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ABSTRACT
Various sources of uncertainty greatly affect the life of struc-

tural components of gas turbines. Probabilistic approaches pro-
vide a means to evaluate these uncertainties; however, the ac-
curacy of these approaches often remains unknown. Published
quantitative studies of the effectiveness of various uncertainty
quantification techniques are usually based on very simple ex-
amples. This is contrasted by the large-size finite element mod-
els that are used for complex geometries of critical structural
parts such as turbine blades or nozzles. In such real-life appli-
cations the expenses of the ”function calls” (runs of these mod-
els) preclude systematic studies of probabilistic methods. These
expenses are attributed not only to the actual runs of the model,
but to the difficulties in parametrically changing the model as
well. Such a “complexity gap” leads to a justifiable concern over
whether the trends identified in academic studies are relevant to
these industrial applications. As a result, structural engineers end
up with the number of function calls that they can afford rather
than what would be needed for the required level of accuracy.
The present effort intends to bridge this gap by studying a mid-
level problem: a simplified notional finite element model of a
gas turbine component is presented. Despite its simplicity, the
model is designed to reflect the major features of more realistic
models. The parametric changes of the model are fully auto-
mated, which allows for performing an extensive set of bench-
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mark tests that help to determine the relative merits of various
existing probabilistic techniques for component life assessment
Several meta-modeling techniques are investigated and their per-
formance compared based on direct sampling methods. In this
context, various Design of Experiments (DoE) methods are stud-
ied. The results are used to construct the Response Surface Equa-
tions (RSE) as well as the kriging models. It is emphasized that
changes in the relative locations of the critical points induced
by variation of independent parameters can critically affect the
overall fidelity of the modeling; the means of remedying such a
degradation in precision are discussed. Finally, it is shown that
when the ranges of independent variables are large, kriging gen-
erally provides precision that is an order of magnitude better than
RSE for the same DoE.

INTRODUCTION
Probabilistic use of Finite Element Analysis (FEA)is be-

coming more and more common, and some of the basic tech-
niques are included in standard commercial software such as
ANSYS. In addition, some specialized packages (e.g., ProFES)
have been developed explicitly for this purpose. Such packages
combine solid geometry modeling (CAD), FEA, and life assess-
ment [1]. However, the practical implications of availability of
such tools are far from clear. The problem is not unique to the
life assessment of gas turbine components, and similar issues ex-
ist in such remote fields as biomechanics, (see for example [2]).
An excellent recent paper [3] surveys a wide range of uncertainty
quantification techniques and provides some general estimates of
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the associated computational costs. Although these works pro-
vide valuable information for practicing engineers, the quantita-
tive comparison in those works is provided mostly for very sim-
ple geometries such as plates, and it is not clear how the results
will scale up to real-life applications.

It is worth pointing out that life assessment of modern gas
turbine components such as turbine nozzles and blades involves
very complex FEA models that often have the size of more than
one million nodes. Moreover, the solutions are very sensitive
to the external and internal boundary conditions, which in turn
require sophisticated modeling of both hot gas path and cooling
flows. Such formidable multi-disciplinary problems make any
extensive parametric probabilistic studies all but impossible even
using modern parallel computing. The associated challenges are
mostly due not to the calculation itself, but to the complexities of
parameterization, especially if it involves geometric changes that
are very difficult to automate.

In view of the above, it seems to be important to estab-
lish certain guidelines that are based on the study of a model
that is somewhat more realistic than a plate or a hollow cylin-
der, and yet quite manageable from a computational standpoint.
Perhaps the only field where such studies exist to a large extent
is Most-Probable-Point (MPP) methods [4; 5]. The present work
attempts to fill the existing void by building a parametric notional
FEA model of a turbine nozzle and using this model as a bench-
mark for comparison of the available probabilistic techniques. A
brief overview of several of the most common techniques is pro-
vided below, followed by a description of a parametric model.

Approximation probabilistic methods
Approximation probabilistic techniques can be combined in

three general groups [3; 6]:

1. Most-Probable-Point (MPP) methods that target certain crit-
ical points on the cumulative distribution;

2. Direct Monte Carlo sampling and its modifications;
3. Decoupled (indirect) techniques that divide the problem into

two separate ones: first a sampling is conducted in some
orderly fashion; followed by a fitting of the results into some
tractable surrogate model.

MPP methods
MPP methods include First and Second-Order Reliability

Methods (FORM and SORM, respectively) [7] and their deriva-
tives such as the Advanced Mean Value (AMV) procedure [4].
These techniques are often collectively referred to as Fast Proba-
bility Integration (FPI). A characteristic feature of these methods
is that they require an interaction between the FEA and the sam-
pling procedure. As was mentioned in the Introduction, several
studies have provided some estimation of the precision of these
methods for mid-sized problems, so the present study does not
2
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focus on these techniques and the reader is referred to the exist-
ing work (see for example[4; 5]). However, in the future side-by-
side comparison of these methods with the use of meta-modeling
techniques is envisioned.

Direct methods
This approach attempts to construct an entire probability

density function (PDF) of the response by random sampling. The
advantage of the simple Monte Carlo technique is that the Con-
fidence Interval (CI) estimation is straightforward, and therefore
the accuracy of the estimation can be assessed quantitatively. In
addition, the number of simulations does not scale explicitly with
the number of independent variables. However, the drawback of
this method is its low sampling efficiency. Thus, a host of meth-
ods have been developed to increase sampling efficiency. Such
methods can be generally referred to as variation reduction tech-
niques. Latin Hypercube Sampling (LHS) is perhaps the most
popular of these techniques [8; 9]. From the point of view of the
Design of Experiments, LHS can be also classified as so-called
space filling design [9].

Decoupled methods
The first step of such a procedure is to construct a design

of experiments. The results are consequently used to construct a
surrogate model (or meta model), which is used to conduct all the
probabilistic analysis. Due to the simplicity of the resulting meta
model, extensive sampling using a simple Monte Carlo simula-
tion is very cheap computationally, and the main source of the
error stems from the discrepancy between the surrogate model
and the real one. By far the most popular type of meta-modeling
is the combination of Design of Experiments and Response Sur-
face Equations (DoE/RSE) [10; 9] and [8]. In general one can
identify two steps of constructing a meta-model:

1. Design of Experiments: a judicious choice of the indepen-
dent paramaters in the set of runs. Central Composite De-
signs (CCD) of resolution V are traditionally used, while
another common option is Box-Behnken design. The reso-
lution V implies that both main effects and two-term inter-
actions are not aliased with each other [9; 8]. These designs
were originally constructed for real experiments rather than
computer simulations. Random error, which exists in the
real experiment, is absent in the computer simulation, and
only biased error due to approximation is present. The full
implication of this difference is not well studied, but it is
clear that it is significant.

2. Finding an appropriate form of a meta-model and choosing
its parameters that fit the results of DoE.

Once the values at the n sampling points are obtained,
one can construct a corresponding set of k-dimensional vectors
s1 . . .sk (here k is the number of input variables). A typical
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second-order RSE has the following form

y = a0 +aixi +ai jxix j (1)

Where unknown coefficients a are sought based on the least
square error minimization. A summation is implied over the re-
peating indices within appropriate limits. Clearly, part of the
reason for RSE popularity is their simplicity. The relative merits
of these methods (as well as direct sampling techniques) depend
on the problem at hand, but the indisputable advantage of meta-
modeling is its flexibility. Once the meta-model is constructed,
the changes of the statistical properties of the response due to any
changes in the probability distributions of the input parameters
can be obtained at no extra cost. The same is true about the eval-
uation of multiple responses. Thus, for a small number of inde-
pendent variables, the decoupled methods provide a transparent
and efficient means to minimize the number of expensive “func-
tion calls,” i.e., actual runs of the physical model. A variety of
commercial packages, such as JMP[11] or Design Expert[12] ex-
ist to facilitate setting up DoEs and constructing RSEs. However,
as the number of independent variables increases, the number of
function calls for even the most frugal DoEs (such as saturated
designs) becomes prohibitively large. The exact number of inde-
pendent variables depends on the resources, but more likely than
not the effective use of DoE/RSE is limited to a single-digit num-
ber of independent variables (see for example [3]). Perhaps the
most common way to deal with such a “dimensionality curse” is
by running a screening (two-level) DoE in order to identify the
main contributors. However, this task is not always straightfor-
ward[13], and there are cases where a large number of variables
are almost equally significant, especially if the problem involves
multiple responses. Lately, however, Kriging has been receiving
more and more attention as a viable alternative to RSEs, and this
technique will be described below in more detail.

Kriging
This method originates in Geostatics and was popularized

by G. Matheron [14], although simultaneously the approach was
developed in meteorology by Gandin, under the name “optimum
interpolation” (see more detail on the history of Kriging in [15]).
The stochastic process y is considered, which depends on k pa-
rameters x1 . . .xk . Let us assume as before that the results from
n samples are known, and denote the corresponding set of k-
dimensional vectors as s1 . . .sk and a generic predictor for an the
value y in a given location of s0 is given by p(y,s0).

Then “ordinary kriging” refers to a spatial prediction based
on the following two assumptions:

y(s) = µ+δ(s) (2)
3
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here µ corresponds to an unknown scalar (this is referred to as
model assumption), and a (linear) predictor assumption:

p(y,s0) = λiy(si)
n

∑
i=1

λi = 1 (3)

The latter condition guarantees that the estimator is unbiased.
Then it can be shown that the minimization of the mean-squared
predicted error is equivalent to the minimization of the following
expression:

C(0)+λiλ jC(si − s j)−2λiC(s0 − si)−2m(
n

∑
i=1

λi −1) = 0 (4)

Here m is a Lagrange multiplier and C(h) is a covariogram of
the corresponding stochastic process. There are several forms of
covariogram available in the literature[15]. Once the form of the
covariagram is chosen, the next step is to find appropriate value
of the free parameter(s). For a given covariogram, however, the
solution is fairly straightforward. It is convenient to introduce the
following notations: n× n matrix R, such that Ri j = C(si − s j);
and n-dimensional vectors c and f , such that ci = C(s0 − si) and
fi = 1, respectively. Then one can directly express an unknown
n-dimensional vector λ and a scalar m:

λT =
(

c+ f
1− f T R−1c

f T R−1 f

)T

R−1 (5)

m =
1− f T R−1c

f T R−1 f
(6)

In the present study, a Gaussian covariagram is chosen

C(h) = [exp(−θ||h||2)] (7)

where ||h|| is L2 metric in the k-space. The free parameter θ = 3
was considered in the study, this value provided a good compro-
mise between the accuracy (which requires this parameter to be
small) and numerical stability (smaller θ lead to ill-conditioned
matrices). Similar conclusions were reached in [6]. In addition,
the tailoring of DoEs to the Kriging model was not considered in
this study, instead, standard DoEs were used.

SIMPLIFIED MODEL
A fully parametric model of a notional turbine nozzle was

created using the APDL language in ANSYS with the goal of
reflecting major salient features of a realistic gas turbine com-
ponent. A generic nozzle is depicted. Parameters such as wall
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Figure 1. Solid Model

thickness, fillet radii, and twist of the airfoil as well as all other
dimensions can be automatically changed, including the airfoil
shape. Fully mapped meshing was chosen in order to facilitate
an orderly parametric comparison (including mesh size control).
This presented a certain challenge, since it requires the conti-
nuity of the mesh flow. As shown in Fig.1, due to the twist of
the airfoil, the cuts on the top and bottom platform are inde-
pendently and parametrically adjusted in order to ensure a good
mesh quality (see Fig.2). Thermal stresses are investigated. First
a thermal analysis is conducted, where the temperature and en-
talpy of the gas flow,Tg and Hg, as well as the same parameters
for the cooling flow, Tc and Hc, are mapped on the respective
surfaces. These fields are calculated based on first principles as
the valuses are adjusted for the presence of the thermal boundary
coating (TBC). Fig. 3 provides a baseline temperature distribu-
tion. Once the metal temperature distribution is obtained, the
results are used in the structural analysis. The corners of the
platforms are appropriately constrained to eliminate extraneous
boundary effects. An appropriate parametric pressure distribu-
tion is provided, and stresses and temperatures are recovered at
the critical points.

RESULTS AND DISCUSSION
In what follows, English units are used. A model was con-

sidered where six parameters were varied independently: four
scaling parameters TEXT , HEXT (temperature and convection
coefficients of the hot gas flow) as well as the corresponding
parameters for the cooling flow TINT , HINT . These are mul-
tiplicative scalars, where unit values correspond to the baseline
values: Tg,actual = TEXT ∗Tg,baseline . . . These scaling parameters
are assumed to have normal distributions with the mean 1 and the
standard deviation, σ = 0.03. In addition, two geometric parame-
4
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Figure 2. Mesh

Figure 3. Sample Temperature Distribution

ters were varied uniformly: wall thickness, WALLTH, within the
range 0.02in 0.04in and fillet radius within the range 0.1in and
0.2in. The range of geometric parameters has been intentionally
chosen to be wide in order to explore various practical situations.
Traditionally, in design the ranges would be wider than those
corresponding to modeling manufacturing tolerances. Eight re-
sponses were tracked to model various practical situations. First,
there are two pairs of equivalent (Von Mises) stresses and tem-
peratures: temperature T1 and stress σ1, which correspond to the
node with the maximum temperature, and temperature T2 and
stressσ2, which corresponds to the node with maximum stress.
It must be noted that a hot spot can move from one node to an-
other as parameters change. In order to isolate this phenomenon,
Copyright  2003 by ASME
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Figure 4. Sample Stress Distribution

four more responses are evaluated: T3,σ3 track the node that has
a maximum temperature for the baseline, while T4,σ4 track the
node that has maximum stress at the baseline. Since the meshing
is mapped, even with the changes of geometric parameters, the
nodes do not change their relative positions.

Let us look at the prediction of the mean of the T1 distri-
bution. In all of the following figures, a direct Latin Hypercube
Sampling (LHS) with 800 points was used as a benchmark. A
separate LHS with a 100 samples was conducted (denoted as
LHS100). Several DoE were used: Central Composite Designs
(CCD) - half-fraction design (45 sampling points), Box-Behnken
design (49 sampling points, denoted as BB), Minimum resolu-
tion design (22 sampling points, denoted as Min. Res). For
comparison purposes, a simple random design was studied as
well. This design has 100 Monte Carlo points that are uniformly
distributed in the design space (denoted as MC100). Once the
results from the analysis were obtained, the same designs were
used to fit either an RSE model or a kriging model. In order to
assess the statistics of a meta-model, 10000 Monte Carlo runs
was considered to be sufficient.

The relative difference to the benchmark for prediction of
the mean and standard deviation for the temperature T1 is pro-
vided in Figs. 5 and6. It can be seem that mean is predicted very
well by all the kriging models, while the RSE models yield an er-
ror rate of 7−10%. This translates into more than 120◦F! More
predictably, the RSEs underestimate the standard deviation by a
factor of 10. This implies that higher-order variation has been
smoothed out in RSE approximation.

A similar situation exists in predicting σ1: Fig. 7 provides
the results for 95% quantile prediction. Again, while the predic-
tion is better for RSE’s, the same pattern holds: kriging provides
a significantly better fit.
5
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Figure 5. Predictions using various techniques for T1 mean in percent

difference compared to 800 LHS runs

However, predictions for σ2 and especially for T2 exhibit
a more complex situation. Kriging still performs significantly
better than RSE (Fig. 8 provides the results for 95% quantile
prediction), however, the meta-modeling is not capable of cap-
turing all the nonlinearity for a given number of samples. It is
not surprising that Minimum Resolution Design performs par-
ticularly poorly. But even for CCD, the maximum actual versus
predicted error for 800 samples from LHS is almost 10% for σ2

(and more than 33% for the Box-Behnken design). The results
are even worse for the temperature distribution. A closer look
at the results reveal that as the independent parameters vary, the
point of maximum stress migrates significantly: Fig. 9 depicts
various locations for the CCD design. Clearly, such jumps lead
to a very non-smooth behavior. As expected, tracking individual
nodes leads to much better results (see Fig. 10). Obviously, in
real-life situations, this necessitates the need for zoning: poten-
tially different hot spots have to be treated separately. Finally,
it might be instructive to compare the precision of a meta-model
for various parameters: Figs. 10 and 11 provides some represen-
tative examples of the relative precision of various parameters:
mean value, standard deviation, 95% and 5% quantiles as well as
an averaged and maximum actual versus predicted errors Box-
Behnken design and Kriging, while Figs. 12 and 13 provide the
same parameters for Box-Behnken design and RSE.

CONCLUSIONS
A simplified model of a first-stage turbine stator vane is pre-

sented. The goals are to investigate the fidelity of each method as
applied to probabilistic life assessment and to provide guidelines
on the required number of function calls in real-life applications.
The following conclusions can be made based on the statistical
study of the model:
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Figure 6. Predictions using various techniques for T1 standard deviation

in percent difference compared to 800 LHS runs
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Figure 7. Predictions using various techniques for σ1 95% quantile in

percent difference compared to 800 LHS runs

1. tracking global properties requires much more complex
modeling due to the fact that a node with maximum values
can drift as parameters change, thus causing highly nonlin-
ear behavior. Separating the structure into different zones
with nonoverlapping hot spots helps to remedy this situa-
tion.

2. Complex FE models result in highly nonlinear variations of
the responses. This implies that Response Surface Equa-
tions should be used with extreme caution (and only when
the ranges of the independent variables are very small).

3. Kriging, on the other hand, appears to be a viable candi-
date for meta-modeling. It consistently provides a higher
precision than RSE for the same Designs of Experiments,
6
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Figure 8. Predictions using various techniques for σ2 95% quantile in

percent difference compared to 800 LHS runs

Figure 9. Various locations of maximum stress nodes for CCD design

and successfully competes in all statistical measures with
direct sampling, while maintaining the flexibility of meta-
modeling

4. The particular choice of DoE matters much less than the fit-
ting method: CCD performed marginally better than Box-
Behnken. Further studies are recommended to investigate
DoE that are specifically tailored to kriging.
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