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A connection between precision and downside expected lost revenue for linear systems
was developed in previous work. Having the value of precision and accuracy in economic
terms helps justify the upgrade of instrumentation and/or the increase in corrective
maintenance repair rate. The connection between accuracy and economic value is
extended in this article to the case where biases are present and in the context of existing
corrective maintenance capabilities. © 2005 American Institute of Chemical Engineers
AIChE J, 52: 638–650, 2006
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Introduction

Better monitoring, that is, more precise or accurate measure-
ments or estimators of key process variables, is a desirable
goal. In particular, we need these good data for several activ-
ities: control, on-line optimization, parameter estimation, and
production accounting, among others. One way in which this is
done is through data reconciliation.1 One problem that is asso-
ciated with good monitoring is the efficient location of sensors,
for which there are a variety of methods.2

One of the major obstacles in industry for the justification
of instrumentation upgrade projects or the purchase/instal-
lation of software that will improve monitoring is that the
cost is known, but the benefit (in economic terms) is unclear
in some cases. In previous articles,3,4 a statistical analysis
was made to determine the economic value of precision. A
formula was developed for such value based on the down-
side expected loss that occurs when an operator adjusts the
throughput of a plant when the measurements or estimators
obtained through data reconciliation suggest that the tar-
geted production is met or surpassed. However, there is a
finite probability that the measurement or estimator is above
the target when, in fact, the real flow is below it; hence, the
expected financial loss calculation. The associated probabil-
ity (25%) is viewed as the confidence with which these
expected losses is known. For the case of low process
variability (steady state), the expected financial loss is pro-

portional to the precision (standard deviation) of the esti-
mator, a remarkably simple formula.

While precision is important, most instruments present biases
and, therefore, the theory of economic value of precision needs to
be extended to include them. To understand how biases corrupt
the estimators, Bagajewicz5 has defined the concept of software
accuracy, which is based on the notion that data reconciliation
with some test statistics is used to detect biases. This definition is
based on an extension of the definition of accuracy for individual
measurement. Indeed, accuracy is defined as the sum of precision
and bias,5 which in the case of individual measurements cannot be
assessed from the measurement itself. In turn, if measurements are
redundant through a model, one can perform statistical tests and
detect these biases, but only after they have reached a certain
threshold value. Below this threshold, the bias goes undetected
and smears all the estimators, including those of the variables for
which the corresponding instrument has no bias, called induced
bias. Thus, software accuracy of a variable is defined as the sum
of the precision (standard deviation) of the estimator plus the
maximum possible undetected induced bias in that variable due to
a sensor bias anywhere in the system, including the instrument
measuring the variable itself. We use this concept here to guide the
analysis.

This article is organized as follows: Previous work is
reviewed first. Then, the probability of financial losses in the
presence of biases is discussed and an expression is derived.
The cases of one, two, and many biases present in the system
are treated and then illustrated for selected special cases.
Next, an expression for the downside financial loss is pre-
sented. Finally, the way to analyze the trade-off between
value and cost through the use of net present value is briefly
discussed. Finally, an example is shown.
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Economic Value of Accuracy in Mass Flow Rates
Preliminaries

Bagajewicz et al.3 argued that a typical refinery consists of several
tank units that receive the crude, several processing units, and several
tanks where products are stored, all this summarized in three blocks
as in Figure 1. In this Figure, the last block represents the tanks, and
the inventory associated is represented by HS(T), where T is the
window of time under consideration. The system has feed streams mr,
intermediate streams mI, and product stream mp

They argued that the probability of not meeting the targeted
production is P{HS(T) � H*S}, where H*S is a target value. This
probability can be rewritten as P{mp(t) � m*p}, where m*p is a
target flowrate. This is the probability of the true value of mp being
smaller than the target. Let m̂p be the estimate one has of the true
value of mp obtained through direct measurement or through data
reconciliation. Consider that production is adjusted to meet the
targeted value, based on the estimate. In other words, if m̂p � m*p,
production is increased; and vice versa, if m̂p � m*p, production is
decreased. Bagajewicz et al.3 assumed, however, that when m̂p �
m*p, that is, when the measurement indicates that the target has
been met or exceeded, the operator would not do any correction to
the set points. They argue that the probability of this being incor-
rect, that is, that reality is that the true flowrate is lower than the
target, is given by the following conditional probability P{mp �
m*p�m̂p � m*p}, for which they derive the following expression:

P�m̂p � m*p�mp � m*p�

� �
��

m*p ��
m*p

�

gM(� ; mp, �̂p)d��gP�mp; m*p, �p�dmp (1)

where gM(�; mp, �̂p) is the probability distribution of measurements
around the real value, and gP(mp; m*p, �p) is the probability distribu-
tion of the real value around the targeted mean. The integral is taken

over all possible values of mp below the target because of the under-
lying assumption that mp is lower than the target.

Effect of biases on the probability distribution

When there is a bias, induced or not, it could go undetected,
which means it has an absolute value size smaller than
�̂p,max

i1, . . . ,inb, which is the maximum induced bias that goes un-
detected by the maximum power measurement test when there
are nb gross errors. This value is a function of the existing
instrumentation precision and the method being used to detect
gross errors. When there is no redundancy, this value is,
theoretically, infinite, but in practical terms, when the bias
reaches a certain value �p

#, it becomes truly apparent to the
operator that there is a bias and, hopefully, the instrument is
calibrated. When there is redundancy, the value is finite and
depends on the method used. We therefore concentrate on
redefining gM(� ; mp, �̂p) to include the possibility of biases.

Assuming one gross error in variable i and none in the others
(that is, nb 	 1), we have

gM � gM
R,i�� ; mp, �̂p,i

R � ��̂p
i � � �̂p,max

i (2)

where �̂p,i
R is the residual precision left after the measurement of

variable i has been eliminated, �̂p
i is the induced bias in the

estimator of mp, which is a function of the original bias, �i, that is,
�̂p

i 	 �̂p
i (�i). We note that under the condition of one and only one

bias present in the system, certain tests like the maximum power
and GLR tests are consistent, that is, if one bias is present, then
when these tests flag positive, they point to the correct location of
the bias. This assumption is important because in the absence of
consistency, the assumption implicit in Eq. 2, that the right mea-
surement will be eliminated, is no longer valid. From now on, we
will assume consistency in gross error detection. In turn, when the
induced gross error is smaller than the threshold of detection, then
it is undetected and therefore:

gM � gM�� ; mp � �̂p
i , �̂p� ��̂p

i � � �̂p,max
i (3)

Thus, the probability of the estimate to be higher than the true
value, given a bias in measurement i, is now given by:

P�m̂p � m*p��i� � ����

m*p ��
m*p

�

gM(� ; mp, �̂p,i
R )d��gP(mp; m*p, �p)dmp ��̂p

i � � �̂p,max
i

�
��

m*p ��
m*p

�

gM(� ; mp � �̂p
i , �̂p)d��gP(mp; m*p, �p)dmp ��̂p

i � � �̂p,max
i

(4)

which is a direct extension of Eq. 1 to the presence of one gross
error.

Let us assume that when an instrument fails, which happens
according to a certain probability fi(t) (a function of time), the size
of the bias follows a certain distribution hi(	; �� i, 
i) with mean �� i

and variance 
i
2. Note that, depending on the value of the mea-

surement in the range of the instrument, the mean is very likely to

be nonzero.3,6 We are also assuming here that the gross error size
distribution is independent of time. Thus, we now need to inte-
grate over all possible values of the gross error and multiply by the
probability of such bias to develop. Therefore, if we assume that
one instrument fails at a time, then, the probability of instrument
i failing and the others not is given by: 
i

1 	 fi(t) �s�i [1 � fs(t)].
Thus,

Figure 1. Material balance in a refinery.
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P�m̂p � m*p�i� � 
i
1 �

��

�

P�m̂p � m*p�	�hi�	; �� i, 
i�d	 � 
i
1 �

��

��� i
p ��

��

m *p ��
m*p

�

gM(� ; mp, �̂p,i
R )d��gP(mp; m*p, �p)dmp�

� hi�	; �� i, 
i�d	 � 
i
1 �

��� i
p

�� i
p ��

��

m*p ��
m*p

�

gM(� ; mp � �̂p
i (	), �̂p)d��gP(mp; m*p, �p)dmp�hi�	; �� i, 
i�d	

� 
i
1 �

�� i
p

� ��
��

m*p ��
m*p

�

gM(� ; mp, �̂p,i
R )d��gP(mp; m*p, �p)dmp�hi�	; �� i, 
i�d	} (5)

where P{m̂p � m*p�i} indicates that the probability is conditional to
the presence of one gross error in stream i. In turn, �̃i

p is the
absolute value of the error in stream i that corresponds to the
maximum undetectable (or minimum detectable) induced bias in
stream p (�̂p,max

i ). Eq. 5 has three terms on the right hand side, one
integral from �� to ��̃i

p, another term from ��̃i
p to �̃i

p, and a third
one from �̃i

p to �, representing the three different regions where
the integrand changes. Operating:

P�m̂p � m*p�i�

� 
i
1��

��

m*p ��
m*p

�

gM(� ; mp, �̂p,i
R )d��gP(mp; m*p, �p)dmp�

��
��

�̃i
p

hi(	; �� i, 
i)d	 � �
�̃i
p

�

hi(	; �� i, 
i)d	�
� 
i

1 �
��̃i

p

�̃i
p ��

��

m*p ��
m*p

�

gM(� ; mp � �̂p
i (	), �̂p)d��

� gP(mp; m*p, �p)dmp�hi�	; �� i, 
i�d	

(6)

Thus, the probability of having the measurement above the target
in the presence of one and only one gross error in the system is
given by the probability of one gross error in variable i1, OR one
gross error in variable i2, and so on. Therefore, since all the events
are assumed independent, the probability of having one measure-
ment to be above the target when one gross error is present in the
system is:

P�m̂p � m*p�nb � 1� � �
@i

P�m̂p � m*p�i� (7)

Effect of biases on the probability distribution for more
than one gross error

Consider now that two instruments at a time can fail. Then
we write: 
i1,i2

2 	 fi1(t) fi2(t) �s�i1,s�i2 [1 � fs(t)].
Thus, we write:

P�m̂p � m*p�i1, i2� � 
i1,i2
2 �

��

� �
��

�

� P�m̂p � m*p�	1, 	2�hi1�	1; �� i1, 
i1�hi2�	2; �� i2, 
i2�d	1d	2

(8)

To evaluate the above integral, one needs to recognize that one
cannot use any of the fixed limits obtained for the maximum
undetectable (or minimum detectable) induced bias in stream p
calculated for single gross errors, �̃i1

p and �̃i2
p (corresponding to

�̂p,max
i1 and �̂p,max

i2 ), as limits. These limits of detectability come
in pairs, and there are infinite pairs that constitute thresholds. In
other words, �̂p,max

i1,i2 	 �̂p,max
i1,i2 (�̃i1

p , �̃i1
p ), does not have a unique

inverse. This means that one has to have a test to choose which
distribution function needs to be used for each value of the
integrand. We therefore define the following function:

G��i1, . . . �ip��i1, . . . �inb�

� �1 If the MP test will flag positive for �i1, . . . �ip

0

(9)

where the test would flag for all streams �i1, . . . �ip, in the
presence of the nb errors located in �i1, . . . �inb

. Consistency
in this context means that the set {�i1, . . . �ip} is a subset of
{�i1, . . . �inb

}, that is, some errors are too small to be de-
tected, but those detected are in fact true biases. This de-
tection can take place consecutively in a serial elimination
fashion or by means of some other collective tests like
UBET7 or SICC.8 Therefore:

P�m̂p � m*p�i1, i2� � 
i1,i2
2 �

��

� �
��

�

P�m̂p

� m*p�	1, 	2�hi1�	1; �� i1, 
i1�hi2�	2; �� i2, 
i2�d	1d	2 (10)

where
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P�m̂p � m*p�	1, 	2� � �
��

m*p

G(	1, 	2�	1, 	2) �
m*p

�

gM(� ; mp, �̂p,i1,i2
R )d� �

[1 � G(	1, 	2�	1, 	2)]

�
m*p

�

gM(� ; mp � �̂p
i1,i2(	1, 	2), �̂p,m)d�

� G(	1�	1, 	2) �
m*p

�

gM(� ; mp � �̂p,m
i2 (	2), �̂p,i1

R )d�

� G(	2�	1, 	2) �
m*p

�

gM(� ; mp � �̂p
i1(	1), �̂p,i2

R )d�

gP�mp; m*p, �p�dmp (11)

where the condition G(	1, 	2�	1, 	2)  G(	1�	1, 	2) 
G(	2�	1, 	2) � 1 holds naturally, that is, either the two gross
errors flag, or only one of them flags, or none flags. For
example, if G(	1, 	2�	1, 	2) 	 0, no bias has been identified
and the proper distribution is the one around the true value plus
the induced bias �̂p

i1,i2(	1, 	2) with the estimator’s variance.
Conversely, if G(	1, 	2�	1, 	2) 	 1, the two gross errors 	1

and	2 are of sufficient size to be identified, and the proper
distribution is one around the true value with the residual
variance �̂p,i1,i2

R obtained after the measurements on i1 and i2
have been eliminated. The rest of the terms for the cases where
only one bias is identified and the other not, are similar. Note
again that we are assuming consistency. Thus, we have:

P�m̂p � m*p�nb � 2� � �
@i,k

P�m̂p � m*p�i, k� (12)

for three gross errors, 
i1,i2,i3
3 	 fi1(t) fi2(t) fi3(t) �s�i1,i2,i3

[1 � fs(t)], and we write

P�m̂p � m*p�i1, i2, i3� � 
i1,i2,i3
3 �

��

� �
��

� �
��

�

P�m̂p � m*p�	1,

	2, 	3�hi1�	1; �� i1, 
i1�hi2�	2; �� i2, 
i2�hi3�	3; �� i3, 
i3�d	1d	2d	3

(13)

where

P�m̂p � m*p�	1, 	2, 	3� � �
��

m*p

G(	1, 	2, 	3�	1, 	2, 	3) �
m*p

�

gM(� ; mp, �̂p,i1,i2,i3
R )d� �

[1 � G(	1, 	2, 	3�	1, 	2, 	3)]

�
m*p

�

gM(� ; mp � �̂p
i1,i2,i3(	1, 	2, 	3), �̂p)d�

� G(	1, 	2�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i3(	3), �̂p,i1,i2

R )d�

� G(	1, 	3�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i2(	2), �̂p,i1,i3

R )d�

� G(	2, 	3�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i1(	1), �̂p,i2,i3

R )d�

� G(	1�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i2,i3(	2, 	3), �̂p,i1

R )d�

� G(	2�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i1,i3(	1, 	3), �̂p,i2

R )d�

� G(	3�	1, 	2, 	3) �
m*p

�

gM(� ; mp � �̂p
i1,i2(	1, 	2), �̂p,i3

R )d�

gP�mp; m*p, �p�dmp

(14)
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Thus,

P�m̂p � m*p�nb � 3� � �
@i,k,s

P�m̂p � m*p�i, k, s� (15)

Generalizing 
i1,i2, . . . ,inb

nT 	 fi1(t) . . . finb
(t) �s�i1, . . . ,s�inb

[1 � fs(t)], we write:

P�m̂p � m*p�i1, . . . , inb� � 
i1, . . . inb

nT �
��

�

. . .�
��

�

P�m̂p

� m*p�	1, . . . , 	inb�hi1�	1; �� i1, 
i1�. . .hinb�	inb; �� inb, 
inb�d	1. . .d	inb

(16)

where

P�m̂p � m*p�	1, . . . , 	inb� � �
��

m*p

G(	1, . . . 	nb�	1, . . . , 	nb) �
m*p

�

gM(� ; mp, �̂p,i1, . . . ,inb

R )d�

�1 � Gnb(	1, . . . 	nb�	1, . . . , 	nb)]

�
m*p

�

gM(� ; mp � �̂p
i1, . . . ,inb(	1, . . . , 	inb), �̂p,m)d�

� �
k

Hnb�1(	k)

�
m*p

�

gM(� ; mp � �� p
k, �̂p,k

R )d�

� �
k,s

Hnb�2(	k, 	s) �
m*p

�

gM(� ; mp � �� p
k,s, �̂p,k,s

R )d�

� . . . � �
k

G1(	k�	1, . . . , 	nb)

�
m*p

�

gM(� ; mp � �̂p,m
i2 (	2), �̂p,�k�

R (	1))d�

gP�mp; m*p, �p�dmp

(17)

In this expression we have used Hs(	k1
, 	k2

. . .	ks
) 	

G(	1, . . . 	k1�1, 	k11, . . . 	k2�1, 	k21, . . . 	k3�1, 	k31, . . . ,
	nb

�	1, . . . , 	nb
). In addition, we define �̂p,�k�

R as the residual
precision when all but the gross error in stream k is eliminated,
that is, �̂p,�k�

R
� �̂p,i1, . . . k�1,k1, . . . inb

R . Finally, �� p
k1,k2, . . . ks 	

�̂p
i1, . . . ik1�1,ik11, . . . ,ik2�1,ik21, . . . ,iks�1,iks1, . . . ,inb. Thus,

P�m̂p � m*p�nT� � �
@i1,i2, . . . ,inT

P�m̂p � m*p�i1, i2, . . . inb� (18)

Since all events are mutually exclusive, the probability is given
by:

P�m̂p � m*p� � �
r	0

n

P�m̂p � m*p�r� (19)

Note that the summation includes the case r 	 0, which is the
case where no gross errors are present. Thus, using a result
from Bagajewicz et al.,1 we have

P�m̂p � m*p� � 
0�1

4
�

1

2	 �
0

�

erfc( z�p/�̂p,m)e�z2
dz�

� �
r	1

n

P�m̂p � m*p�r� (20)

where 
0 is the probability of no gross error being present.

Examples for special cases

We now explore some special cases. For example, for nor-
mal distributions and �p/�̂p 3 0, P{m̂p � m*p�i} becomes:

P{m̂p � m*p�i} �

i

1

4 ��
��

��̃ i
p

hi(	; �

�

i, 
i)d	 ��
�̃ i

p

�

hi(	; �� i, 
i)d	�
�


i
1

2 �
��̃i

p

�̃ i
p �

1

2
erfc�� �̂p

i (	)

	2 �̂p
� �̂p

i (	) � 0

1 �
1

2
erfc� �̂p

i (	)

	2 �̂p
� �̂p

i (	) � 0
hi(	; �� i, 
i)d	

(21)
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We now assume that hi is also normal, and also note that5 �̂p
i (	 )

	 �p
i 	. In such a case,

P�m̂p � m*p�i� �

i

1

4 �
1

2
erfc� (�̃i

p � �� i)

	2 
i
� � 1 �

1

2
erfc��

(�̃i
p � �� i)

	2 
i
� �̃i

p � �� i � �

1

2
erfc�(�̃i

p � �� i)

	2 
i
� �

1

2
erfc�(�̃i

p � �� i)

	2 
i
� ��̃i

p � �� i � �̃i
p

1 �
1

2
erfc��

(�� i � �̃i
p)

	2 
i
� �

1

2
erfc�(�̃i

p � �� i)

	2 
i
� �� i � ��̃i

p

 �


i
1

4

�

i

1

4	 ������̃i
p��� i�/	2 
i�

���� i/	2 
i�

erfc��
�p

i (�� i � t	2 
i)

	2 �̂p
�e�t2

dt ��
���� i/	2 
i�

���̃ i
p��� i�/	2 
i�

erfc��p
i (�� i � t	2 
i)

	2 �̂p
�e�t2

dt �p
i � 0

� �
����̃ i

p��� i�/	2 
i�

���� i/	2 
i�

erfc��p
i (�� i � t	2 
i)

	2 �̂p
�e�t2

dt ��
���� i/	2 
i�

���̃ i
p��� i�/	2 
i�

erfc��
�p

i (�� i � t	2 
i)

	2 �̂p
�e�t2

dt �p
i � 0
 (22)

which for the case of zero mean (�� i 	 0) reduces to:

P�m̂p � m*p�i� �

i

1

4
(23)

Then, for a normal distribution of biases with zero mean and
negligible process variation, we have

lim
�p/�̂p30

P�m̂2 � m*2� �

0

4
�


i
1

4
� �

r	2

n

P�m̂2 � m*2�r� (24)

In turn, for two gross errors and under the same assumptions
of normality and negligible process variations, we have:

P�m̂p � m*p�	1, 	2� �
1

2

G(	1, 	2�	1, 	2)
1

2
�

[1 � G(	1, 	2�	1, 	2)]�
1

2
erfc��

�̂p
i1,i2(	1, 	2)

	2 �̂p
� �̂p

i1,i2(	1, 	2) � 0

1 �
1

2
erfc��̂p

i1,i2(	1, 	2)

	2 �̂p
� �̂p

i1,i2(	1, 	2) � 0

� G(	1�	1, 	2)�

1

2
erfc��

�̂p,m
i2 (	2)

	2 �̂p
� �̂p,m

i2 (	2) � 0

1 �
1

2
erfc��̂p,m

i2 (	2)

	2 �̂p
� �̂p,m

i2 (	2) � 0

� G(	2�	1, 	2)�

1

2
erfc��

�̂p,m
i1 (	1)

	2 �̂p
� �̂p,m

i1 (	1) � 0

1 �
1

2
erfc��̂p,m

i1 (	1)

	2 �̂p
� �̂p,m

i1 (	1) � 0


(25)

However

�G(	1,	2�	1,	2) � 1 when �1�	1� � �2�	2� � � ; �	2� � �2; �	1� � �1

G(	1�	1,	2)) � 1 when �1�	1� � �2�	2� � � and �	2� � �2

G(	2�	1,	2)) � 1 when �1�	1� � �2�	2� � � and �	1� � �1

(26)
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Indeed, the MT is given by: Zk
MP 	 (1/�Wkk)�Wki1	i1 

Wki2	i2�, where W 	 AT(A�AT)�1A. Then, it is clear that Zk
MP

	 (1/�Wkk)�Wki1	i1  Wki2	i2� 	 1.96 constitutes the line
below which the test will not flag positive for a 95% confidence
level.

Now, we may have that (1/�Wi2i2)�Wi2i1	i1  Wi2i2	i2� 	 s
� 1.96, but (1/�W�kk)�W�ki1	i1� � 1.96, where W�kk corresponds
to the system where the measurement in i2 was eliminated.
A similar equation can be derived for G(	i2).

It is cumbersome to integrate the above expressions analyt-
ically, so one has to resort to a numerical scheme. We now turn
our attention to the probabilities of failure.

Effect of the failure frequency

Now, if all instruments have the same failure and repair rate,
we have


j � �
i


i
j � �n

j �� 1

1 � ��
j� 1

1 � ��
n�j

(27)

where � is the ratio of repair rate to failure rate. Because the
probabilities of failure depend on the time elapsed since the
last repair, P{m̂p � m*p} is a function of time, which makes
matters more complicated. Indeed, as time goes by, the
above probability should increase until a failure occurs,
because the probability fi(t) is not constant. We will assume
a bathtub curve and ignore the burn in period. This is
discussed, for example, by Dhillon,9 and specifically as
applied to instruments by Bagajewicz.2 Thus, we will as-
sume that such rate is constant.

If the sensors are never repaired (or seldom repaired/cali-
brated), then f(t) is related to the service reliability Ri

s(t) as
follows:3

fi�t� � 1 � Ri
s�t� � 1 � e�rit (28)

where ri is the failure rate. However, when corrective mainte-
nance is performed, f(t) relates to the service availability func-
tion Ai

s(t), as follows2:

f�t� � 1 � Ai
s�t� �

ri

ri � �i
�1 � e��ri�i�t� (29)

where �i is the repair rate. In both cases, we start with a zero
probability of failure and build up to level off at one if no repair
is made, or at (ri/ri  �i) in case of repairs. When corrective
maintenance is performed, the usual case, the ratio of time to
reach 99% of the asymptotic value (ti

0.99) to the repair time
(1/�i), is given by:

�i
0.99 �

ti
0.99

�1/�i�
� ��i

ln 0.01

�1 � �i�
 4.61

�i

�1 � �i�
(30)

where �i 	 (�i/ri), the ratio of repair rate to failure rate.
Thus, for small values of �i, the probability of failure levels
off very quickly, whereas for �i � 1 the probability of failure
levels off at about 4.6 times the inverse of the repair rate to
level off. Notice that the failure rate for flowmeters (ri)
ranges from 0.1 to 10 failures/106 hours.10 However, these
are referred to as functional failure. When a noticeable loss
of calibration is also referred to as failure, which is the case
we are interested in, the numbers are higher. For simplicity,
we will use here the asymptotic constant value for the
probability of failure. This puts us in the worst condition and
makes the analysis conservative.

To get an idea of what range the values are, consider two
values of �i, 50 and 25. To get an idea of what these numbers
represent, assume that the failure rate of an instrument is one
failure per year, and that the repair rate is close to 20 repairs
a week, then �i	50. For the same repair rate, �i	12.5
corresponds to a failure rate of 3.5 failures per year. Table
1 shows the results of the sum of failure probabilities 
j

when all instruments have the same failure and repair rate.
For 10 instruments or less, we have that 
0  
1 � 0.99,

which indicates that the rest can be ignored. At larger plants,
like the refinery included in the article by Bagajewicz et
al.,1,3 which has 49 instruments, the ratio of repair to failure
rate is critical. For example, when �i	50, we have that 
0

 
1  
2 � 0.99 for n 	 20 and larger than 0.92 for n 	
50. The situation is not so good for the case of �i	12.5. In
this case, the probability of eight sensors or less failing is
larger than 0.99 (0.97 for seven sensors or less). In addition,

Table 1. Failure Probabilities as a Function of the Number of Sensors*

n


0 
1 
2

�i 	 50 �i 	 12.5 �i 	 50 �i 	 12.5 �i 	 50 �i 	 12.5

1 0.9804 0.9259 0.0196 0.0741
2 0.9612 0.8573 0.0384 0.1372 0.0004 0.0055
3 0.9423 0.7938 0.0565 0.1905 0.0011 0.0152
5 0.9057 0.6806 0.0906 0.2722 0.0036 0.0436
10 0.8203 0.4632 0.1641 0.3706 0.0148 0.1334
20 0.6730 0.2145 0.2692 0.3433 0.0511 0.2609
50 0.3715 0.0213 0.3715 0.0853 0.1820 0.1672

*All instruments with the same failure probability.
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notice that for 50 instruments, one has to go to very large
repair rates to have a sizable probability of no failure. This
is costly and, therefore, suggests that better instrumentation
should be bought to reduce the failure rate and also to reduce
the financial loss through larger accuracy, as we shall dis-
cuss below.

Downside Expected Financial Loss. In the absence of
biases, the downside expected financial loss is3:

DEFL0��̂p, �p� � �
��

m*p

gp�m*p, �p, mp�

� �KST �
��

m*p

(m*p � m̂p) gM(m̂p; mp, �̂p)dm̂p�dmp (31)

which resulted in the following expression for normal distri-
butions:

DEFL0��̂p, �p� � �KST�̂p���p/�̂p� (32)

where � 	 (1/ 2�2) �0
� �e��2

d� 	 0.19947 and �( x) 	
{(1/�x2  1)  x1/�(1/x  1)}.

Now, when there is one gross error present, the expected
financial loss is:

DEFL1�i � ��
��

m*p

KST��
��

m*p

(m*p � �) gM(� ; mp, �̂p,i
R )d��gP(mp; m*p, �p)dmp�

��
��

��̃ i
p

hi(	; �� i, 
i)d	 � �
�̃ i

p

�

hi(	; �� i, 
i)d	� � �
��̃ i

p

�̃ i
p ��

��

m*p

KST��
��

m*p

(m*p � �) gM(� ; mp � �̂p
i (	), �̂p)d��gP(mp; m*p, �p)dmp�

hi(	; �� i, 
i)d	



(33)

When the distributions are normal and �p/�̂p 3 0, we
have

DEFL1� i � DEFL0� �̂p
R,i

�̂p ���
��

��̃ i
p

hi(	; �� i, 
i)d	

� �
�̃ i

p

�

hi(	; �� i, 
i)d	� �
1

2
KST �

��̃ i
p

�̃ i
p ��

��

m*p

(m*p

� �) gM(� ; m*p � �̂p
i (	), �̂p)d��hi(	; �� i, 
i)d	 (34)

which with normal distributions of biases gives:

DEFL1�i � DEFL0�1 �
1

2
KST��2 � �3� (35)

where

�1 � �
1

2
erfc� (�̃i

p � �� i)

	2 
i
� � 1 �

1

2
erfc� (�̃i

p � �� i)

	2 
i
� �̃i

p � �� i � �

1

2
erfc� (�̃i

p � �� i)

	2 
i
� �

1

2
erfc� (�̃i

p � �� i)

	2 
i
� ��̃i

p � �� i � �̃i
p

1 �
1

2
erfc��

(�� i � �̃i
p)

	2 
i
� �

1

2
erfc�(�̃i

p � �� i)

	2 
i
� �� i � ��̃i

p

 (36)
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�2 �
1

2
KST

�̂pe
��� i

2/ 2
i
2��1��1/ 2
i

2r��

4
i	r

2 � erfc{	r(e � �̃i
p)} � erfc{	r(�̃i

p � e)} ��̃i
p � e � �̃i

p

erfc{	r���̃i
p � e�} � erfc{	r(�̃i

p � e)} ��̃i
p � e

erfc{	r(e � �̃i
p)} � erfc{	r(e � �̃i

p)} e � �̃i
p

(37)

�3 � �
�p

i

2	2 
i
�

��̃ i
p

0

	�2 � erfc��
�p

i 	

	2 �̂p
��e���	��� i�2/ 2
i

2�d	 �
�p

i

2	2 
i
�

0

�̃ i
p

	 erfc� �p
i 	

	2 �̂p
�e���	��� i�2/ 2
i

2�d	 �p
i � 0

�p
i

2	2 
i
�

��̃ i
p

0

	erfc� �p
i 	

	2 �̂p
�e��	��� i�2/ 2
i

2�d	 �
�p

i

2	2 
i
�

0

�̃ i
p

	�2 � erfc��
�p

i 	

	2 �̂p
��e���	�� i�2/ 2
i

2�d	 �p
i � 0

(38)

where r 	 (1/ 2�̂p
2
i

2)[[�p
i ]2
i

2  �̂p
2] and e 	 (�� i/ 2
i

2r). For
zero mean in the biases (��	 0), this expression reduces to:

DEFL1�i � DEFL0�� �̂p
R,i

�̂p
�erfc� �̃i

p

	2 
i
� �

1

4�
i	r

� [1 � erfc{	r �̃i
p}] �

��p
i �
i

2��̂p	2
�1 � e����̃ i

p�2/ 2
i
2��� (39)

Now, if the variance of the bias 
i is small compared to �̃i
p

(good instruments as compared to the existing redundancy), we
write:

DEFL1�i � DEFL0� �̂p
R,i

�̂p
� � O�e���̃i

p/	2 
i��̃i
p/
i� 
i � �̃i

p

(40)

reflecting the fact that almost all errors are detected. The
formula also indicates that when good accuracy is dependent
on only a few instruments, then the residual precision can be

a large number and, therefore, the financial loss increases
considerably. For example, if one has a system with orifice
meters (about 2% precision) and decides to install a coriolis
meter in stream p, then even if this meter has small biases,
its frequency of failure needs to be also very small. Other-
wise, the financial loss can make a big jump because the
residual precision increases considerably. It is, therefore,
better to install more instruments so that the residual preci-
sion does not deteriorate under one instrument failure so
much.

We also recognize that in the case where no data reconcili-
ation is performed, �̃i

p 	 0 @i � p 	 0 and �̃p
p 	 �p

# (usually
very large). In addition, �̂p

R,i 3 � (the estimator is lost), so we
use �p

#, the variance of the best estimate one can make.

DEFL1�p � DEFL0��p
#

�p
� (41)

which indicates that the downside financial loss can be large.
Returning to Eq. 39, when variable p has very high accuracy,

then �̃i
p is small compared to pi. Thus, in the limit we get a

different expression from Eq. 40:

DEFL1�i � DEFL0
� �̂p

R,i

�̂p
� � 	2

 � 	2 � � �̂p
R,i

�̂p
��x �

�
�p

i 
i

2�̂p
x2 �

2

3 	2

 �1

4 ��̂p
R,i

�̂p
� � 
i

2r�x3

� O�x4� �̃i
p � 
i (42)

The first term reflects the loss in precision due to the fact that
large gross errors have been detected and their measurement
eliminated. A large value of variance of the biases (
i

2) appears
to make matters better. This is because a smaller portion of
those biases will have value smaller than �̂i

p, and the rest will
be detected. However, one needs to remember that �̃i

p � 
i

and, therefore, this case would correspond to precise instru-
ments that are prone to have large biases, something not very
common.

In the case of no data reconciliation we get:

DEFL1�p � DEFL0���p
#

�p
��1 � 	2



�p
#


p
� �

2

	

�p
#


p

� O([�p
#/
p]

2)� �p
# � 
p (43)

And since �p
# � �p, this number can be very large.

A similar expression can be written for the case of two gross
errors starting from
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DEFL2�i1, i2} � �
��

m*p
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m*p
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� �
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� �
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�

G(	1�	1, 	2)hi1(	1; �� i1, 
i1)d	1

� �
��

� �
��

m*p

(m*p � �) gM(� ; mp � �̂p
i1(	1), �̂p,i2

R )d�
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gP�mp
R; m*p, �p�dmp (44)

which for the case of �p/�̂p 3 0 reduces to:

DEFL2�i1, i2} �
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� �
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i1)d	1

� �
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� �
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m*p

(m*p � �) gM(� ; m*p � �̂p
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R )d�
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(45)

The integral can be calculated by using the properties of the
functions G(	1, 	2�	1, 	2), G(	1�	1, 	2), and G(	2�	1, 	2).
This needs to be done numerically. The expression can be
generalized for a larger number of biases in a similar fashion.

Complete expression for the downside financial loss
To obtain a complete expression for the financial loss, we

add the financial loss corresponding to the different mutually
exclusive events multiplied by their frequency.
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DEFL � �0DEFL0 � �
i

�i
1DEFL0� i

� �
i1,i2

�i1,i2
2 � DEFL2� i1, i2 � . . . (46)

In the above expression, �0 are the average fraction of time
the system is in the state without biases, �i

1 the average
fraction of time the system has only one undetected bias only

in stream i, etc. These values are in fact equal to the probabil-
ities of each state.

As in our previous article,3 we recall that the assumption
was made that the operator will not introduce corrective
actions when the measurement is above the target. We
discussed that in the case where corrections to setpoints are
made when readings indicate that targeted productions are
exceeded, the result would be even worse. We leave the
discussion of this and many other simplifying assumptions
for future work.

Figure 2. Flow sheet for crude distillation unit.
Units: U1 –HEN; U2 –desalting unit; U3 –crude vessel; U4 –HEN; U5 –pre-fractionation tower; U6 –condenser; U7 –furnace; U8
–atmospheric tower; U9 –condenser; U10/1� U10/3 –pre-flash column; U11/1, U11/2 –atmospheric product dryer; U12 –furnace; U13
–vacuum tower; U14/1� U14/4 –pre-flash column.
Streams: crude oil: 1,2,3,8,9,43,44 –desalted crude oil: 12,13,47,49,50 –water 4,5,6,7,10,41,45,46,68 –hydrocarbon vapors: 48,56,61,62,63,65
–sour water: 11,42,48 –oily water: 52,57 –pre-fractionation products: 14,15 –atmospheric products: 17,19,23,24 –vacuum products:
27,28,29,30,31,37,67 –steam: 18,20,21,22,26,32,33,34,35,36,58 –
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Trade-Offs Between Value and Cost

We briefly discuss here the trade-offs, although they are not
the object of this article. In the case of buying a data reconcil-
iation package, one would write

NPV � dn�Change in DEFL� � Change in Cost (47)

where dn is the sum of discount factors for n years. The change
in cost includes now the cost of the license and/or the cost of
new instrumentation plus the increased maintenance cost.

The cost of maintenance is a function of the expected num-
ber of repairs. For a given instrument, this is given by2:

�i�t� � �i� 1

(1 � �i)
t �

1

ri[1 � �i]
2 (e��1�i�rit � 1)� (48)

Using this function, one can construct the net present cost of
maintenance for new instrumentation. In fact, larger mainte-
nance will reduce DEFL by reducing the frequency of failure

Example

It is quite clear that plants with a large number of instru-
ments, especially if the rate of repair is low, require the eval-
uation of a fairly large number of terms of Eq. 46. We will now
illustrate the results for a crude distillation unit (CDU) (Figure
2), which was used in our previous article.3,2 We will assume
that the instruments are fairly well maintained. The values of
mass flow for process streams and the reconciled values as well
as the costs for the products were given in our previous article.

Value of Performing Data Reconciliation. In our previous
article, we concluded that the net present value of performing
data reconciliation in this plant was $236,817, based on com-
parisons of DEFL0 only. Assume �i	 200, which is fairly high.
In such a case, we can assume that the likelihood of two
failures at the same time is smaller than 2.5%, rendering �0	
0.78 and �i

1	 0.195. To estimate the financial loss when there
is no data reconciliation performed, we use Eq. 43 assuming
that �p

# 	 3% (twice that of the measurement). For (�p
#/
p)	

0.25, we get ¥i DEFL1�i	 2.2363 DEFL0, which needs to be
added for all the instruments (a total of 15). Thus, a lower
bound for DEFL when no data reconciliation is made is about
$23.82 million (using a horizon of 5 years only).

If reconciliation is used, we use Eq. 40 to evaluate the
financial loss due to one gross error (we assume that the
variance of the bias is very small, that is, we have good
instruments and/or good maintenance). In this case, residual
precision for single faults is about �̂p

R,i 	 1.002�̂p (there are
several redundant measurements). This renders DEFL 	 7.38
million. Thus, the NPV of data reconciliation is 16.44 million.
This proves that in plants of this size, the financial loss due to
biases is far larger than the one due to precision.

Conclusions

In this article, the new concept of economic value of preci-
sion was presented. The concept was illustrated for the case of
the value added of data reconciliation as well as instrument
upgrade. Maintenance cost, however, is related to reliability of

instruments, or more precisely, the rate of failure audit is
related to the preventive maintenance policies. Failure of in-
strumentation reduces precision, and therefore reduces value
added. This feature as well as the relaxation of the simplifying
assumption used will be added in future work. This will also be
used in techniques to upgrade instrumentation.
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Notation

A 	 incidence matrix
Ai

s(t) 	 service availability of instrument i
dn 	 sum of discount factors for n years

DEFL0(�̂p, �p) 	 downside expected financial loss when no
gross error is present

DEFL1�i 	 downside expected financial loss when
one gross error is present in stream i

fi(t) 	 Probability of failure of instrument i at
time t.

gM(� ; mp, �̂p) 	 probability distribution of measurements
around the true value

gP(mp; m*
p, �p) 	 probability distribution of the real value

around the targeted mean.
G(�i1, . . . �ip��i1, . . . �inb

) 	 0-1 function indicating that the MP test
has detected errors �i1, . . . �ip out of nb

errors �i1, . . . �inb
HS(T) 	 tank hold up at the end of the time win-

dow T
H*

S 	 target hold up value
Hs(	k1

, 	k2
. . .	ks

) 	 auxiliary function
hi(	; �� i, 
i) 	 probability distribution of failure

mr 	 feed streams
mI 	 intermediate streams
mp 	 product stream
m*p 	 target flowrate
m̂p 	 estimator of the true value of mp

NPV 	 net present value
P{m̂p � m*

p�i} 	 probability of measured rate being larger
than the target in the presence of one gross
error in stream i

P{m̂p � m*
p�nb 	 1} 	 probability of measured rate being larger

than the target in the presence of one gross
error in the whole system

Ri
s(t) 	 service reliability of instrument i

ri 	 failure rate
T 	 window of time under consideration

W 	 auxiliary matrix (W 	 AT( A�AT)�1A)
Zk

MP: 	 maximum power Z statistics for variable k

Greek letters

�(x) 	 correction function to account for process variability
� 	 constant (	 0.19947)
�i 	 bias in variable i

�̂p,max
i1, . . . ,inb 	 maximum induced bias that goes undetected by the max-

imum power measurement test when there are nb gross
errors

�p
# 	 maximum expected undetected gross error in the absence

of redundancy
�̃i

p 	 absolute value of the error in stream i that corresponds to
the maximum undetectable (or minimum detectable) in-
duced bias in stream p (�̂p,max

i )
�̂p

i 	 induced bias in the estimator of mp

�� i 	 mean value of failure

i

1 	 probability of instrument i failing and the others not

i1,i2

2 	 probability of instruments i1 and i2 failing and the others
not
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i1,i2, . . . ,inb

nT 	 probability of instruments i1, i2, . . . and inb failing and the
others not


j 	 frequency of j instruments failing
�i 	 (�i/

ri) 	 ratio of repair rate to failure rate
�i 	 repair rate
�i 	 auxiliary terms
�0 	 the average fraction of time the system is in the state

without biases
�i

k 	 the average fraction of time the system has only k unde-
tected biases only in stream i


i
2 	 variance of failure

�̂p,i
R 	 residual precision left after the measurement of variable i

has been eliminated
�p

# 	 variance of the best estimate one can make without redun-
dancy

�̂p,�k�

R
	 residual precision when all but the gross error in stream k

is eliminated
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