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Abstruct-This paper presents closed-form kinematic and 
dynamic models of a robot with three rotational degrees of 
freedom. The derivation of the models and estimation of their 
parameters are explained. Relevancy of the models is 
investigated with a writing task. Validation results, obtained 
by simulation and experiment, establish correctness of the 
models and illuminate their practical benefits. 
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I. INTRODUCTION 
HE essential purpose of industrial robots is execution T of prescribed motions in 3-dimensional space. Fast and 

accurate movements require appropriate models of both 
robot kinematics [ 11 and dynamics [2]. A kinematic model 
enables the calculation of joint motions corresponding to a 
given trajectory of the robot’s end-effector. A dynamic 
model provides information about the control inputs that 
should be applied to the joint actuators in order to achieve 
the desired motions of the robot. It also shows how 
particular dynamical phenomena, such as inertial, 
Coriolis/centripetal, gravitational and friction effects, 
influence the robot behavior in a given motion task [3]. 

An industrial-like robot with three revolute joints, 
an RRR-robot, is used as a test bed for a variety of non- 
linear control laws [4,5]. In particular, attention is focused 
on control laws based on a computed torque method [6]. It 
is used to resolve non-linear plant dynamics and to enable 
a simplified design of motion controllers. Recent advances 
in control of underactuated robotic systems [7] additio- 
nally stimulate use of the computed torque method. The 
basic prerequisite of this method is a good knowledge of 
the dynamical model and its parameters. Therefore, mode- 
ling of the RRR-robot dynamics and estimation of model 
parameters become vital tasks to be solved. To facilitate 
the definition of motion tasks, a kinematic model of the 
RRR-robot should be provided, too. 

The goal is to derive both kinematic and dynamic 
models in closed-form and thus make the computation of 
kinematics and dynamics more efficient. A given accuracy 
of both forward and inverse kinematics solutions [l] is 
achieved much faster using the closed-form representation 
but using common numerical techniques [3]. As such, 
closed-form solutions of the kinematics are preferable for 
real time control. A closed-form representation of the 
dynamics enables an explicit analysis of each dynamical 
effect, and a direct evaluation of its influence on robot 
behavior. Direct insight into the model structure makes 

adequate compensation for each nonlinear aspect of the 
dynamics easier. For example, a closed-form model of 
gravitational effects can be used in the compensation of 
nonlinear gravitational loads. Although an implementation 
of the dynamics in explicit closed-form form requires 
more computational efforts compared with commonly 
used recursive techniques [ 1,2], its use for motion control 
is possible due to the computational power of modem 
digital controllers. Moreover, it ensures accurate calcula- 
tions and thus it is suitable for practical use. Unfortu- 
nately, the derivation of closed-form models in compact 
form, particularly dynamic models, usually is not a 
straightforward task, but it demands a series of operations 
accompanied by a permanent check for errors and simpli- 
fication of intermediate results. Hence, it is valuable to 
report any contribution in this area. 

When a model is available, the next step is estimation of 
its parameters. Kinematic parameters, such as, link 
lengths, twist angles and link offsets, are usually known 
with better accuracy than inertial ones: link masses, loca- 
tion of respective centers of gravity and moments of 
inertia [SI. The kinematic parameters are either directly 
provided by the manufacturer, or can be achieved by direct 
measurements on the robot. Correct values of the dynamic 
parameters are rarely provided directly by a manufacturer, 
but they should be estimated from applied excitations 
(control torques) and measured responses (joint positions, 
velocities and accelerations) [9,10]. For the RRR robot, 
the kinematic parameters are derived from manufacturer 
data, while the inertial ones are estimated using 
experimental data. A detailed description of the estimation 
procedure is given in [l 13. Here we only report results 
using a neural-network friction model [12] rather than 
using the LuGre model [ 131, as it has been done in [ 1 11. 

In this paper we do not treat the estimation, but we 
focus on model validation. It should show the relevancy of 
the models and estimated parameters. A writing task [14] 
is particularly suitable for that purpose. It features non- 
uniform joint motions and imposes significant demands on 
the dynamics, such as high accelerations and inertial loads 
[15]. Hence, a proper behavior of the models in this task 
improves our confidence in their correctness. 

The experimental set-up is described in Section 11. A 
closed-fonn kinematic model is given in Section 111. 
Section Iv presents a closed-form formulation of the robot 
dynamics. The model validation with a writing task is 
described in Section V. Final remarks are given at the end. 
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11. EXPERIMENTAL SET-UP 
Our robot, shown in Fig. 1, has three revolute degrees 

of freedom (dof): waist, shoulder and elbow. They are 
implemented in an anthropomorphic manner, which is a 
usual kinematic architecture for industrial robots [3]. Each 
joint has an infinite range of motion thanks to the use of 
slip-rings for the transfer of power and sensor signals. 
Joints are actuated by direct-drive brushless DC motors 
with electronic commutation. Lack of gear-heads and 
counter-weights complicates motion control, as they may 
reduce nonlinear effects [4]. The motion controllers are 
implemented on a PC-based hardware/software platform 
that enables high flexibility in evaluation of a diversity of 
control laws. Current invertors are used to amplify control 
signals before they are applied to the motors. 

x, f ... . . . . . . , . . Y A 3  

dof Link twist 
(=i) (=ai) 

orientation of the end-effector, given the configuration 
variables q1 , q2 and q3 , ha3 a standard form [l]: 

Link length Joint angle Link offset 
(=ai) ( = q i )  (=di ) 

(3) 

1 

2 

Elements of the orientation matrix 0 are as follows: 

oI1 = cosq, cos(q2 + q3)  , o12 = -cosq, sin(q2 + q 3 ) ,  
013 = sin q l ,  02, = sin q1 c0s8(q2 + q 3 )  , 
022 = -sinql sin(q2 + q 3 ) ,  023 = -cosql , 
031 = sink2 + q 3  1 , 032 = cos(q2 + q 3  1 , 033 = 0 . (4) 

Cartesian coordinates of the robot’s tip are: 

x = cosq, (a3 cos(q2 + q3)  + a2 cos q 2 )  + (d2 + d3) sin q l ,  

y = sinql(a3 cos& + q 3 )  + a2 cosq2) -(d2 + d3)cosql, 
z = a3 sin(q2 + q 3 )  + a2 sin(q2) + dl . ( 5 )  

The inverse kinematics (mapping from the operational 
to configuration space) is formulated in closed-form: 

x(d, + d,)  + yJx2 + y 2  - (d2 + d3)2  
q1 =asin 

x2 + y 2  
9 

7c/2 0 41 COG 
0 P l G  q 2  ClPl 

y2 * ..$ 
n””’ .... ....... , -” 

I I I I ._ 

In the following, we consider two spaces: 
o operational, induced by tip Cartesian coordinates: 

x=[x y ZIT, (1) 

o configuration, induced by joint motions: 
9 = [4i q 2  q31T (2) 

The homogenous transformation defining position and 

q3 =atan 2 2 2 2  
Pwh i- PHW - a2 - a3 

9 

2ts2 a3 

The closed-form representation of the inverse kinematics 
has at least three advantages: (0 it enables direct 
recognition of “irregular” robot configurations, such as 
kinematic singularities; ( i i )  by specifying a sign in the 
fourth formula of (6)  we may explicitly control the actual 
posture [3] - the robot can reach each point either with the 
elbow up (- sign) or with the elbow-down (+ sign); (iii) it 
requires far less computa.tiona1 efforts with respect to 
equivalent numerical methods [ 1,3]. The last property will 
be verified by an example presented in Section V. 

IV. ROBOT DYNAMICS IN CLOSED-FORM 
A dynamic model of the robot is derived using the 
Lagrange-Euler method [ 11, and has a standard form: 

D(S)ii + c ( q d  + h(q) = t Y (7) 

where q is defined by (2), q and q are vectors of joint 
velocities and accelerations, respectively, D is a 3x3 
inertia matrix, c and g are 3x1 vectors of Corio- 
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liskentripetal and gravitational effects, and t is a 3x1 
vector of joint torques. The current invertors provide a 
linear static relation between input voltages U; (excita- 
tions) and output torques of motors. This means: 

U: = (7, + Jm, ,q , ) /  k,,, +U{ , ( i  = 1,2,3), (8) 

where U{ , kt,, and Jm,, denote friction voltage, torque 
constant and a total rotor moment of inertia of the ith 
motor, respectively. Total moment of inertia is equal to the 
moment of inertia of a rotor itself, plus moments of inertia 
of all attached items, such as encoders, slip-rings, etc. 

A number of possibilities is available for modeling the 
friction [16]. Traditionally, only Coulomb and a viscous 
friction effects are taken into account [9,10], but they are 
not sufficient to describe the friction. Therefore, more 
sophisticated friction models are required. For the RRR 
robot satisfactory results are achieved by adopting the 
LuGre friction model [13]. It offers a nice compromise 
between mathematical complexity and a number of 
friction phenomena (such as Stibeck effect, frictional lag, 
etc.). Unfortunately, the estimation of its parameters is not 
time efficient, since it demands either a series of 
individual experiments accompanied with intermediate 
processing of measured signals [16], or a two-step 
procedure that combines time-domain with frequency 
domain data processing [ 1 11. Although, a properly 
estimated LuGre model can be used for high quality 
friction compensation [17], a long estimation time might 
be a problem for its frequent practical use, particularly 
when regular calibration of a dynamic model is required. 
An elegant way to improve time efficiency, maintaining a 
reasonable quality of the friction model, is to use a neural- 
network friction model [ 121: 

This model enables appropriate reconstruction of friction 
effects and has as simple implementation. The coefficients 
f i k ,  wjk and b, can be easily estimated using the 
Extended Kalman Filter technique. If the coefficients Wjk 

are fixed, then the neural-network model allows a parame- 
terization linear in the remaining friction coefficients, 
enabling use of much faster least-squares estimation 
techniques [9,10]. These techniques are common for esti- 
mation of robot inertial parameters. 

A dynamic model can be represented linearly in a 
minimum set of identifiable dynamic parameters, referred 
to as a base parameter set (BPS) [8]. Elements of the BPS 
are combinations of inertial parameters: link masses (mi ), 
Cartesian coordinates of link gravity centers ( x i  , y, , z, ), 
principle moments of inertias ( I=,, , Iw,, , Iz,, ), and 

products of inertias ( Iv,j , I p , j  , Zm,, ). 
For the RRR robot, a linear parameterization of a 

(9) 

131 1 

dynamic model has the form: 

U" = k;'R(q,q,q)p +uf , 

k,  = diag[k,,, k , , 2  k , 3  1 9 

(10) 

(1 1) 

where 

R(q, q, q) E lR3x16 is a regression matrix and p E lR16x1 is a 
vector of BPS elements. The elements of p and R are 
presented in closed-form in (12) and (1 3), respectively. 

These expressions reveal the complexity of the robot 
dynamics, but also enable independent analysis of 
particular dynamical effects. With elements of (13) 
containing the gravitational constant g we may assemble 
gravitational terms, with elements containing joint 
accelerations we may recover inertial terms, while the 
remaining elements define Coriolishentripetal terms. 
These terms can also be used for on-line compensation of 
the corresponding dynamic phenomena. A prerequisite for 
such use of a dynamic model is the knowledge of correct 
values of the model parameters, including friction. In the 
Introduction it has been already pointed out that proper 
parameter values are primarily achieved by estimation. A 
survey of estimation techniques is given in [9,10]. A 
systematic estimation procedure of both friction and BPS 
elements is suggested in [ll]. In this paper, a procedure 
from [I 11 is made even faster, since here we consider the 
neural-network friction model (9) instead of the LuGre 
model. Estimation of the friction coefficients is camed out 
for each joint independently, following the procedure 
suggested in [12]. After that, optimal excitations U" 

determined in [ 111 are applied to the joint actuators, and 
the resulting joint positions, velocities and accelerations 
are recorded. Friction effects uf are reconstructed by (9), 
and then subtracted from U". The term U" -uf is linear 
in p , as is obvious from (10). This linear relationship is 
exploited for estimation of p using the least-squares 
method. The quality of the model should be verified in 
simulations and experimentally. In the next section we do 
this with a writing task. 

V. MODEL VERIFICATION 
Writing and drawing tasks commonly require complex 

motions and accordingly they could be very demanding 
from the viewpoint of imposed dynamic loads. An 
extensive survey of research related with human writing is 
given in [14]. In the same reference a kinematic analysis 
of one representative writing task is presented. It consists 
of writing a sequence of letters presented in Fig. 2. This 
sequence can be mathematically described in closed-form, 
allowing specification of an arbitrary velocity profile. 
Freedom in defining velocity profiles enables quite 
demanding dynamic tasks, which is confirmed by analysis 
carried out in [15]. These properties can be exploited for 
verification of the kinematic and dynamic models. If the 



models behave properly in the writing task, we may 
expect equivalent behavior for an arbitrary motion tasks. 

Here, the tip of the robot should move along the planar 
path shown on the left hand side in Fig. 2 0, coordinate is 
fixed), with a continuos velocity profile 

v( t )  = Jm (14) 
presented on the right hand side in Fig. 2. The profile has 
fast and slow phases. 

Fig. 2. Reference operational tip motion (left) and velocity (right) 

For this reference trajectory, the inverse kinematics 
solution determines joint motions shown in Fig. 3. The 
joint velocities are presented in Fig. 4. These figures conf- 
irm our expectation that the specified writing task imposes 
non-uniform joint motions, with significant velocity and 
acceleration levels, These joint motions are compared with 

an inverse kinematics solutions calculated using a numeric 
method, implemented in the Robotics Toolbox for Matlab 
[18]. Guaranteed accuracy of the numeric solutions is 
below 1 O-" rad. Differences between the closed-form and 
the Robotics Toolbox solutions are within the accuracy of 
the latter ones, as by the error diagrams in Fig. 5.  This 
verifies the correctness of the equations (6). Moreover, the 
routine of the Robotics Toolbox requires 2783 Matlab's 
floating-point operations (flops) for each position of the 
considered motion, while the closed-form equations 
require only 102 flops. This confirms a well-known 
property that computations of inverse kinematics using the 
model in closed-form provide given accuracy in the most 
time-efficient way [3]. This is why the closed-form 
kinematic models are preferable for real-time applications. 

We verify the dynamic model using simulations and 
experiments. Control torques corresponding to the 
reference configuration motions and velocities (Figs. 3,4) 
are calculated using the model in closed-form, and then 
compared with torques generated using a numeric routine 
implemented in the Robotics Toolbox. The differences are 
caused by round-off effects, as shown in Fig. 6. This 
verifies correctness of the dynamic equations in closed- 
form. Moreover, due to non-optimal implementation of the 
Robotics Toolbox routine, the closed-form model also 
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requires lower computation effort, as it takes 393 flops for 
each position of the considered motion, while the Robotics 
Toolbox requires 1050 flops. It means that simulations of 
the robot dynamics can be carried out much faster using 
the model in closed-form. Finally, the closed-form 
formulation of the robot dynamics admits a real-time 
experimental implementation, as verified next. 

6 8 10 0 4Time [SI 
Fig. 3. Reference positions in configuration space 

21- I 

I 

4 .  6 8 10 Tim [SI 0 

Fig. 4. Reference velocities in configuration space 

I 

6 8 10 4Tim [SI -. 0 
Fig. 5. Differences between closed-form and numeric inverse 

kinematics solutions 
Consider a computed torque controller [ 191: 

(15) 
ui( t )=ul( t )  + u f ( t ) = u l ( q r e f ( t ) , i l r e f ( r ) , i i r e f ( t ) )  + 

+ kp, i  (q re f , i  ( t )  - qi ('1) + kd,i (4ref , i  ( t )  - 4i ( t ) )  

( i = 1,2,3 ). Adopt for reference motions qref ,; and veloci- 

ties qre f , ;  those shown in Figs. 3,4. The term U: is nomi- 

nal (feedforward) control component, used for compen- 
sation of nonlinear dynamics. The term U; is produced by 

a PD controller. In the first experiment we exclude U: 
and control the joint actuators using the PD controller 
only. Then we tune gains kp,i and kd,; to ensure stability, 
but allow a visible discrepancy between the desired and 
measured operational coordinates, as obvious from Fig. 7. 

6 8 10 4Tim [SI 0 

Fig. 6 .  Differences between closed-form and numeric inverse 

0.9 

0.8 

0.7 

N 0.6 

0.5 

0.4 

0.3 

- 
3 

dynamics solutions 
- 

- Executed 

I 
-0.2 -0.1 0 0.1 0.2 0.3 

x [ml 
Fig. 7. Reference sequence of letters and a sequence executed 

using a PD controller only 

Enabling U: in (15) significantly reduces the difference 
between the desired and executed sequence of letters, as 
obvious from Fig. 8. The signals U; and U;, shown in 
Fig. 9, reveal a dominant role of the nominal component 
U; determined fkom the model. The PD controller serves 
just for error correction, that inevitable occurs in real-life 
applications. As a similar effect is observed in the other 
two joints, we may conclude that the model (10)-(13) is a 
relevant representation of the RRR-robot's dynamics. 
Dominant contribution of the nominal controls is also 
confirmed by their higher RMS levels (in V) than the 
RMS levels of the PD controls: 

U" = [0.25 1.98 0.78IT VS. U' =[0.11 0.24 0.17IT. (16) 
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0.8 
- Reference 
- Executed . - 

-0.7 
E 
N0.6- 
U 

0.3 -0.2 -0.1 0, [mlO.l 0.2 0.3 

- 

Fig. 8. Reference sequence of letters and a sequence executed 
using PD and nominal control inputs together 

h i 

0.5 

0.4 

6 8 10 0 4Time [SI 
Fig. 9. Model and PD components of the control input applied to 

the second joint 

VI. CONCLUSION 
Kinematics and dynamics of an industrial-like robot 

with three rotational degrees of freedom are considered in 
the paper. Models of the robot kinematics and dynamics 
are derived in closed-form, and are presented in full detail. 
We verified several advantageous properties of these 
models: (i) computation efficiency, which is convenient 
for on-line applications, (ii) numeric accuracy, (iii) direct 
recognition of “irregular” robot configurations (e.g.. kine- 
matic singularities), (iv) possibility to control the operati- 
onal motions of the robot’s tip, which increases flexibility 
in defining motion tasks, (v) straightforward linear para- 
meterization of a dynamic model, which simplifies estima- 
tion of inertial parameters, (vi) use of the dynamic model 
for compensation of dynamic effects. We also verified that 

- 

- 
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