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Abstract

 
Effects of currents on wave motions in a two-fluid system are theoretically 
studied in this paper. Since super- and sub-harmonic waves are naturally 

generated by the interaction of arbitrary linear waves, it is of theoretical and 

practical interest to investigate the influence of pure currents not only on linear 

waves, but also on second-order waves. Solutions are derived using the 

perturbation technique. Internal Stokes waves recovered from present solutions 

are firstly discussed. Analyses of the super- and sub-harmonic interactions are 

carried out for the deep- and shallow-water configurations, respectively. 

Conditions resulting in the elimination of second-order waves are determined. 

Present solutions include and unify most existing theories for two- and single-fluid systems, and are of 

great importance to the analysis of random internal waves.
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1. Introduction

Interactions between waves and currents in a two-fluid system are of great importance to geophysical and 

engineering research. For pure wave motions, second-order bound waves are generated from the 

interaction between two arbitrary linear waves. There are two components of second-order waves, the sum-

frequency and the difference-frequency components, which refer to the super- and sub-harmonic 

components, respectively. Stokes [1847] derived the second-order solutions describing the self-interaction 

of the first-order waves for a single-fluid system. This self-interaction is a special case of the 

superharmonic interactions. The Stokes theory was extended by Hunt [1961] and Thorpe [1968] to 

examine the interfacial wave motion between two fluids of different densities. For random second-order 

waves generated by arbitrary linear waves, Liu [2006] derived solutions of super- and sub-harmonic waves 

in a two-fluid system in which the current effects and surface tension are not included. Most existing 

theories either for a single-fluid system or for a two-fluid system can be recovered from Liu’s solutions. 

In the presence of stream effects, most studies have focused upon the interactions between Stokes waves 

and currents. These studies assume that the speeds of upper and lower currents are uniform but different 
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in each layer. For example, Miles [1986] derived the solutions of wave-current interaction and analyzed the 

associated Kelvin-Helmholtz instability. Though current effects on Stokes waves have been well 

investigated, the theory of coupled effects between currents and super- and sub-harmonic waves is not well 

developed. Hence, the objective of the present study is to theoretically establish the second-order solutions 

of super- and sub-harmonic waves arising from the interaction between arbitrary linear waves and 

currents. Internal Stokes waves are examined. Solutions for the deep- and shallow-water configurations 

are investigated and critical conditions which result in the elimination of second-order waves are 

consequently determined. 

2. Derivation 

 

Fig.1 Definition Sketch 

A two-fluid system bounded by two rigid plates, as 

shown in Fig. 1, is used for analysis. The flow in each 

layer is assumed to be irrotational and inviscid. The 

symbols  , Ui , ρi and  hi represent the velocity 

potential for pure wave motions, the current speed, 

the density, and the undisturbed layer thickness for 

the upper (i=1) and lower (i=2) fluids, respectively. 

The horizontal coordinate is denoted by x, while z 

indicates the vertical coordinate starting at the 

undisturbed interface and pointing upward. The 

displacement of the interface is represented by η. 

The current in each layer is assumed to be uniformly 

flowing along the x direction. The governing 

equations and boundary conditions for the two-dimensional wave motions are as follows

,　　i = 1,2,
(1)

　　at　z = η,　　i = 1,2,
(2)

　at　z = η

(3)

　at　z = h1 and 　at　z = -h2,
(4)

where g andσ are the gravity and the surface tension coefficient, respectively. The symbol  is the 

difference in a quantity across the interface, namely  = F1-F2 where the subscripts 1 and 2 indicate the 

upper and lower layers, respectively. The velocity potentials and the displacement of interface are then 

expanded as

,
(5)

where the superscripts indicate the order of magnitude in powers of the wave slope ε, i.e. , 
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, etc. Inserting Eq.(5) into Eqs.(1) to (4) and expanding boundary conditions about z = 0 

using the Taylor-series expansion generate the wave system order by order. The first-order components are 

represented in the following complex forms

,
(6)

,
(7)

,
(8)

where c.c. denotes the complex conjugate of the preceding term, and. k andω are the wavenumber and 

frequency of linear waves. The relations between ,  and  are readily obtained

,
(9)

.
(10)

The linear dispersion relation associated with the effects of currents and surface tension is

.
(11)

From Eq.(11), the critical condition for the well-known Kelvin-Helmholtz instability (for detailed 

descriptions, see Drazin and Reid [1981]) can be recovered and shown as 

.
(12)

This critical condition indicates that when the difference of U1 and U2  exceeds the critical value, the initial 

disturbance will grow with time. It is also obvious that the existence of surface tension is advantageous to 

suppress the unstable phenomenon.

Based on the above first-order solutions, the corresponding governing equations and boundary conditions 

for second-order components are

,　i = 1,2,
(13)

, at　z = 0,　i = 1,2
(14)

,

at　z = 0, (15)

　at z = h1 and　 　at z = -

h2. 

(16)

In Eqs.(13) to (16), all second-order components appear in the left-hand sides, and the terms on the right 

denote the nonlinear effects arising from interactions of first-order components. The second-order 
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components, which contain the super- and sub-harmonic parts generated by the interaction of the linear 

waves (m-wave and n-wave), are assumed to be: 

,
(17)

,
(18)

,
(19)

where  ,   and the superscripts plus and minus denote the super- and sub-

harmonic interactions, respectively. After substituting Eqs.(17) to (19) into Eqs.(13) to (16), the second-

order amplitude  is solved 

,
(20)

where 

,
(21)

,
(22)

　and　 ,　i = 1,2.

(23)

Note that the magnitude of   defined in Eq.(23) suggests the magnitude of current speed in comparison to 

the individual wave phase velocity. The coefficients of velocity potentials are solved and given below 

,
(24)

.
(25)

3. Internal Stokes waves

Internal Stokes waves are of great significance and are examined based on above solutions in this section. 

The Stokes theory is apparently a special case of superharmonic interactions and always attracts a great 

deal of attention. The interface displacement for the second-order Stokes theory with current effects is 

recovered from the superharmonic component of Eq.(20)

,
(26)

where S represents the quantity for Stokes waves and 

,　i = 1,2.
(27)
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Eq.(26) is equivalent to Mile’s result [1986]. If one neglects the current effects and surface tension, Eq.(26) 

can be further reduced to 

.
(28)

Eq.(28) is identical to that given by Hunt [1961] and Thorpe [1968]. The well-known phenomenon of 

Stokes waves is that the shape of wave crests and troughs will be slightly modified due to the second-order 

effects (cf. Liu [2006] and Liu and Hwung [2006]). It is noted that only the superharmonic component is 

considered in the classical Stokes theory. As for the role of subharmonic components, Chen [2006] 

analyzed the set-down phenomenon for second-order Stokes theory for a single-fluid system by comparing 

the Stokes theory and the bichromatic wave theory. It is observed that the subharmonic wave components 

play an important role in changing the mean water level. Therefore, in present study, if one assumes 

frequencies of two first-order waves approach to each other, the subharmonic solution is ( ω
n
 → ω

m
 = ω, kn 

→  km = k) 

,
(29)

where 

,
(30)

,
(31)

and C≡ω/k,  in which C and Cg can be readily obtained from the linear dispersion relation. 

With the assumption , above limiting subharmonic solution which is non-oscillatory 

and influences only the mean water level should be incorporated into Eq.(28) in order to represent Stokes 

theory more completely. Since general second-order wave theory (cf. Liu[2006]) contains the subharmonic 

effects, one could achieve the coincidence between the Stokes theory and general theory by adjusting the 

Bernoulli constant appearing in the dynamic boundary condition. 

4. Analyses of the deep- and shallow-water approximations

In this section, the super- and sub-harmonic interactions are examined for the deep-water and shallow-

water configurations, respectively. It should be noted that the assumption that km > kn > 0 is made 

throughout this section. For the deep-water configuration, wavelengths of all waves are assumed to be 

much smaller than thicknesses of both layers. Hence, values of all hyperbolic tangent functions appearing 

in Eqs.(20) to (23) will approach unity. The resulting second-order amplitude is 

, (32)

where 

.

(33)
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Assuming　 , the condition for  　 is determined by

. (34)

Eq.(34) indicates that, when the summation of current speeds is equivalent to the summation of phase 

velocities of two basic waves, the second-order effects on wave amplitude will be zero. As for the 

subharmonic case, the condition becomes 

. (35)

which results in . Eq.(35) shows that no second-order amplitude occurs if the summation of 

current speeds is equivalent to the summation of the group velocity and the phase velocity of the longer 

basic wave. 

For the shallow-water configurations, wavelengths of all waves are assumed to be much longer than 

thicknesses of both layers. This leads to

,
(36)

where 

,
(37)

.
(38)

It is found that the coupled effects between waves and the upper (lower) current dominate the magnitude 

of second-order amplitude while h1/h2 << 1 (h1/h2 >> 1). If one further imposes the restriction of narrow-

band frequencies into above results, Eq.(36) can be further simplified to be 

,

(39)

,

(40)

where ,  ∆k = km - kn and . On the basis of Eqs.(39) and (40), one can determine the 

conditions resulting in the elimination of second-order amplitude under specific assumptions. For 

example, if the speed of upper current is equivalent to the group velocity while h1 << h2, the second-order 

amplitude for the subharmonic case would be zero. 

5. Conclusions 

The wave-current interaction in a two-fluid system is investigated in present study. Super- and sub-
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harmonic components are included in second-order solutions. Based on present solutions, subharmonic 

component missing in the classical Stokes theory is discussed. For the deep-water and shallow-water 

configurations, the conditions resulting in the elimination of second-order amplitude are determined. 

Moreover, most existing theories for two- and single-fluid systems are included and unified in present 

solutions.  
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