a System Model. This step begins with iden-
tifying system requirements and constraints. From these require-
ments and constraints, the measurements of system performance
are selected. Sources of information are gathered to evaluate the
selected system performance measurements. These sources of in-
formation include relevant computer analysis models, previous
design results, or best engineering judgements �26�. This step is
common to many design problems and is not unique to this meth-
odology �27�.

Step 2: Create Probabilistic Kriging Models of Subsystems.
Given the system model and sources of information, kriging mod-
els are created as approximations to the relationships between the
input parameters and the performance measurements. Often, these
mappings can be divided into a network of approximations with
intermediate parameters that carry information from one sub-

system to another. The creation of the probabilistic kriging models
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of the subsystems includes the following tasks.

1. Design of Experiments. A Latin Hypercube Sampling �LHS�
�28� design is employed to sample the subsystem’s region of in-
terest �domain� for the design if a set of observations of the sub-
system do not already exist. LHS is used due to its excellent
projective properties, good space-filing properties, and the unnec-
essary need to use replications �29,30�.

2. Establish Kriging Model Inputs and Output. At times, the
evaluation of the system performance is simplified by switching
an input and an output for a subsystem model, removing the need
to iterate to resolve subsystem constraints. Every attempt should
be made to create a system model that can be evaluated with a
single pass through the kriging models of the subsystems. The
input parameters may also need to be transformed in such a way
to that the observations fill a hypercube space. Finally, the output
may also need to be transformed in a way that can be better
represented by a kriging model �31�.

3. Estimate Kriging Model Parameters. The process of esti-
mating the kriging model parameters �17,32� is shown in Fig. 2.
The first step is to select the best form of a linear regression model
using backward elimination �33�. In backward elimination, a full
second-order model is first created, and regressors are then re-
moved, one at a time, based upon their p value from an analysis of
variance of the results from fitting the model.

In general, a kriging model requires fewer regressors than a
linear regression model. Regressors are removed from the kriging
model by estimating the model parameters using maximum like-
lihood estimation �MLE�, evaluating the model parameter covari-
ance matrix to determine the model parameter variances �21�, and
then removing the regressor that has the smallest absolute t sta-
tistic ��bk� /sbk

�. This cycle continues until the smallest corrected
Akaike’s information criterion �AICc� �34� is obtained. During
this process of elimination, second-order and cross terms are typi-

Fig. 1 Flowchart of proposed methodology
cally removed before the first-order terms. This process of mini-
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mizing the AICc—while using the MLE parameter estimation
method—is expected to find the model form that has the least
amount of uncertainty in the estimation of its parameters.

The MCMC method is used to provide an unbiased estimate of
the model parameters for the best form as determined by using
MLE and the AICc criterion. The MCMC method also provides an
estimate of the best shape parameter to use when estimating the
probability of the output of the kriging model that includes model
uncertainty in order to create a probabilistic kriging model that
quantifies what is known about the subsystem—based upon the
observations used—and what is not known—based upon the re-
sulting uncertainty or probability distribution estimated by the
kriging model. The last step is to estimate the root mean square
error �RMSE� of prediction for the kriging model.

4. Assess Model Quality. Evaluate the kriging model’s RMSE
of the prediction using the cross-validation �CV� method to esti-
mate the model’s actual RMSE. Confirm that the Rprediction

2

�0.95 requirement �32� is satisfied.

5. Improve Kriging Model (If Needed). If the resulting kriging
model does not have the predictive capabilities required to evalu-
ate the system performance, then more observations are needed to
improve its resulting predictions �reduce model uncertainty�.
Model uncertainty can be reduced through the following four op-
erations: �1� take advantage of the knowledge of neighborhood of
the design point �as defined by the extent of the uncertainties� to
reduce the domain of the kriging model, �2� sample the computer
model’s new domain, reusing the observations used in the prior
kriging model that are still within the domain, �3� fit the revised
kriging model, and �4� perform a new uncertainty analysis with
the revised probabilistic kriging model.

Step 3: Specify a System Design. Based upon the current
knowledge of the system, a system design is selected to evaluate
the system-level uncertainty. The decision made in this step can
either be made by a designer in an interactive design environment
or through the use of an optimization algorithm that quantifies the
preferences of the designer and executes autonomously.

Step 4: Define Input Uncertainty for the System Design. The
input uncertainty for a system in this work is defined by the prob-
ability distributions of the system inputs. The input distributions
are typically a function of the design specified in the previous
step. The selection of input probability distributions will always
be a stumbling block in uncertainty-based methods �35�. The best
one can do is to make a best guess, most often a conservative
estimate, of the uncertainty of the system noise factors. Another
alternative is to use a fuzzy approach to quantify the uncertainty
or vagueness in the system �36�. The intent of the input uncertain-

Fig. 2 Block diagram of the process
ties is to quantify what is not known about the system or what
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cannot be controlled. This proposed methodology, due to its rela-
tive computational efficiency can permit many different input un-
certainties to be assessed as more information becomes available
about the input distributions. One reasonable result of this meth-
odology is: given the current design information and the expected
uncertainty of the input factors, there is too much uncertainty to
support making a decision, an alternative design needs to be se-
lected, the models need to be improved, or the input uncertainties
need to be refined.

Step 5: Perform Monte Carlo Simulation of System Model.
A Monte Carlo simulation of the system model is actually an
integration problem �18, Chap. 3�. The probability distributions of
the random variables defined in the previous step must be inte-
grated through the system model to obtain the probability distri-
butions of the system performance �output� parameters. The inte-
gral is evaluated by drawing samples of the random variables
based upon their probability distributions. These samples are
evaluated by the system model, and the resulting distribution of
the performance parameters is an estimate of the actual distribu-
tion of the performance parameters. By using simple random sam-
pling, the resulting distributions are always unbiased estimates
�37, p. 111�. The precision of the resulting probability distribu-
tions is a function of the number of samples used to estimate
them. Precise results may require the use of large numbers of
samples �greater than 10,000�: future work should investigate
rules to select the number of samples that will result in a good
approximation of the performance parameter probability distribu-
tions. Other researchers have also published computationally effi-
cient alternatives to Monte Carlo simulation for uncertainty as-
sessments including: stochastic analysis with minimal sampling
�SAMS� �38�, saddlepoint approximations �19�, and analytical
variance-based global sensitivity analysis �23�.

The unique aspect of our methodology is that the computation-
ally expensive subsystem analyses are approximated with a proba-
bilistic kriging model that quantifies the uncertainty associated
with using the metamodel. The system model network of kriging
models is evaluated for all of the samples generated from the
input parameter distributions. The output of each subsystem krig-
ing model is a random variable with a probability distribution
described with a student-t distribution. The output of the kriging
model is sampled simply based upon its probability distribution in
order to include the model uncertainty introduced by using kriging
models to approximate the original analyses.

Step 6: Analyze the Results. The results of the Monte Carlo
simulation are first analyzed as part of an uncertainty assessment.
The uncertainty assessment quantifies the resulting probability
distributions of the system’s performance measurements. The
probability distributions can be summarized with their mean and
standard deviations or by prediction intervals. A sensitivity analy-
sis can also be completed to identify and quantify the contribution
of the input and model uncertainty sources to the observed per-
formance uncertainty. From these results, decisions are made. Of-
ten these decisions may result in three choices: �1� changing the
current design to be less influenced by the input parameter uncer-
tainty, �2� limiting the variability in the input parameters, or �3�
improving the quality of the kriging models to reduce model un-
certainty. This final decision indicates that additional information
is required to make a decision, thus improving the predictive ca-
pabilities of the kriging models used in the system model.

4 Demonstration of the Methodology
A case study is used to demonstrate the methodology as a tool

to manage uncertainty in the conceptual design of a satellite or-
biting Mars.

Step 1: Establish a System Model. A Mars orbiting satellite is
designed using the proposed methodology. Most of the design

rules presented in this section are based upon the research of
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Yukish �39�. This hypothetical satellite is sized to deliver an in-
strumentation package into orbit around the planet Mars. The sat-
ellite design rules used in this case study permits the choice of
payload mass, orbit radius, rocket engine sizing parameters, and
tank capacities. The satellite system design variables are identified
in Table 1. The inputs to the system analysis are indicated in the
top portion of Table 1. The bold design variables are permitted to
vary during the design process, while the other variables are held
constant, indicating mission specific parameters. The outputs are
indicated in the bottom portion of Table 1. The design process
establishes the total mass of the system and determines if the
design is feasible as determined by the remaining fuel and
oxidizer.

The system is divided into three subsystems: �1� rocket engine,
�2� fuel and oxidizer tanks, and �3� orbit mechanics. These sub-
systems are placed together in a single system and result in cu-
mulative system mass �massTotal� and the engine burn time �burn-
Time� as shown in Fig. 3. The system diagram that is shown in
Fig. 3 identifies the variables that are varied in the case study and
the connectivity between subsystem models. The payload is taken
as a given mass that must be delivered to an orbit around Mars.

The system model cannot be solved with a single pass of the
inputs through the subsystem models due to the circular depen-
dency in the calculation of the burnTime, the amount of time the
rocket engines must fire to slow the satellite enough to enter the
specified orbit. The subsystem models calculate their results quite
quickly �1 s or less�, but due to the circular dependency, the actual
time to solve the system equations can take up to 2 min. The code
is executed on a Pentium M 1.8 GHz Dell laptop computer. De-
tails can be found in Ref. �21�.

Table 1 Satellite system design variables and values

Parameter Value Units

Payload mass 600 kg
Orbit radius 400 km

Trajectory velocity 3 km/s
Throat diameter (diam Throat) 0.037 m

Exit diameter 0.2 m
Mass flow rate fuel (mdotF) 0.666 kg/s

Mass flow rate oxidizer (mdotO) 1.930 kg/s
Tank volume (tankV) 0.864 m3

Power/weight ratio 37 kJ/kg

Remaining fuel 325.84 kg
Remaining oxidizer 20.114 kg

Total system mass (mass Total) 2999.9 kg
Fig. 3 Diagram of system and subsystem models
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Step 2: Create Probabilistic Kriging Models for Subsystems.

1. Design of Experiments. The first task in creating probabilis-
tic kriging models of subsystem models is to create sets of obser-
vations of each subsystem. In this work, an LHS design of experi-
ments �DoE� is used to sample the subsystem models. The
requirements and constraints of the subsystem model input param-
eters for the satellite system design are known before the DoE is
created and are used to restrict the parameter ranges that are in-
vestigated. The minimum and maximum values for the input pa-
rameters are shown in Table 2.

The engine subsystem model is sampled using a 20-point LHS
centered design. The engine model DoE is based upon the total
mass flow rate, the mixture ratio, and the area ratio of the nozzle.
These three parameters provide a feasible space that is better de-
scribed by a hypercube than sampling over the mass flow rates of
the oxidizer and fuel and the nozzle diameter. The tank model is
sampled using a 15-point LHS design. The orbit model is sampled
using a 20-point LHS design.

2. Establish Kriging Model Inputs and Outputs. The engine
analysis model results in observations of six parameters that de-
scribe the different rocket engine designs. The list of inputs to the
kriging model is: �1� mass flow rate, �2� mixture ratio, and �3� area
ratio. The use of these three parameters results in a better mapping
of the feasible design space to a unit hypercube than by using the
mass flow rates of the fuel and oxidizer and diameter of the throat
directly. Three kriging models are created to estimate the specific
impluse �ISP�, chamber pressure, and power generated by the
engine.

The tank analysis model calculates the mass of the tank that can
hold liquid at the specified pressure and volume. The kriging
model that estimates the mass of the tank is a direct replacement
for the original analysis, using the two inputs—maximum pres-
sure and tank volume—to estimate the one output, tank mass.

The orbit analysis model calculates the shortest burn time re-
quired to insert the satellite into its final orbit. The analysis uses
the final mass of the satellite as an input since the analysis uses
final mass as an initial condition to integrate back in time, adding
mass to the system. The total mass is determined by adding the
propellant mass flow rate times the burn time to the final mass.
The total mass is used to replace the final mass as an input to the
kriging model estimate of burn time in order to remove the circu-
lar dependency in the system performance calculations �see Fig.
3�. From this burn time and the mass flow rate of the propellant,
the system calculation for the remaining fuel and oxidizer is
determined.

The burn time is a nonlinear function of mass flow rate, Isp, and
final mass. The Isp in all of these cases is taken as a constant
312 s. In an effort to improve the ability of the kriging model to fit
the observations, the logarithm of the burn time is taken, and the
kriging model is fit to the resulting values.

3. Estimate Kriging Model Parameters. The revised system

Table 2 Input ranges for the subsystem models

Model Input Min Max

Mass flow rate 0.5 kg/s 5 kg/s
Engine Mixture ratio 1 3

Area ratio 20 80

Tank Max pressure 2.69 MPa 22.20 MPa

Tank volume 0.2 m3 1 m3

Mass flow rate 0.5 kg/s 5 kg/s
Orbit Isp 260 s 325 s

Final mass 1000 kg 3000 kg
model that uses kriging models—instead of the original analyses
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�see Fig. 3�—is shown in Fig. 4. The subsystems that use kriging
models as approximations to the original computer subsystem
models are indicated with hats. Three kriging models are created
to approximate the three outputs of the engine subsystem model,
and one kriging model is created for each of the tank and orbits
subsystem models. The major difference between this system
model and the original system model in Fig. 3 is that the circular
dependency of the burnTime in the orbits model has been re-
moved. This permits the system performance to be evaluated with
a single pass through the subsystem models, reducing the compu-
tational expense of the system evaluation.

4. Assess Model Quality. The quality of the resulting kriging
models is provided in Table 3 by reporting the RMSECV measure-
ments. The coefficients of multiple determination are calculated to
quantify the amount of variability captured by the kriging model.
All of the kriging models appear to be very good representations
of the original analyses. The log �burn time� model appears to
perform the worst, but it is still acceptable for use in this demon-
stration of the proposed methodology.

Step 3: Specify a System Design. To demonstrate the method-
ology, a design is specified that appears to be feasible—given the
original models—but it is not an optimal design by any measure.
The inputs to the system and their corresponding values are listed
in the top portion of Table 1. The bold parameters indicate the
random input variables in this study. Their probability distribu-
tions are defined in the next section. The outputs from the system
model are listed in the bottom portion of Table 1. The values listed
in Table 1 are the deterministic results from the original analysis
models.

Step 4: Define Input Uncertainty for the Design. Uncertainty
is introduced into the design by defining probability distributions
for five of the inputs to the model �see Table 1�: the mass flow
rates of the fuel and oxidizer, the volume of the tanks, the diam-
eter of the throat, and the ratio of the engine power to weight
ratio. In order to simplify this case study, all of the inputs are

Fig. 4 Revised system diagram using kriging models

Table 3 Predictive capability of the kriging models

Model RMSECV Rprediction
2

Isp 1.0418 0.9945
Pressure 0.085 0.9996
Power 79.199 0.9998

Tank mass 1.8419 0.9987

Log �burn time� 0.061910 0.9904
JULY 2006, Vol. 128 / 963
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assumed to have independent Gaussian distributions with means
specified by the design values and standard deviations as given in
Table 4. The standard deviations in Table 4 are chosen for dem-
onstration purposes only; the proposed methodology permits the
use of any distribution of the input parameters. Alternatively, any
distribution that best matches the known uncertainty of the input
parameters could have been chosen.

The distributions are truncated after ±3�. Allowing the param-
eters to be sampled from a true Gaussian distribution causes
troubles with the analysis models since it will permit infeasible
results such as negative values of the parameters. At this concep-
tual level of a design, measurements of ±2� or 95% prediction
intervals of the system performance parameters are good enough
to make decisions. By sampling the input parameters to ±3�, an
adequate estimate of the 95% prediction intervals will result.

Step 5: Perform Monte Carlo Simulation of System. The
proposed methodology presumes that the propagation of uncer-
tainty through the system models can be well approximated by
using kriging models as computationally efficient surrogates of
the original subsystem models. This use of kriging models intro-
duces model uncertainty into the resulting probability distribu-
tions of the system performance parameters. In order to validate
the use of kriging models in this methodology, a Monte Carlo
simulation of the original subsystem models using simple random
sampling and the input distributions is completed. These results
are compared to the system uncertainty assessment completed us-
ing the deterministic version of the kriging models and the proba-
bilistic version of the kriging models as approximations to the
original subsystem models in the next section �see Table 5�. The
deterministic version of the kriging model uses only the expected
value of the kriging model as its output. The results from using the
deterministic kriging model should be similar to those using the
original subsystem models, since they both include the same
sources of input uncertainty. The deterministic version of the krig-
ing model ignores the model uncertainty that is introduced by
using the kriging model approximation to the original subsystem
models. A third case is evaluated that uses the probabilistic ver-
sion of the kriging models to include the model uncertainty in the
resulting probability distributions of the system performance mea-
surements. The model uncertainty introduced by using a kriging
model as an approximation to the original computer model for a
subsystem is included in the Monte Carlo simulation by using

Table 4 Input parameter distribution

Parameter Mean Standard deviation Unit

Mass flow rate oxidizer 1.93 0.05 kg/s
Mass flow rate fuel 0.666 0.03 kg/s

Tank volume 0.864 0.01 m3

Diameter throat 0.037 0.001 m
Power/weight ratio 37 1 kJ/kg

Table 5 System uncertainty

Original model

Mean
Standard
deviation 5% 95% Mean

Total mass 3056.4 31.96 3002.4 3107.5 3062.7
Oxidizer left 30.43 17.73 1.24 58.50 26.26
Fuel left 338.30 16.74 310.32 366.12 337.11

Burn time 633.87 13.60 611.72 657.16 635.70
pressure �MPa� 4.26 0.25 3.86 4.69 4.29
Isp 299.49 2.431 294.84 302.23 298.65
Mass engine 291.98 16.180 262.36 314.98 297.48
Mass tanks 151.16 6.268 141.05 161.68 151.96
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simple random sampling from the output probability distribution
from each probabilistic kriging model rather than always using the
expected value as is the case for the deterministic kriging models.

For this demonstration, the time to evaluate 10,000 samples
using the deterministic kriging models is about 20.1±0.1 s. The
time to evaluate the probabilistic kriging models is about
43.2±0.2 s. The mean time for a single system evaluation using
the original subsystem models is about 20.4 s with a standard
deviation of about 7.5 s. All execution times are determined using
an evaluation timing function built into MATHEMATICA.

Step 6: Analyze the Results

Uncertainty Assessment. There are two tasks involved in ana-
lyzing the results of the Monte Carlo simulation. The first task is
to quantify the resulting probability distributions of the uncer-
tainty assessments. Table 5 summarizes these results for the three
cases of subsystem models: �1� original model, �2� deterministic
kriging, and �3� probabilistic kriging. The design used is that
listed in Table 1. For each of the three cases of subsystem models,
the mean, standard deviation, and 5% and 95% prediction inter-
vals are provided for comparison of the resulting probability dis-
tributions. The three system performance parameters are reported
first. The next five are intermediate parameters that connect the
inputs and outputs of subsystem models.

From the resulting performance parameter distributions shown
in Table 5, it appears that using a deterministic kriging model as
an approximation of the original model produces very similar re-
sults. The case of using probabilistic kriging models of the sub-
systems has nearly the same expected values as using determinis-
tic kriging models of the subsystems. This is anticipated since the
expected value of the probability distribution from the probabilis-
tic kriging model is the same value that is used in the determin-
istic kriging model, and, for a system that is nearly linear about its
design point, the symmetric distributions from the probabilistic
kriging models do not change the expected values of the system
performance probability distributions. The variances of the system
performance probability distributions are larger and their predic-
tion intervals extend further from the mean, as would be expected
for the case of using probabilistic kriging models. This increase is
due to the inclusion of model uncertainty in the Monte Carlo
simulation. In most cases the prediction intervals predicted by the
probabilistic kriging model contain the prediction intervals of the
original model.

The level of agreement seen in this study indicates the need for
excellent quality in the kriging models used to approximate the
subsystem models. From the results shown in Table 3, the smallest
Rprediction

2 value is 0.9904, which can be considered excellent
given the large domains covered by the kriging models and small
number of observations used to determine the kriging parameters.
The results from Ref. �21� indicate that, in general, the cross-
validation estimate of the RMSE provides an upper bound esti-

essment of selected design

erministic kriging Probabilistic kriging

ndard
iation 5% 95% Mean

Standard
deviation 5% 95%

.69 3015.4 3110.4 3063.2 29.43 3014.1 3112.3

.30 −0.60 53.38 26.11 26.24 −17.94 69.02

.64 308.38 366.28 337.04 18.71 306.14 367.75

.38 614.14 658.13 635.74 17.09 608.32 664.54

.25 3.89 4.71 4.29 0.26 3.87 4.74

.740 293.55 301.96 298.68 2.868 293.21 302.04

.298 277.54 317.98 297.72 12.639 276.77 318.29

.269 142.05 162.74 152.07 6.755 141.32 163.49
ass

Det

Sta
dev

28
16
17

13
0
2

12
6
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Fig. 5 Bar charts of the system input/output correlations
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mate of the actual RMSE. As a result, Rprediction
2 provides a lower

bound to Ractual
2 . Rprediction

2 of 0.9904 indicates that over 99% of the
variability is explained by the kriging model.

Sensitivity Analysis. The SA of the results is used to identify
which of the sources of uncertainty are the most important ones in
explaining the observed system performance variability. The re-
sults of this assessment can be used by the designer to make
design decisions. For this work, a very simple SA method, using
Pearson correlation coefficients �PCC�, was chosen in order to
demonstrate the effectiveness of using metamodels during SA. A
more rigorous and precise method is offered by McKay �40�. The
PCC between m observations of two parameters is calculated as:

r�x,y� =

�
i=1

m

�xi − x̄��yi − ȳ�

��
i=1

m

�xi − x̄�2��
i=1

m

�yi − ȳ�2

�1�

The PCC can also be interpreted as providing a measure of the
linear relationship between the input/output �I/O� parameters �37�.
The correlations between the five inputs and three outputs to the
system are shown in Fig. 5. Correlations are always between −1
and 1 with positive values indicating a positive correlations and
negative values indicating a negative correlation. More extreme
values indicate that the I/O parameters are more correlated. Cor-
relations cannot be used to determine causation; that must always
come from other sources. In this example, it is known which
parameters are inputs and which parameters are outputs, thus in-
dicating the causation.

There are two important conclusions to draw from Fig. 5. The
first is the general conclusion that deterministic kriging model
approximations to the original subsystem models provide a very
good estimate of the I/O correlations. The results from using
probabilistic kriging models, as specified in the proposed method-
ology, provide similar results on the magnitudes and relative rank-
ings of the correlations. The results from using the probabilistic
kriging models give larger system uncertainty measurements and
�by definition� smaller correlation coefficients than the original
subsystem models and the deterministic kriging models. This is
due to the former results including the model uncertainty intro-
duced by using the probabilistic kriging as an approximation to
the original subsystem models.

The second conclusion to draw from Fig. 5 and Tables 6–8 is
that the results of using the probabilistic kriging models as ap-
proximations to the original subsystem models provide the infor-
mation needed to make design decisions on how to refine the
input parameters’ uncertainties in order to manage the output un-
certainties. For this satellite case study, it appears that in order to
reduce the uncertainty in the system outputs, the uncertainty of the
mass flow rate of fuel �mdotF� has the largest influence; so, it
must be reduced. The uncertainty of the tank volume �tankV� and
the mass flow rate of oxidizer �mdotO� also appear to have large
influences on the three outputs. The uncertainty of the power to
weight ratio �pw� and the throat diameter �diamT� appear to have
little influence. The uncertainty of pw that is used in the engine
mass model does not appear to be an influential parameter; as a
result, an improved kriging model of the engine does not appear to
be needed yet at this point in the design to reduce this source of
uncertainty.

The square of the correlation coefficient, from Eq. �1�, is the
same as the coefficient of determination in simple linear regres-
sion �41, pp. 539–540�. In this setting of correlation, it may be
used to describe the fraction of observed variability of the output
that is due to the variability of the input. Given this fact, it is
known that the only sources of uncertainty in the original models
and deterministic kriging models are the uncertainty of the five

2
input parameters. The total r �sum of the five input sources�
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Table 6 Sources of uncertainty „r2
… for the remaining oxidizer

Inputs
Original
model

Deterministic
kriging

Probabilistic
kriging

Diam. throat 0.001 0.027 0.010
Tank volume 0.066 0.075 0.023

ṁoxidizer
0.390 0.390 0.154

ṁfuel
0.539 0.465 0.185

p/w ratio 0.026 0.034 0.008

Total 1.023 0.992 0.381
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shown in Tables 6–8 are approximately equal to one, appearing to
confirm that the five sources of uncertainty do account for all of
the uncertainty seen in the three outputs. The r2 values do not sum
exactly to one due to the limited precision of a 10,000 sample
Monte Carlo simulation used for each case.

The five inputs do not account for all of the uncertainty seen in
the outputs of the system made up of probabilistic kriging models.
The remaining uncertainty in the outputs is caused by the model
uncertainty introduced by using the probabilistic kriging models.
The model uncertainty present in the estimation of the total
mass �see Table 8� is the smallest source of uncertainty �total
amount of uncertainty-input uncertainty=model uncertaintyÞ1
−0.972–0.028�. The model uncertainty in the remaining fuel is
the second largest source of uncertainty and is about the same
magnitude as the mass flow rate of oxidizer �see Table 7�. The
model uncertainty in the remaining oxidizer is by far the largest
source of uncertainty. Given the amount of model uncertainty
present in the remaining oxidizer system performance parameter,
it is understandable why the deterministic and probabilistic krig-
ing model cases performed the worst at estimating the remaining
oxidizer.

The result of measuring the sources of uncertainty through the
use of probabilistic kriging models, as shown in Tables 6–8, is
that very little reduction in the uncertainty of the remaining oxi-
dizer can be achieved by reducing the uncertainty of the inputs. In
order to reduce the uncertainty in the remaining oxidizer, the
model uncertainty must be reduced. This uncertainty can be re-
duced by improving the current kriging models used to approxi-
mate the subsystems within the system. The first step is to identify
which model or models are the largest source of model uncer-
tainty. The source of the model uncertainty for the remaining oxi-
dizer is shown here as an example of the procedure.

The remaining oxidizer �oxiLeft� after the orbit insertion burn
�burnTime� is defined by the following relationship

oxiLeft = tankV�oxidizer − ṁoxidizerburnTime �2�

where tankV is the volume of the oxidizer tank and �oxidizer is the
density of the oxidizer, which is assumed to be a constant value.
The input parameters tankV and ṁoxidizer to Eq. �2� are system-
level inputs. The burnTime parameter is the result of the orbit
kriging model. The inputs to the orbit model and their correspond-
ing contributions to the uncertainty of the burnTime output are
shown in Table 9. A little over half of the uncertainty in the burn-
Time output is due to the uncertainty in ṁpropellant, which is de-
fined as the sum of the system inputs the mass flow rates of fuel
and oxidizer.

Given the results of this sensitivity analysis performed during
the last step of the proposed method, the best design decision
appears to be to reduce model uncertainty of the orbit model. The
model uncertainty introduced by the other four kriging models
does not appear to have an important impact on the resulting
uncertainty of the system model. A strategy to improve the orbit
kriging model is identified in step 2 of the proposed methodology.
Some published strategies �9,42� for improving the kriging model
may require that the domain be reduced if the correlation matrices
become ill-conditioned, but other strategies �43� do not appear to

Table 7 Sources of uncertainty „r2
… for the remaining fuel

Inputs
Original
model

Deterministic
kriging

Probabilistic
kriging

Diam throat 0.0004 0.001 0.002
Tank volume 0.085 0.105 0.086

ṁoxidizer
0.196 0.172 0.143

ṁfuel
0.721 0.725 0.620

p/w ratio 0.006 0.004 0.002

Total 1.008 1.008 0.854
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have the same problem. The loss of information that occurs by not
reusing observations that are not within the neighborhood of the
current design point is negligible due to the spatial correlation
function that decreases their influence as the points become fur-
ther apart.

5 Conclusions
In this work a methodology is proposed to evaluate system-

level uncertainty in the design of complex multidisciplinary sys-
tems. The methodology is based upon the uncertainty assessment
of the system model by performing a Monte Carlo simulation,
which is made computationally feasible through the use of kriging
model approximations to the original subsystem models used to
create the system model. Through the use of these surrogates,
model uncertainty can be incorporated into the resulting perfor-
mance uncertainty. The proposed methodology relies heavily upon
the probabilistic kriging model and the model uncertainty esti-
mates presented in Ref. �17�.

By analyzing the results of the Monte Carlo simulation with an
uncertainty assessment and a sensitivity analysis, the amount of
uncertainty present in the system performance parameters and the
impact of the sources of uncertainty �input and model� on the
system performance parameters are quantified. Given these re-
sults, four design decisions can be made: �1� accept the system
design, �2� improve the system design, �3� reduce the input uncer-
tainty, or �4� reduce model uncertainty �see Fig. 1�. The proposed
methodology helps manage uncertainty by providing a basis to
make decisions under uncertainty. The methodology identifies the
largest sources of uncertainty in the design and provides a means
to reduce them until a final design can be accepted.

The main benefit of the proposed methodology is that it pro-
vides a means to manage uncertainty during system-level design.
Further benefits of the proposed methodology include:

1. The system-level uncertainty evaluations are done in the
original parameter space. The methodology does not require trans-
formation of variables to uncorrelated standard normal. The
system-level uncertainty evaluation is completed using the param-
eters that make more sense to a designer.

2. The methodology is computationally efficient. The repeated
evaluations of the original subsystem model are replaced by krig-
ing models during subsequent Monte Carlo simulations. Design
options can be traded off—without having to reevaluate the origi-
nal subsystem models.

3. The methodology includes model uncertainty in its system-
level uncertainty evaluations. Through the use of probabilistic

Table 8 Sources of uncertainty „r2
… for the total mass

Inputs
Original
model

Deterministic
kriging

Probabilistic
kriging

Diam throat 0.053 0.065 0.053
Tank volume 0.638 0.726 0.715

ṁoxidizer
0.002 0.038 0.035

ṁfuel
0.235 0.098 0.097

p/w ratio 0.067 0.079 0.073

Total 0.995 1.006 0.972

Table 9 Sources of uncertainty „r2
… for burn Time

Inputs Probabilistic kriging

ṁpropellant
0.516

Isp 0.0007
Total mass 0.006

Total 0.523
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kriging models, the model uncertainty introduced by using ap-
proximations to the original computer subsystem models is incor-
porated into the system-level uncertainty evaluations.

4. The methodology reports the sources of system-level uncer-
tainty. During the sensitivity analysis step, the results of the
Monte Carlo simulation provide the information needed to quan-
tify the sources that contribute to the system-level uncertainties.
With this information, design decisions can be made on how best
to reduce the system-level uncertainty, by selecting a different
design, reducing the input uncertainties, or reducing model uncer-
tainty.

5. The methodology provides a probability distribution of the
system performance parameters. From this probability distribu-
tion, it is easy to determine the mean, variance �or higher mo-
ments�, and prediction intervals to be used as part of an optimi-
zation algorithm.

The proposed methodology can also be used as a tool during
RBDO. The resulting probability distributions from the uncer-
tainty assessment can be used to estimate prediction intervals. The
difficulty involved with using the results of a Monte Carlo simu-
lation to calculate the objective function for an optimization prob-
lem is that they are not deterministic, rendering most optimization
algorithms useless. A stochastic optimization algorithm such as
simulated annealing is required to deal with the stochastic nature
of the objective function �21,44�.

The primary limitation of the proposed methodology is its
heavy reliance upon the capabilities of the kriging model to quan-
tify what is known �the observations of subsystems� and what is
not known �model uncertainty�. The use of kriging models have
not gained widespread acceptance in engineering design due to a
lack of off-the-shelf software for parameter estimation and for
model error assessment-other than that of Lophaven et al. �45�.
Based upon the results presented elsewhere �17,31,32�, the proper
use of kriging models in engineering design requires a significant
background in statistics and in engineering design.

Future work on this methodology should investigate more pre-
cise methods for sensitivity analysis such as those presented by
McKay �40�. Additionally, future work is needed to quantify the
accuracy of the prediction intervals resulting from the method as a
function of the number of samples used in the MCS. A sample
size of 10,000 was used only to demonstrate the proposed meth-
odology. Finally, future work should address applying this meth-
odology as part of a RBDO algorithm. Specifically, research is
needed to use the estimates of the prediction intervals from the
methodology to efficiently drive an optimization algorithm. The
prediction intervals are random variables that are estimated from
the Monte Carlo simulation. The precisions of the estimates are a
function of the number of samples taken during the simulation.
Taking too many samples during the Monte Carlo simulation to
achieve precise results may result in a method that is too compu-
tationally expensive to use in practice.
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