
Defending Embedded Systems Against Control Flow
Attacks

Aurélien Francillon
INRIA Rhône-Alpes

francill@inrialpes.fr

Daniele Perito
INRIA Rhône-Alpes

perito@inrialpes.fr

Claude Castelluccia
INRIA Rhône-Alpes

ccastel@inrialpes.fr

ABSTRACT

This paper presents a control flow enforcement technique
based on an Instruction Based Memory Access Control (IB-
MAC) implemented in hardware. It is specifically designed
to protect low-cost embedded systems against malicious ma-
nipulation of their control flow as well as preventing acciden-
tal stack overflows. This is achieved by using a simple hard-
ware modification to divide the stack in a data and a control
flow stack (or return stack). Moreover access to the control
flow stack is restricted only to return and call instructions,
which prevents control flow manipulation. Previous solu-
tions tackled the problem of control flow injection on general
purpose computing devices and are rarely applicable to the
simpler low-cost embedded devices, that lack for example
of a Memory Management Unit (MMU) or execution rings.
Our approach is binary compatible with legacy applications
and only requires minimal changes to the tool-chain. Addi-
tionally, it does not increase memory usage, allows an op-
timal usage of stack memory and prevents accidental stack
corruption at run-time. We have implemented and tested
IBMAC on the AVR micro-controller using both a simula-
tor and an implementation of the modified core on a FPGA.
The implementation on reconfigurable hardware showed a
small resulting overhead in terms of number of gates, and
therefore a low overhead of expected production costs.

Categories and Subject Descriptors

K.6.5 [Operating Systems]: Security and Protection

General Terms

Experimentation,Security

Keywords

Control flow attacks, Stack-based buffer overflow, Software
security, Return stack, Return-oriented programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecuCode’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-782-0/09/11 ...$10.00.

1. INTRODUCTION
Embedded systems are commonly used for safety critical

applications and can be deployed in hostile environments. In
applications like industrial control systems, automotive sys-
tems, both civil and military applications a correct operation
of the embedded devices might be indispensable. However,
as the connectivity of these devices with the outside world
increases, the risk of being be remotely subverted increases
as well.

Computer systems are subject to remote attacks that aim
at controlling their software behavior, which often require
control flow manipulation. Such attacks, that we refer to
as Control Flow Attacks, have been one of the main attack
vectors to computer systems in recent years. Embedded sys-
tems are not an exception to this and, despite their limited
computation capabilities, several attacks have been recently
shown to be practical and feasible on them [11, 12].

Given the high impact that control flow attacks had on
commodity systems, many countermeasure techniques have
been proposed to defend against such attacks, such as: bi-
nary randomisation [14], memory layout randomisation [20,
21], stack canaries [9], tainting of suspect data [19] enforcing
pages to be writable or executable [3, 21], Control Flow In-
tegrity enforcement [1]. However, most of those countermea-
sures are demanding in terms of computation capabilities,
memory usage and often rely on hardware that is unavailable
to simple micro-controllers such as a Memory Management
Unit (MMU) or execution rings. Moreover, they mostly use
software solutions as hardware modifications (for example
on the IA-32 architecture) are difficult and likely to cause
problems with legacy applications.

In this paper we introduce a simple but effective hardware
protection against control flow attacks that we implemented
on the AVR family of micro-controllers, a very common ar-
chitecture in wireless sensor networks and in low-end embed-
ded systems. The defense relies on using a separate stack
for storing return addresses. This Return Stack is stored in
data memory at a different location than the normal stack
and is protected in hardware against accidental or malicious
modification.

The technique has been implemented and validated on
both a simulator and an AVR core on a FPGA (i.e. a
soft-core). The prototype has been implemented on the
AVRORA [22] software simulator and in VHDL.

This demonstrates the possibility to implement this fea-
ture with a modest overhead in terms of logical elements
units, with no run-time impact, and backward compatibil-
ity on all major software functionality. In order to support

19

����������

���	�
������

��������������

���������������

�	���
�������

�����

������	�������

������

������������������ !

��"�������������� !

���������"

������#���

$��%&���

Figure 1: Normal function frame layout after a

function call.

this feature the device needs application specific configura-
tion to be performed at boot time. This configuration is
performed during the very first step of software initializa-
tion and therefore can be performed by the C library after
basic initialization of memory. Apart from this change the
compiler libraries and programs do not need modifications.

Besides defending against attacks this stack layout can
also be very helpful for software reliability to prevent stack
overflow.

2. PROBLEM STATEMENT

2.1 Control flow attacks
During the execution of a call instruction, the processor

transfers control to the code that implements that proce-
dure. When the procedure completes, control is transferred
back to the instruction following the call instruction. On
most microprocessors a unique stack is used to store control
flow information as well as other data. Each frame of the
stack usually contains the following data:

• saved return addresses of the caller;

• function variables and parameters;

• saved registers, according to the specific Application
Binary Interface (ABI).

Implementation details vary across different architectures,
but in Figure 1 we depict a common layout for a portion of
the stack. As it is possible to note, control flow information,
like return addresses, are stored alongside other function
data.

When the data stored in the function local variables comes
from untrustworthy sources and sufficient checks are not in
place, memory corruption of the local variables might occur.
Corruption that can allow the attacker not only to taint the
function data but also corrupt the control flow information
stored on the stack.

2.2 Stack overflow
Stack overflow is an out of memory condition common in

embedded systems with highly constrained memory avail-
ability. This is the definition we will use throughout this

paper and it must not be confused with stack based buffer

overflow. The latter is the consequence of a buggy program
(e.g. improper boundary check) and the former is the conse-
quence of an out-of-memory condition and can occur with a
correct program or a program written in a type (or memory)
safe language.

Stack overflows are common on simple micro-controllers,
due to their limited memory size. This condition can occur,
for example, when too much data is allocated on the stack
or when the depth of the stack grows too large. In both
cases, the stack exhausts its available memory and overlaps
with other memory sections like the BSS section.

This is both a reliability problem and a security problem.
It is a reliability problem as the stack overflows in other
memory regions, it can corrupt the data stored there. This
usually leads to bugs that are difficult to track. Because,
for example, the corrupted variable will depend on the lay-
out of variables in the BSS section, this depends on how the
compiler will order variables in memory. It can be a secu-
rity problem as an attacker might take advantage of a stack
overflow to overwrite a return address without any specific
program vulnerability. When this function will return the
control flow will be directed to the address chosen by the
attacker.

Stack overflow conditions are easily detected in general
purpose operating systems where a page fault occurs when
memory is accessed beyond the currently allocated stack
space. When this page fault occurs the operating system
can take appropriate actions. However, this solution is not
feasible when an MMU is not available.

For embedded systems the stack consumption can be an-
alyzed before execution performing static analysis on the
program [16]. Static analysis will reveal whether the device
will have enough memory to execute the application. How-
ever in some cases it can be difficult to know exactly the
maximum stack consumption, for example:

• when indirect calls are present the tool has to perform
data flow analysis, which is not always feasible,

• when re-entrant interrupts are used the call depth could
be unbounded,

• if recursive function calls are performed, data flow anal-
ysis would have to be performed, if possible.

• some compilers implement a way to allocate dynamic
memory on the stack as non standard extensions, for
example gcc provides the alloca built-in function for
this purpose. This is again a difficult case for static
analysis tools.

3. INSTRUCTION BASED MEMORY

ACCESS CONTROL FOR CONTROL

FLOW INTEGRITY

3.1 Overview of our solution
The main idea behind IBMAC is to protect return ad-

dresses on the stack from being overwritten with arbitrary
data. By doing so, as we will show later, IBMAC also pro-
tects embedded systems from memory corruption caused by
stack overflows.

The intuition is that control flow data should be only
read and written by the call and ret family of instructions

20

��������	���
���
��

����

�	���	�������

��������

����

����	�

Figure 2: Traditional stack layout

and modifications by other instructions should be prevented.
Hence, restricting access to return addresses to call and
ret instructions in hardware seems only logical. However in
a normal stack layout, return addresses are interleaved to
other types of data, making access controls difficult. In fact,
such a fine grained access control would be slow and would
lead to a considerable memory overhead, since all the words
in memory that have to be protected would need to have an
additional flag bit.

This is the main reason why we decided to modify the
stack layout adding an additional Return Stack, specifically
designed to store only return addresses. However, changing
the memory layout could have lead to major compatibility
issues. The principal design goal was to have a very simple
hardware implementation, without extra memory require-
ment and focused on compatibility. The result is that IB-
MAC does not require modifications to the tool-chain and
most binary libraries could be used without being rebuilt.
IBMAC also improves software reliability as stack memory
over consumption [16] can be detected at run-time so that
a reboot or other actions can be performed (e.g. dedicated
interrupt).

Finally we implemented IBMAC as an optional feature
that can be activated for example with a write-once config-
uration register at boot1. With those constraints fulfilled
and a proven implementation, we believe that this is a very
realistic scheme with limited production costs and signifi-
cantly increased security.

3.2 A separate return stack
In Figure 2 an architecture with a single stack is shown.

While it is convenient to have a single stack, it makes it very
difficult to protect the stored return addresses. We therefore
implemented a modification to the instruction set architec-
ture in order to support the use of two separate stacks: a
Return Stack and a Data Stack. The return stack is used
to store control flow information (return addresses) and the
data stack is used to store regular data.

There are several different possible layouts in which those
two stacks could be arranged in memory. The arrangement
chosen in our implementation is depicted in figure 3. The
first thing to note comparing figure 2 and 3 is that the data
stack lies where the original single stack was. This is the
best solution to maximize backward compatibility, as with
this layout the data allocation on stack works in exactly the
same way as before and no modifications to the compiler are
necessary (e.g. to access local variables).

1This could be a fuse register on the AVR for example, as
fuses cannot be modified without physical tampering.

���������	
����	��

�������

�������
������

��������

����
������

������	����

�	��
	���	 ���

����

�	��
	��	 ���

Figure 3: IBMAC stack layout. The Base control

flow stack pointer is the only register that needs to

be initialized in order to support IBMAC.

The second thing to note is that the return stack and the
data stack grow in opposite directions. This was done in
order to optimize memory consumption, as with this layout
no memory is wasted in comparison with the original stack
layout. The fact that the return stack grows in the opposite
direction does not hinder backward compatibility, as this
stack is exclusively accessed in hardware by the modified
call and ret instructions.

The third thing to note is that the return stack does not
have any static limitation, but instead is only limited by the
data stack. However this can also be a drawback as it those
not leave room for an unbounded heap. In section 3.4 we
discuss this problem in more detail.

3.3 Instruction Based Memory Access Control
The separate return stack layout presented in the previous

section provides an easy way to separate control flow infor-
mation from regular data allocated on the stack. However, it
does not prevent modification and corruption of control flow
information, but only makes it a bit more difficult as control
flow data is not close to stack allocated buffers. Complex
attacks could still be able to maliciously modify the return
stack if an attacker is able to write data to an arbitrary
memory location. This is possible for example with a dou-
ble memory corruption (e.g.corrupt the pointer to an array
and to further write data to this array), exploiting some for-
mat string vulnerabilities or is able to manipulate the stack
pointer [10] to point to those memory regions.

This is the reason why an extra protection layer for the
return stack is required. On a general purpose operating
system this could be provided by a MMU. However, those
are not available on such low end MCU. The reasons for
that are multiple: first, those MCU are designed to be at a
very low price range, each additional feature come at an in-
crease of the silicon size and consequently increase the final
manufacture price. Second, they are usually designed to ex-
ecute monolithic application (often refereed to as firmware),
therefore they do not require memory protection between
different applications or the application and a kernel. The
challenge is therefore to protect only the return stack at a
very small cost, which is not the case with a complete Mem-
ory Management Unit.

Our hardware modification has been designed around the
following considerations:

• only control flow related instructions will modify the
control flow stack,

• the data manipulation instructions do not need to ac-
cess control flow information.

21

Given this observations it is possible to control memory
accesses and decide whether to grant or refuse access to the
return stack based on which instruction is performing the
memory access. On the AVR we used, we identified only
two instructions that needed to be able to access the return
stack, namely the call and the ret instructions and their
derivatives. The hardware implementation of these two in-
structions has been modified in such a way to set an internal
flag to 1 whenever they are executed. When this signal is
high memory access is granted to the control flow stack. If
not, the system is rebooted (or could alternatively trow a
dedicated interrupt).

3.4 Other design considerations
Dynamic memory allocation is one of the basic building

blocks of modern operating systems and programing lan-
guages. However, it is often avoided on low cost embedded
systems for the following reasons: first it is usually diffi-
cult to predict the worst case memory usage, which can
quickly lead to memory exhaustion on these systems; sec-
ond, memory fragmentation is a serious problem for archi-
tectures without Memory Management Unit. In fact, on ar-
chitectures with a Memory Management Unit even if mem-
ory fragmentation happens in the virtual address space, it is
always possible to defragment the physical memory, freeing
large blocks of contiguous memory, in a transparent way for
the application. This is not possible in the case of processors
lacking a MMU because it would be necessary to keep track
of all pointers and update them when the defragmentation
process moves a contiguous memory block 2.

Usually on the AVR family of processors memory alloca-
tion is either performed statically i.e. global variables or
when with dynamic allocation on the stack 3.

Nevertheless, if a heap is needed it is usually allocated
within a fixed range of memory addresses for allocation. In
such a case, the return stack can be made to start after the
end of the heap, with risking overflows or memory waste.

4. IMPLEMENTATION AND DISCUSSION

4.1 Implementation
In order to validate our approach we implemented the

changes to both a simulator and a soft core in a FPGA.

Implementation on simulator.
We modified the AVRORA [22] simulator in order to sim-

ulate the modified core, this made possible to run, by sim-
ulation, a complete platform with an Atmega128 [5] and a
IEEE 802.15.4 [18] radio. We have been able to run un-
modified TinyOS applications, for wireless sensor networks.
The changes to AVRORA required modifications to only
0, 4% of the code (only 200 lines of code were changed while
AVRORA simulator contains about 50,000 lines of code).

2It is possible to use double pointers, as done in the Contiki
operating system. However, all access must be preformed
with double de-reference, if an intermediate pointer is kept
by the application and defragmentation occurs the memory
might be corrupted by accessing an invalid address
3Variable memory allocation on the stack is possible using
as GNU gcc’s non standard alloca function

Implementation on a FPGA.
We implemented the modifications in a VHDL implemen-

tation of the Atmega103 core available at opencores.org. Al-
though this micro-controller (MCU) version is discontinued,
it is very similar to the Atmega128 and the modifications
implemented are probably very similar to those required for
an Atmega128. The modifications were made with changes
of 8% of the VHDL source code (500 lines out of 6000).
The resulting core was implemented on an Altera Cyclone
II FPGA. The overhead in number of logical elements used
(LUT) is of 9% (2323 LUT for the original MCU and 2538
LUT for the modified MCU). Although, this overhead might
appear significant it is a non optimized implementation and
as there is no extra memory requirements for its implemen-
tation, the overhead when implemented in an ASIC would
probably be much lower.

4.1.1 Control flow modification operations

In the Atmel AVR core the program counter (PC) is not
accessible as a general purpose register, instructions such
as load and store cannot modify it. Therefore, there are
only few instructions that can change the control flow, i.e.
modifying the program counter or its saved value 4. On the
AVR the following instructions can modify the control flow:

• Branch and Jump (JMP) instructions update the con-
trol flow. However, as the destination address is pro-
vided as an immediate constant value, they are not
vulnerable to manipulation and no return address is
stored on the stack.

• Call and Return instructions use the control flow stack
pointer to access the control flow stack. Those instruc-
tions will store or fetch the control flow instructions on
the control flow stack.

• Load and Store instructions are prevented to alter the
return stack, only access to data stack or other regions
is allowed. The control flow stack and the data stack
are checked to be non overlapping when a store is per-
formed.

• Calli instruction takes a function pointer as parameter
(from a register). This instruction is used for example
in schedulers or object oriented code, in such a case an
indirect call instruction is performed. If the attacker
is able to modify the pointer (or register) before it
is used by an indirect call instruction, he would be
able to control one control flow change but not the
following ones. However, solving this problem is out
of the scope of this paper as it relates to protection of
function pointers which can’t be performed with this
approach.

• Interrupts transfer the control flow to a fixed interrupt
handler and the address of the instruction that was
executed while the interruption occurred is saved on
the control flow stack, in our modified architecture the
return address is therefore protected as well.

One difficulty with the implementation of IBMAC is that
the stack pointer as well as the control flow stack pointer

4This is not the case in all embedded cores, for example
ARM cores have the PC as a regular register, therefore many
instructions are able to alter the control flow.

22

Register name Description Atmega103 Atmega128
Address Address

SP CF L Control Flow Stack Pointer Low $00 ($20) $46 ($66)
SP CF H Control Flow Stack Pointer High $01 ($21) $47 ($67)
SSCR Split Stack Control Register (sec 4.1.2) $10 ($30) $49 ($69)
CF SS L Control Flow Stack Start Low $02 ($22) $55 ($75)
CF SS H Control Flow Stack Start High $03 ($23) $56 ($76)

(a) New register allocation for the additional registers.

Register name Needs locking Locking condition Unlocking condition Authorized modifications
SP No N/A N/A Any
CF SP Partial After First Write Reboot Internal to CF instructions
CF SP Start Yes After First Write Reboot None
SSCR Yes After First Write Reboot None

(b) New registers locking logic

Figure 4: Stack configurations and control flow stack pointer description and additional locking logic

are 16 bit values and are modified with two instructions.
Therefore, the update of the stack pointer is non atomic
and its value can be temporally invalid. As a consequence it
is not possible to enforce the constraints on stack pointers
constantly. The solution we used is to enforce this constraint
only when memory writes or reads are performed, with this
approach the stack pointer can have a temporary invalid
value when it is updated, without triggering an error.

4.1.2 Control flow stack configuration

The control flow stack needs to be configured before any
control flow operation is used. It is activated from the “Split
Stack Configuration Register” (SSCR). In order to prevent
the attacker from maliciously change this register configu-
ration, it is made “writable once per boot”: this configura-
tion register is locked in hardware after the first write. The
software (e.g. libc) is therefore responsible for setting this
register during boot process. We use for this purpose the
init sections provided in default linker scripts, so that the
configuration is made as early as possible.

Memory layout stack memory areas configuration.
Compared to a traditional memory layout some configu-

ration must be performed in order to enable the control flow
stack and the memory access enforcement. For this purpose
we implemented new configuration registers:

• SSTACKEN (Split STACK ENable) is a configuration
bit which, when set, enables the split stack feature. It
is part of the SSCR register.

• CF START (Control Flow stack Start) is a configura-
tion register used to fix the start of the control flow
stack. It is automatically initialized from the libc to
the end of the statically allocated memory (data/bss)
therefore requires no user configuration.

• CF SP (Control Flow Stack Pointer) is the control flow
stack pointer. It is initialized with the same value than
CF START at boot and cannot be directly modified
after initialization.

• CF STACK configured is an internal signal in our mod-
ified core. It is automatically set after control flow
registers have been set up. It cannot be modified by

volatile uint16 t abssvar;
volatile uint32 t adatavar=10;

uint16 t factorial(uint16 t val){
volatile local[10];
if (val==1) return 1;
else return val∗myfact(val−1);

}

void factorial with smallalloc(){
volatile uint8 t large[20];
factorial(8);

}

void factorial with bigalloc(){
volatile uint8 t large[200];
factorial(8);

}

int main(){
abssvar=10;
factorial with smallalloc();
factorial with bigalloc();
return 0;

}

Figure 5: Example of a program that cause the stack

to overflow

23

software and is reset when a reboot occurs. When
this value is set any direct update of the CF START

and CF SP registers are detected as possibly malicious
modifications and therefore triggers a reboot. With-
out this an attacker could craft a fake stack and if he
is able to modify the stack pointer (e.g. with an ar-
bitrary memory write of two bytes) he could make it
point to this fake stack. This fake stack would then be
used as the legitimate stack.

These additional registers are described in Figure 4. In
order to avoid conflict with existing peripherals devices or
internal logic of the AVR cores the addresses of those con-
figuration registers where chosen in the unused I/O registers
addresses. The locking mechanisms that we implemented to
prevent malicious manipulation of those registers are pre-
sented in Figure 4(b).

4.2 Evaluation
We evaluated the approach with different programs. Fig-

ure 5 shows an example program that has large stack mem-
ory usage. Two functions are present and are computing the
factorial of a number with recursive calls. When the function
with a larger array allocated on stack (factorial with bigalloc)
is called a stack overflow occurs. Figure 6(a) shows the mem-
ory usage on an unmodified core, when the stack memory
usage is too high the memory is corrupted and eventually
unexpected behavior occurs. In this example program the
stack pointer points to data and bss sections and later to IO
Registers space, this results in erratic behaviours. On the
other hand Figure 6(b) shows the resulting memory usage
on an AVR core with split stacks and IBMAC. When the
memory usage becomes too high the two stacks collide and
the processor is rebooted by IBMAC. Similar results would
be achieved if a malicious attempt to modify the control flow
stack occurred.

4.3 Discussion
In addition to prevent control flow manipulation by abus-

ing stack based buffer overflows and stack overflows, IBMAC
also prevents malicious software present in the MCU to use
return-oriented programming. In a MCU without IBMAC
an attacker can use return-oriented programming for mali-
cious purposes, such as maliciously hiding code memory [15,
23]. In order to use return-oriented programming a mali-
cious program needs to write a stack containing both data
and return addresses. While an attacker can craft such a
stack on normal MCU, IBMAC prevents this as the ma-
licious code isn’t able to freely modify the return stack.
Therefore, it is not possible to maliciously manipulate the
control flow with return-oriented programming, even tough
arbitrary code can be run on the device. In order to prevent
this behavior, on a MCU where the attacker has full con-
trol, IBMAC needs to be permanently enabled. This can be
performed using an irreversible configuration fuse. Without
this the attacker would be able to restart the MCU on a
modified program and deactivate the SSTACKEN configu-
ration register.

Although our stack protection technique prevents control
flow attacks as we described, it does not prevent all kind of
software or logical attacks. Mainly, non control attacks [8]
are not addressed because they do not rely on a change of
the control flow but on overwriting adjacent variables. For
example, a buffer overflow could be used to change the value

of a variable used as a flag in an if statement. This in turn
could be used for example to bypass specific controls in the
program code.

Regarding the backward compatibility, while most soft-
ware can run without modifications, the split stack scheme
can make the implementation of features such as tasks with
context switching and longjump / setjump difficult. Those
features requires the software to be able to modify the stack
and its control flow. If a kernel execution mode (or execution
rings) were available, those features could be implemented
safely. However, they cannot be implemented without ma-
jor changes to the AVR core without the presence of such a
privileged mode.

5. RELATED WORK
There is a wealth of different proposals on how to solve

control flow vulnerabilities. In Control Flow Integrity Abadi
et al. [1] propose to embed additional code and labels in the
code, such that at each function call or return additional in-
structions a program is able to check whether it is following
a legitimate path in a precomputed control flow graph. If the
corruption of a return address occurs, that would make the
program follow a non-legitimate path, then the execution
is aborted as malicious action or malfunction is probably
ongoing. The main drawback of the approach is the need
for instrumentation of the code, although this could be au-
tomated by the compiler tool-chain, it has both a memory
and computational overhead and thus might be infeasible on
resource constrained devices.

Another possible solution was proposed in [6]. The au-
thors propose to place a canary value between the return
pointer and local function variables. The value of the canary
value is set in the prologue of each function and is checked
for validity in the epilogue. Canaries have been shown to
have a number of vulnerabilities [2] and also require addi-
tional instructions to be executed at each function calls, thus
introducing overheads.

In [26] Yang et al. introduce a source to source trans-
formation that translates traditional functions calls into a
flat program. The transformation is similar to functions in-
lining without the usual code size overhead. The main lim-
itation of this technique is that the transformation needs to
be performed at source level and therefore requires a com-
plete recompilation of the program. Therefore flattening
cannot be applied to binary libraries or existing programs.
Moreover, Interrupt handlers cannot easily be flattened as
their call site and return address cannot be known in ad-
vance.

Address space layout randomization [20] can hinder con-
trol flow attacks. It is a technique where the base addresses
of various sections (.text,.data,.bss, etc.) of a program
memory are randomized before each program execution. Al-
though, in [17] show that the effectiveness of address-space
randomization is limited on 32-bit architectures by the num-
ber of bits available for address randomization. This prob-
lem would be even more severe on embedded systems that
typically have a 8-bit or 16-bit address space.

In [13] the authors present StackShield that uses a com-
piler supported return stack. Where the compiler inserts
a header and a trailer to each function in order to copy
to/from a separate stack the return address from/to the
normal stack. As this is implemented at the compiler level
there is no backward compatibility, the programs need to be

24

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200

D
at

a
m

em
o
ry

 a
d
d
re

ss
es

Time of execution (simulator cycles)

Stack Pointer

data/bss end

End memory

End IO Registers

(a) Execution without IBMAC. At point 1000 the stack is
overflowing in the data/BSS section and later on the I/O
register memory area.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200

D
at

a
m

em
o
ry

 a
d
d
re

ss
es

Time of execution (simulator cycles)

Stack Pointer

CF Stack Pointer

data/bss end

End memory

End IO Registers

(b) Execution with IBMAC enabled. When the return stack
and the data stack collide (right after cycle 600), the execu-
tion of the program is aborted and restarted. This avoids
memory corruption.

Figure 6: Comparison of the data memory layout during the execution of the program of Figure 5. In order

to keep the example simple we ran the simulation with only 512 bytes of data memory address space.

re-compiled with this modified compiler. Moreover, as ad-
ditional instructions are introduced there is non negligible a
computation and memory overhead.

In [27] Younan et al. propose enables programs to use
up to 5 different stacks and which separates them a com-
piler modification which that. While the approach appears
similar to the one we present in this paper, the techniques
used are different and they are adapted to different kind of
systems. The multiple stacks technique introduced there is
relying on guard pages to separate the stacks. This is pos-
sible only on hardware that has a MMU, without this it’s
impossible to make those guard pages and therefore provide
some isolation between the stacks. Second, this approach to
separate the stack in up to 5 different stacks would waste
a lot of memory. On an AVR the stacks would need to be
statically allocated and would therefore lead to an inefficient
memory usage.

Similarly to our proposal in [25] the authors propose a
return stack mechanism where dedicated call and ret in-
structions store and read control flow information from a
dedicated stack. However the only guarantee for this return
stack integrity is that is located far away the normal stack,
which does not prevent modification of the return stack, it
just makes it more difficult. Double corruption attacks [2]
would allow an attacker to corrupt a data pointer first and
then modify an arbitrary memory location on the return
stack.

A number of systems already use a separate control flow
stack like the PIC micro-controller (for example the pic16 [7])
or some AVR chips (AVR AT90S1200 [4]). However those
solutions are not designed to improve security. They either
allow direct modification of the hardware stack (vulnerable
to double corruption) or have a limited stack stored inside
the MCU (very limited call depth). For example the AVR
AT90S1200 has a return stack supporting only 3 re-entrant

routines, if more than 3 re-entrant interrupts or functions
calls are performed the hardware return stack is corrupted.

The secure AVR [24] architecture is an evolution of the
classical AVR code specifically enhanced for security. It is
mainly used in smart cards and “smart”RFID chips. Unfor-
tunately, only very few information are publicly available on
those chips, as the manufacturer only provides short sum-
mary data sheets for the SecureAVR chips. We therefore
cannot say whether their technique resembles the one de-
scribed in this paper.

6. CONCLUSION
In this paper we introduced a split stack technique and an

instruction based memory control that, when combined to-
gether, prevent malicious modifications of the control flow.
This modified architecture was demonstrated as a modifica-
tion of an AVR core. The solution presented is well suited for
simple embedded systems that do not have a Memory Man-
agement Unit while introducing a very lightweight overhead
in terms of a hardware implementation and, more impor-
tantly, has no extra memory usage. Therefore the presented
technique could be implemented with a low extra cost. This
technique completely prevents the modification of return ad-
dresses and prevent the attacker to craft a stack to in order
to use techniques such as return-oriented programming. The
technique was successfully implemented as a modification of
an existing simulator as well as a soft core on a FPGA.

7. REFERENCES
[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS ’05: 12th ACM

conference on Computer and communications security.
ACM, 2005.

[2] S. Alexander. Defeating compiler-level buffer overflow
protection. Login;, 30(3), June 2005.

25

[3] AMD. AMD 64 and Enhanced Virus Protection.

[4] Atmel, 2325 Orchard Parkway, San Jose, CA 95131.
8-bit Microcontroller with 1K Byte of In-System

Programmable Flash , AT90S1200, 2002.

[5] Atmel Corporation. Atmega128 datasheet.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[6] A. Baratloo, N. Singh, and T. Tsai. Transparent
run-time defense against stack smashing attacks. In In

Proceedings of the USENIX Annual Technical

Conference, pages 251–262, 2000.

[7] P. F. based bit and C. Microcontrollers. Pic16f688
data sheet.

[8] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K.
Iyer. Non-control-data attacks are realistic threats. In
In USENIX Security Symposium, pages 177–192, 2005.

[9] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. Stackguard: automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX

Security Symposium, 1998.

[10] G. Delalleau. Large memory management
vulnerabilities; system, compiler, and application
issues. CanSecWest 2005, May 2005. Presentation at
CanSecWest, french article also published in the
proceedings of SSTIC 2005 ”Vulnérabilités applicatives
liées à la gestion des limites de mémoire”.

[11] A. Francillon and C. Castelluccia. Code Injection
Attacks on Harvard-Architecture Devices. In CCS ’08:

Proceedings of the 15th ACM conference on Computer

and communications security, pages 15–26, New York,
NY, USA, October 2008. ACM.

[12] T. Goodspeed. Exploiting wireless sensor networks
over 802.15.4. In ToorCon 9, San Diego, 2007.

[13] StackShield.

[14] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (aslp): Towards
fine-grained randomization of commodity software. In
ACSAC, 2006.

[15] F. F. Ralf Hund, Thorsten Holz. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Usenix security, 2009.

[16] J. Regehr, A. Reid, and K. Webb. Eliminating stack
overflow by abstract interpretation. Trans. on

Embedded Computing Sys., 4(4), 2005.

[17] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In B. Pfitzmann and
P. Liu, editors, Proceedings of CCS 2004, pages
298–307. ACM Press, Oct. 2004.

[18] I. C. Society. Wireless medium access control (mac)
and physical layer (phy) specifications for low-rate
wireless personal area networks (wpans).
http://standards.ieee.org/getieee802/download/

802.15.4-2006.pdf.

[19] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. In ASPLOS-XI: Proceedings of the 11th

international conference on Architectural support for

programming languages and operating systems, pages
85–96, New York, NY, USA, 2004. ACM.

[20] The PaX Team. Pax address space layout
randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt.

[21] The PaX Team. Pax, 2003. http://pax.grsecurity.net.

[22] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise
timing. In IPSN, 2005.

[23] Undisclosed Authors. Revisiting code attestation in
embedded systems. In under submission, 2009.

[24] S. D. VITO. White Paper: Secure Microcontrollers for

Secure Systems. ATMEL, 11 2008.

[25] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer.
Architecture support for defending against buffer
overflow attacks, 2002.

[26] X. Yang, N. Cooprider, and J. Regehr. Eliminating
the call stack to save ram. In To appear in LCTES

2009, 2009.

[27] Y. Younan, D. Pozza, F. Piessens, and W. Joosen.
Extended protection against stack smashing attacks
without performance loss. In Twenty-Second Annual

Computer Security Applications Conference, pages
429–438, 2006.

26

