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ABSTRACT

Online search in games has been a core interest of artificial
intelligence. Search in imperfect information games (e.g.,
Poker, Bridge, Skat) is particularly challenging due to the
complexities introduced by hidden information. In this pa-
per, we present Online Outcome Sampling, an online search
variant of Monte Carlo Counterfactual Regret Minimization,
which preserves its convergence to Nash equilibrium. We
show that OOS can overcome the problem of non-locality
encountered by previous search algorithms and perform well
against its worst-case opponents. We show that exploitabil-
ity of the strategies played by OOS decreases as the amount
of search time increases, and that preexisting Information
Set Monte Carlo tree search (ISMCTS) can get more ex-
ploitable over time. In head-to-head play, OOS outperforms
ISMCTS in games where non-locality plays a significant role,
given a sufficient computation time per move.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms

Algorithms

Keywords

Imperfect information games; online search; Nash equilib-
rium; Monte Carlo tree search; regret minimization

1. INTRODUCTION
Algorithms for creating strong strategies in games have

been a core interest of artificial intelligence research. Strong
strategies are useful not only as research benchmarks and
opponents in digital entertainment, but they are becoming
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increasingly important also in real world applications, such
as critical infrastructure security [36]. Because these games
are often played against unknown opponents, a good strat-
egy should be sufficiently robust against any possible coun-
terstrategy used by the adversary. In strictly competitive
games, the strategy that is optimal with respect to this cri-
terion is the Nash equilibrium. It is guaranteed to provide
the maximal possible expected value against any strategy of
the opponent. For example, an equilibrium defense strategy
minimizes the maximal damage caused by any attack.

When preparation time is abundant and the exact prob-
lem definition is known in advance, an equilibrium strategy
for a smaller abstract game can be pre-computed and then
used during game play. This offline approach has been re-
markably successful in Computer Poker [2, 12, 32, 31, 21].
However, the preparation time is often very limited. The
model of the game may become known only shortly be-
fore acting is necessary, such as in general game-playing,
search or pursuit in a previously unknown environment, and
general-purpose robotics. In these circumstances, creating
and solving an abstract representation of the problem may
not be possible. In these cases, agents must decide online:
make initial decisions quickly and then spend effort to im-
prove their strategy while the interaction is taking place.

In this paper, we propose a search algorithm that can
compute an approximate Nash equilibrium (NE) strategy
in two-player zero-sum games online, in a previously un-
known game, and with a very limited computation time and
space. Online Outcome Sampling (OOS) is a simulation-
based algorithm based on Monte Carlo Counterfactual Re-
gret Minimization (MCCFR) [24]. OOS makes two novel
modifications to MCCFR. First, OOS builds its search tree
incrementally, like Monte Carlo tree search (MCTS) [7, 3,
22]. Second, when performing additional computation af-
ter some moves have been played in the match, the follow-
ing samples are targeted primarily to the parts of the game
tree, which are more relevant to the current situation in the
game. We show that OOS is consistent, i.e. it is guaran-
teed to converge to an equilibrium strategy as search time
increases. To the best of our knowledge, this is not the case
for any existing online game playing algorithm, all of which
suffer from the problem of non-locality in these games.

We compare convergence and head-to-head performance
of OOS to Information Set MCTS [8, 37, 25] in three funda-
mentally different games. We develop a novel methodology
for evaluating convergence of online algorithms that do not
produce a complete strategy. The results show that OOS,
unlike ISMCTS, consistently converges close to NE strat-
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egy in all three games. In head-to-head performance, with
sufficient time, OOS either ties or outperforms ISMCTS.

2. BACKGROUND AND RELATED WORK
Most imperfect information search algorithms are built

upon perfect information search algorithms, such as mini-
max or Monte Carlo tree search (MCTS). One of the first
popular applications of imperfect information search was
Ginsberg’s Bridge-playing program, GIB [15, 16]. In GIB,
perfect information search is performed on a determinized
instance of the game: one where all players can see usually
hidden information. This approach has also performed well
in other games like Scrabble [34], Hearts [35], and Skat [5].

Several problems have been identified with techniques based
on determinization, such as Perfect Information Monte Carlo
(PIMC) [28]. Two commonly reported problems are strat-
egy fusion and non-locality [9]. Strategy fusion occurs when
distinct actions are recommended in states that the player
is not able to distinguish due to the imperfect information.
Strategy fusion can be overcome by imposing the proper in-
formation constraints during search [9, 6, 30, 26, 8].

Non-locality occurs due to optimal payoffs not being re-
cursively defined over subgames as in perfect information
games. As a result, guarantees normally provided by search
algorithms built on subgame decomposition no longer hold.
Previous work has been done for accelerating offline equi-
librium computation by solving subgames in end-game sit-
uations [13, 14, 11]. While these techniques tend to help
in practice, non-locality can prevent them from producing
equilibrium strategies; we discuss this further in Section 2.2.

The last problem is the need for randomized strategies in
imperfect information games. In many games, any deter-
ministic strategy predictable by the opponent can lead to
arbitrarily large losses. To overcome this problem, MCTS
algorithms sometimes randomize by sampling actions from
its empirical frequency counts. Evidence suggests that the
resulting strategies will not converge to the optimal solu-
tion even in very small imperfect information games like
Biased Rock-Paper-Scissors and Kuhn poker [33, 30]. Our
results show that, the empirical frequencies can diverge away
from the equilibrium strategies. A little more promising are
the MCTS approaches that use alternative selection func-
tions, such as Exp3 or Regret Matching [25]. Variants of
MCTS with these selection functions have been shown both
formally and empirically [27, 23] to converge to Nash equi-
librium in games with simultaneous moves, which are the
simplest subclass of imperfect information games. However,
we show that even these selection functions cannot help to
overcome the problem of non-locality.

2.1 Extensive-Form Games
We focus on two-player zero-sum extensive form games

and base our notation on [29]. These games model sequential
decision making players denoted i ∈ N = {1, 2}. In turn,
players choose actions leading to sequences called histories
h ∈ H. A history z ∈ Z, where Z ⊆ H, is called a terminal
history and represents a full game from start to end. At
each terminal history z there is a payoff ui(z) to each player
i. At each nonterminal history h, there is a single current
player to act, determined by P : H\Z → N ∪ {c} where
c is a special player called chance that plays with a fixed
stochastic strategy. For example, chance is used to represent
rolls of dice and card draws. The game starts in the empty

1 0

0.5

3 0 0 3

0.5

I

Figure 1: An extensive-form game demonstrating
the problem of non-locality with maximizing△, min-
imizing ▽ and chance © players.

history ∅, and at each step, given the current history h,
the current player chooses an action a ∈ A(h) leading to
successor history h′ = ha; in this case we call h a prefix
of h′ and denote this relationship by h ❁ h′. Also, for all
h, h′, h′′ ∈ H, if h ❁ h′ and h′

❁ h′′ then h ❁ h′′, and h ❁ h.
Sets H and A(h) are finite and histories have finite length.

Set Ii is an partition over Hi = {h | P (h) = i} where each
part is called an information set. Intuitively, an informa-
tion set I ∈ Ii of player i represents a state of the game
with respect to what player i knows. Formally, I is a set of
histories that a player cannot tell apart (due to information
hidden from that player). For all h, h′ ∈ I, A(h) = A(h′)
and P (h) = P (h′); hence, we extend the definition to A(I),
P (I), and denote I(h) the information set containing h.

A behavioral strategy for player i is a function map-
ping each information set I ∈ Ii to a probability distribu-
tion over the actions A(I), denoted by σi(I). For a profile
σ, we denote the probability of reaching a terminal history
z under σ as πσ(z) =

∏

i∈N∪c πi(z), where each πi(z) =
∏

ha❁z,P (h)=i σi(I(h), a) is a product of probabilities of the

actions taken by player i along z. We use πσ
i (h, z) and

πσ(h, z) for h ❁ z to refer to the product of only the proba-
bilities of actions along the sequence from the end of h to the
end of z. Define Σi to be the set of behavioral strategies for
player i. As is convention, −i refers to player i’s opponent.

An ǫ-Nash equilibrium, σ, is a set of σi for i ∈ N such
that the benefit of switching to some alternative σ′

i is lim-
ited by ǫ, i.e., ∀i ∈ N : maxσ′

i
∈Σi

ui(σ
′
i, σ−i) − ui(σ) ≤ ǫ.

When ǫ = 0, the profile is called a Nash equilibrium. When
|N | = 2 and u1(z) + u2(z) = k for all z ∈ Z, then the game
is a zero-sum game. In these games, different equilibrium
strategies result in the same expected payoff against any ar-
bitrary opponent equilibrium strategy and at least the same
payoff for any opponent strategy. The exploitability of a
profile σ is the sum of strategies’ distances from an equilib-
rium, ǫσ = maxσ′

1∈Σ1
u1(σ

′
1, σ2) + maxσ′

2∈Σ1
u2(σ1, σ

′
2).

In a match (online game), each player is allowed little or
no preparation time before playing (preventing the offline
computation of approximate equilibria solutions). The cur-
rent match history, m ∈ H, is initially the empty history ∅
representing the start of the match. Each turn, player P (m)
is given t time units to decide on a match action a ∈ A(m)
and the match history then changes from m to ma. There is a
referee who knows m, samples chance outcomes from σc(m),
and reveals I(m) to player P (m). The match terminates when
m ∈ Z, giving each player i a payoff of ui(m).

2.2 The Problem of Non-Locality
We demonstrate the problem of non-locality on the game

in Figure 1. It starts with a decision of chance© which leads
to two nodes that cannot be distinguished by the maximiz-
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ing player △. On the left, the game ends after his actions.
On the right, both his actions lead to information set I of
the minimizing player▽, whose utility is minus the depicted
value. The optimal (Nash equilibrium) strategy in I depends
on the value of the leftmost leaf, even though this outcome
of the game cannot be reached once the game entered infor-
mation set I. Because △ does not know at the time of his
move if ▽ will play, he needs to randomize its decision so
that▽ cannot easily make the move that is more harmful for
△. However, he would prefer to play left for the case that ▽
will not play. Player ▽ knows that △ has this dilemma and
tries to exploit it as much as possible. Uniform strategy at I
clearly motivates △ to play left, leading to expected utility
0.5 · 1 + 0.5 · 1.5 = 1.25, instead of 0.5 · 0 + 0.5 · 1.5 = 0.75.
If ▽ plays right a little more often, △ is still motivated
to play left and ▽ improves his payoff. This holds until
▽ plays (left,right) with probabilities ( 1

3
, 2
3
), which results

to expected reward of 1 for both actions of △. If △ plays
( 1
2
, 1
2
), ▽ cannot lower the utility anymore and the pair of

strategies is an equilibrium. If the leftmost leaf was 2 instead
of 1, the optimal strategy in I would be ( 1

6
, 5
6
).

Current approaches, after reaching the information set I,
will repeatedly sample and search one of subtrees in I, ag-
gregating the information collected to make a final recom-
mendation. However, even if the information structure is
kept intact, such as in ISMCTS [8], the problem still occurs.
If subtrees of I are sampled equally often, a searching player
will not have any preference between left and right and will
recommend ( 1

2
, 1
2
), which is suboptimal. Moreover, the uni-

form probability of being in each state of I corresponds to
the distribution over the states given the optimal play, so
the problem occurs even if subtrees are sampled from the
correct belief distribution. Note that this is a simple exam-
ple; in larger games, this problem could occur over much
longer paths or many times in different parts of the game.
The analysis in [28] suggests that the effect may be critical
in games with low disambiguation factor, where private in-
formation is slowly (or never) revealed throughout a match.

To the best of our knowledge, OOS is the first online
search algorithm that solves this problem. It does it by
starting each sample from the root of the game. If the com-
puted strategy tends to come closer to the uniform strategy
in I, the updates in the maximizing player’s information set
will modify the strategy to choose left more often. The fol-
lowing samples will reach I more often at the left state and
consequently modify the strategy in I in the right direction.

2.3 Offline Equilibrium Approximation
There are multiple algorithms for computing approximate

equilibrium strategies offline [32]. We focus on a popular
choice among Poker researchers due to its sampling variants.

Counterfactual Regret (CFR) is a notion of regret at the
information set level for extensive-form games [38]. The
CFR algorithm iteratively learns strategies in self-play, con-
verging to an equilibrium. The counterfactual value of
reaching information set I is the expected payoff given that
player i played to reach I, the opponents played σ−i and
both players played σ after I was reached:

vi(I, σ) =
∑

(h,z)∈ZI

πσ
−i(h)π

σ(h, z)ui(z), (1)

where ZI = {(h, z) | z ∈ Z, h ∈ I, h ❁ z}. Suppose, at time
t, player i plays with strategy σt

i . Define σt
I→a as identical

to σt except at I action a is taken with probability 1. The
counterfactual regret of not taking a ∈ A(I) at time t is
rt(I, a) = vi(I, σ

t
I→a) − vi(I, σ

t). The algorithm maintains

the cumulative regret RT (I, a) =
∑T

t=1 r
t(I, a), for every ac-

tion at every information set. Then, the distribution at each
information set for the next iteration σT+1(I) is obtained us-
ing regret-matching [17]. The distribution is proportional to
the positive portion of the individual actions’ regret:

σT+1(I, a) =

{

RT,+(I, a)/RT,+
sum(I) if RT,+

sum(I) > 0
1/|A(I)| otherwise,

where x+ = max(0, x) for any term x, and RT,+
sum(I) =

∑

a′∈A(I) R
T,+(I, a′). Furthermore, the algorithm maintains

for each information set the average strategy profile

σ̄T (I, a) =

∑T

t=1 π
σt

i (I)σt(I, a)
∑

t=1 π
σt

i (I)
, (2)

where πσt

i (I) =
∑

h∈I π
σt

i (h). The combination of the coun-
terfactual regret minimizers in individual information sets
also minimizes the overall average regret [38], and hence the
average profile is a 2ǫ-equilibrium, with ǫ→ 0 as T →∞.

Monte Carlo Counterfactual Regret Minimization (MC-
CFR) applies CFR to sampled portions of the games [24].
In the outcome sampling (OS) variant of the algorithm,
a single terminal history z ∈ Z is sampled in each iteration.
The algorithm updates the regret in the information sets
visited along z using the sampled counterfactual value,

ṽi(I, σ) =

{ 1
q(z)

πσ
−i(h)π

σ(h, z)ui(z) if (h, z) ∈ ZI

0 otherwise,

where q(z) is the probability of sampling z. If every z ∈ Z
has non-zero probability of being sampled, ṽi(I, σ) is an un-
biased estimate of v(I, σ) due to the importance sampling
correction (1/q(z)). For this reason, applying CFR updates
using these sampled counterfactual values on the sampled
information sets values also eventually converges to the ap-
proximate equilibrium of the game with high probability.

3. ONLINE OUTCOME SAMPLING
When outcome sampling is used in the offline setting, data

structures for all information sets are allocated before the
first iteration. In each iteration, all sampled information
sets get updated. We make two essential modifications to
adapt outcome sampling to the online setting.

Incremental Game Tree Building. Before the match
begins, only the very first (root) information set is added to
memory. In each iteration, a single information set (at most)
is added to memory. In particular, when an information set
is reached that is not in memory, it is added to memory
and then a default playout policy (e.g., uniform random)
takes over for the remainder of the simulation. Along the
playout portion (tail) of the simulation, information sets are
not added to memory nor updated. Along the tree portion
(head), information sets are updated as normal. This way,
only the relevant information sets are stored in the memory.

In-Match Search Targeting. Suppose several moves
have been played since the start of the match leading to m.
Plain outcome sampling would continue to sample from the
root of the game (not the current match history m), rarely
reaching the region of the game space that the match has
headed toward. Hence, the second modification we propose
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I
′

I
′′

match histories
m1

m2

I(m1)

ZI(m1)

I(m2)

Zp,I(m2)

Figure 2: Example subgames targeted by IST (left)
and PST (right). All histories { h | h ∈ I ′∪I ′′∪I(m2) }
share a common public action sequence (p(m2)).

is directing the search towards the histories that are more
likely to occur during the match currently played. Note that
the complete history is typically unknown to the players,
who know only their information sets. Unlike in ISMCTS,
OOS always runs samples from the root of the game tree,
even with non-empty match history. We now describe two
specific targeting methods demonstrated in Figure 2.

3.1 Information Set Targeting (IST)
Suppose the match history is m. IST samples histories

reaching the current information set (I(m)), i.e., (h, z) ∈
ZI(m), with higher probability than other histories. The in-
tuition is that these histories are particularly relevant since
the searching player knows that one of these z will describe
the match at its completion. However, focusing only on these
histories may cause problems because of the non-locality and
the convergence guarantees would be lost.

Consider again the game in Figure 1. If the minimizing
player knows it is in the information set I and focuses all its
search to this information set, she computes the suboptimal
uniform strategy. Any fixed non-zero probability of sam-
pling the left chance action eventually solves the problem.
The regrets are multiplied by the reciprocal of the sampling
probability; hence, they influence the strategy in the infor-
mation set proportionally stronger if the samples are rare.

Note that previous methods, such as PIMC and ISMCTS,
never update any information sets, which are not reachable
from I(m). In contrast, in IST all information sets in memory
have positive probability of being reached and updated.

3.2 Public Subgame Targeting (PST)
IST may “reveal” information about the current informa-

tion set available to only one of the players affecting the
computed strategy (this vanishes in the limit due to consis-
tency but could have a short-term effect). PST only uses
information available to both players to target the search
to prevent this effect. A public action is an action in the
“public tree” defined in [20] and commonly used in offline
CFR. Informally, an action is said to be public if it is ob-
servable by all players (e.g., bids in Liar’s Dice and bets
in Poker are public). Formally, an action a is public, iff
∀i, ∀I ∈ Ii, ∀h1, h2 ∈ I : a ∈ h1 ⇔ a ∈ h2. For example,
the extensive-form version of Rock, Paper, Scissors has two
information sets I1 = ∅ and I2 = {r, p, s}; it has no public
actions, because each history in I2 contains a single unique
action (the unobserved ones taken by the first player).

Given a history h, let p(h) be the sequence of public ac-
tions along h in the same order that they were taken in h.
Define the public subgame induced by I to be the one

OOS(h, πi, π−i, s1, s2, i):1

if h ∈ Z then2

return (1, δs1 + (1− δ)s2, ui(z))3

else if P (h) = c then4

Sample an outcome a and let ρ1, ρ2 be its5

probability in targeted and untargeted setting
(x, l, u)← OOS(ha, πi, ρ2π−i, ρ1s1, ρ2s2, i)6

return (ρ2x, l, u)7

I ← getInfoset(h, P (h))8

Let (a, s′1, s
′
2)← Sample(h, I, i, ǫ)9

if I is not in memory then10

Add I to memory11

σ(I)← Unif(A(I))12

(x, l, u)← Playout(ha, δs1+(1−δ)s2
|A(I)|

)13

else14

σ(I)← RegretMatching(rI)15

π′
P (h) ← σ(I, a)πP (h)16

π′
−P (h) ← π−P (h)17

(x, l, u)← OOS(ha, π′
i, π

′
−i, s

′
1, s

′
2, i)18

c← x19

x← xσ(I, a)20

for a′ ∈ A(I) do21

if P (h) = i then22

W ← uπ−i / l23

if a′ = a then24

rI [a
′]← rI [a

′] + (c− x)W25

else26

rI [a
′]← rI [a

′]− xW27

else28

sI [a
′]← sI [a

′] + 1
δs1+(1−δ)s2

π−iσ(I, a
′)29

return (x, l, u)30

Algorithm 1: Online Outcome Sampling.

whose terminal history set is

Zp,I(h) = {(h
′, z) | z ∈ Z, h′ ∈ H, p(h′) = p(h), h′

❁ z}.

With match history m, PST samples z ∈ Zp,I(m) with higher
probability than terminal histories outside this set.

In a game of poker, suppose the chance decides on the pri-
vate cards of the players, the first player bets one chip and
the second player calls. At this point, the public actions are:
bet one chip and call. The public subgame Zp,I(h) contains
every terminal history (including every combination of pri-
vate chance outcomes for all players) whose first two public
actions are: bet one chip and call.

3.3 Algorithm
The algorithm iteratively samples a single trajectory from

the root ∅ to a terminal history. At each information set
in memory, I, it maintains two tables: rI stores cumulative
regret for each action a ∈ A(I), and sI stores the cumulative
average strategy probability of each action.

Depending on the targeting method (IST or PST), Zsub

is one of ZI(m) or Zp,I(m). The pseudo-code is presented as
Algorithm 1. Each iteration is represented by two calls of
OOS where the update player i ∈ {1, 2} is alternated. Before
each iteration, a scenario is decided: with probability δ the
iteration targets the subgame and chooses z ∈ Zsub and
with probability (1 − δ) the usual OS sampling determines
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z ∈ Z. As a result, OOS with δ = 0 becomes MCCFR with
incremental tree building.

The first parameter of OOS is the current history. The
next two are strategy’s reach probabilities for the update
player i and the opponent. The third and fourth parameters
are initially the overall probabilities that the current sample
is generated, one for each scenario: first the targeted and
then the untargeted. With non-empty match history, these
two parameters include an additional weighting factor wT

explained later. The last parameter is the update player.
Initial calls have the form OOS(∅, 1, 1, 1/wT , 1/wT , i). For
the return values, x is a suffix/tail reach probability for both
players, l is the root-to-leaf sample probability, and u is the
payoff of the trajectory in view of the update player.
The ǫ-on-policy sampling distribution used at each infor-

mation set is defined as

Φ(I, i) =

{

ǫ ·Unif(A(I)) + (1− ǫ)σi(I) if P (I) = i
σi(I) otherwise,

and denote Φ(I, i, a) the probability of sampling a ∈ A(I).
The sampling at chance’s choices on line 5 depends on the

method and the scenario being used. For example, when
using information set targeting, the outcome that is sampled
must be consistent with match history.

A critical part of the algorithm is the action chosen and
sample reach updates on line 9. If I is not in memory,
then an action is sampled uniformly. Otherwise, in the
targeted scenario, the current history h is always in the
targeted part of the game and an action from {a | ∃z ∈
Z (ha, z) ∈ Zsub} is selected using the distribution Φ(I(h), i)
normalized to one on this subset of actions. If we define
sum =

∑

(ha,z)∈Zsub
Φ(I, i, a) then s′1 = s1Φ(I, i, a)/sum.

In the untargeted scenario, any action a ∼ Φ(I, i) can be
sampled. If the action is not leaving the targeted part of
the game (i.e., (ha, z) ∈ Zsub) then s′1 = s1Φ(I, i, a)/sum
otherwise s′1 = 0. In all cases s′2 = Φ(I, i, a)s2.
These sample reach probabilities are combined into one at

a terminal history on line 3, start of the playout on line 13,
and when updating the average strategy on line 29.
The playout on line 13 samples to the end of the game

with some playout policy at each step; we use uniform ran-
dom, but in general one could use an informed policy based
on domain knowledge as well. Unlike MCTS, the playout
policy in OOS must compute l when reaching a terminal
and update the tail probability x when returning as done on
line 20. Lines 16 and 17 modify P (h)’s reach probability by
multiplying it by σ(I, a), keeping the other value the same.
Lines 19 to 24 contain the usual outcome sampling updates.
Note that regrets are updated at the update player histories,
while average strategy tables at opponent histories.

Now we explain the role of the weighting factor wT . Note
that on lines 23 and 29, the regret and strategy updates
are multiplied by the reciprocal of the probability of sam-
pling the sample leaf and the current state. Consider the
updates in the current information set of the game Im. In
the initial samples of the algorithm with empty match his-
tory, this information set was on average sampled with a
very low probability s0. Let’s say that out of 106 samples
started from the root, 1000 samples reached this particular
information set. In that case, s0 = 0.001 and the regret
updates caused by each of these samples were multiplied by
1
s0

= 1000. Now the game has actually reached the history m

and due to targeting, half of the next 106 samples reach I(m).
It means that sm = 0.5 and the regrets will be multiplied only
by 2. As a results, the updates of the first (generally less
precise) 1000 samples are all together weighted the same as
the 5 × 105 later samples, which makes it almost impossi-
ble to compensate for the initial errors. In order to prevent
this effect, we add the weighting factor wT to compensate
the change of targeting and make each of the samples have
similar weight at I(m). In our example, wT = sm

s0
. More

formally, when running the iterations from match history m,
we define the weighting factor as the probability of reach-
ing I(m) without any targeting divided by the probability
of reaching I(m) with the current targeting, assuming the
players play according to the current mean strategy profile
π̄:

1

wT (m)
= (1− δ) + δ

∑

(h,z)∈I(m) π̄(h)
∑

z∈Zsub(m)
π̄(z)

. (3)

OOS would quickly stop improving a strategy in infor-
mation sets that are below an irrational move of the op-
ponent (π−i = 0). This cannot be avoided even if many
samples are targeted to the information set. Therefore,
we use a more explorative regret matching, σT+1

γ (I, a) =

γ/|A(I)|+(1−γ)σT+1(I, a), with γ = 0.01. This affects the
worst-case regret bound at most by γ (due to the linearity
of the expected utility), but allows for much better play.

3.3.1 Consistency

Theorem 1. Let σ̄t
m(δ, m) be a strategy produced by OOS

with scheme IST or PST using δ < 1 started from m run for
t iterations, with exploration ǫ > 0. For any p ∈ (0, 1], ε > 0
there exists t <∞ such that with probability 1−p the strategy
σ̄t
m(δ, m) is a ε-equilibrium strategy.

Proof. (Sketch) Each terminal history has nonzero prob-
ability of being sampled, eventually every information set
will be contained in memory. The algorithm then becomes
MCCFR with a non-uniform sampling scheme. By [24, The-
orem 5] OOS minimizes regret with high probability. The
additional weighting of all updates of the algorithm by the
same constant has no influence on the computed average
strategy and the strategies computed by regret matching,
because it uses only relative proportions of the regrets.

4. EMPIRICAL EVALUATION
We now compare the exploitability and head-to-head per-

formance of OOS and ISMCTS.

4.1 Information Set Monte Carlo Tree Search
We have implemented ISMCTS in the same framework

with similar data representations as OOS. ISMCTS runs
MCTS samples as in a perfect information game, but uses
common statistics computed for the whole information set
and not individual states in the selection phase. When initi-
ated from a non-empty match history, it starts samples uni-
formly from the states in the current information set. We
use two selection functions in our experiments. First, the
commonly used UCT as suggested in [8]. We use two times
the maximal game outcome as the exploration parameter C.
In matches, we select the action with the highest number of
iterations. For evaluating convergence, this would often have
the maximum possible exploitability in the evaluated games.
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Therefore, we use the distribution given by the empirical fre-
quencies for this part of evaluation. Second, we use Regret
Matching (RM) as the selection strategy, because it has been
shown to empirically perform better in many games [25] and
because it is based on the same principles that are behind
CFR. For RM, we use exploration 0.2, the mean strategy for
evaluating exploitability and samples from this strategy in
head to head matches. In the following, we refer to ISMCTS
with the corresponding selection function by only UCT/RM.

4.2 Evaluating Performance
In games like Poker and Liar’s Dice, it is often critical

to play in such a way that the opponent cannot easily infer
the private information. This explains partly the success
of CFR-based methods in the offline setting. In the online
setting, since the tree is built incrementally, only partial
strategies are produced. We are unaware of any methods for
assessing the worst-case exploitability of strategies produced
by an online search algorithm.

There is a brute-force approach that runs the search at
each information set and computes exploitability of a strat-
egy composed from strategies computed for these informa-
tion sets. However, it requires O(t|I|) seconds for a single
run and multiple runs are required for statistically signif-
icant results. Instead, we propose an approximate multi-
match aggregate method. It creates a global (accumulat-
ing) strategy data structure for each player. Then, it runs
a fixed number of matches (500 in our experiments) of the
search algorithm against a random opponent. In each infor-
mation set reached in the match, the information computed
(visit counts in ISMCTS, sI in OOS) is added into the global
strategy of the player who searched. Besides the information
in the current information set, the information computed in
all successor information sets is also added with a weight
proportional to the number of visits of the information set.
If an information set is never reached directly, this gives at
least some estimate of how the strategy would behave there.
If it is, the number of samples in the information set out-
weights the less precise estimates from the cases where it is
not. In the information sets not added to the global strat-
egy, a fixed random action is selected. The result is the
exploitability of the global strategy.

4.3 Domains
Imperfect Information Goofspiel In II-GS(N), each

player is given a private hand of bid cards with values 0 to
N − 1. A different deck of N point cards is placed face up
in a stack. On their turn, each player bids for the top point
card by secretly choosing a single card in their hand. The
highest bidder gets the point card and adds the point total
to their score, discarding the points in the case of a tie. This
is repeated N times and the player with the highest score
wins. In II-Goofspiel, the players only discover who won or
lost a bid, but not the bid cards played. Also, we assume
the point-stack is strictly increasing: 0, 1, . . . N − 1. This
way the game does not have non-trivial chance nodes, all
actions are private and information sets have various sizes.

Liar’s Dice LD(D1,D2), also known as Dudo, Perudo,
and Bluff is a dice-bidding game. Each die has faces to

and a star ⋆. Each player i rolls Di of these dice with-
out showing them to their opponent. Each round, players
alternate by bidding on the outcome of all dice in play until
one player“calls liar”, i.e. claims that their opponent’s latest

bid does not hold. If the bid holds, the calling player loses;
otherwise, she wins. A bid consists of a quantity of dice and
a face value. A face of ⋆ is considered wild and counts as
matching any other face. To bid, the player must increase
either the quantity or face value of the current bid (or both).
All actions in this game are public. The only hidden infor-
mation is caused by chance at the beginning of the game.
Therefore, the size of all information sets is identical.

Generic PokerGP(T,C,R,B) is a simplified poker game
inspired by Leduc Hold’em. First, both players are required
to put one chip in the pot. Next, chance deals a single pri-
vate card to each player, and the betting round begins. A
player can either fold (the opponent wins the pot), check (let
the opponent make the next move), bet (add some amount
of chips, as first in the round), call (add the amount of chips
equal to the last bet of the opponent into the pot), or raise
(match and increase the bet of the opponent). If no fur-
ther raise is made by any of the players, the betting round
ends, chance deals one public card on the table, and a sec-
ond betting round with the same rules begins. After the
second betting round ends, the outcome of the game is de-
termined — a player wins if: (1) her private card matches
the table card and the opponent’s card does not match, or
(2) none of the players’ cards matches the table card and
her private card is higher than the private card of the oppo-
nent. If no player wins, the game is a draw and the pot is
split. The parameters of the game are the number of types
of the cards (T ), the number of cards of each type (C), the
maximum length of sequence of raises in a betting round
(R), and the number of different sizes of bets (i.e., amount
of chips added to the pot) for bet/raise actions. This game
is similar to Liar’s Dice in having only public actions. How-
ever, it includes additional chance nodes later in the game,
which reveal part of the information not available before.
Moreover, it has integer results and not just win/draw/loss.

4.4 Results
We first focus on LD(1,1), II-GS(6), and GP(3,3,2,2). While

these games are considered small by search algorithm stan-
dards, it is still possible to compute the exact worst case
counterstrategies (i.e., best response) to measure exploitabil-
ity. After analyzing the convergence, we proceed to perfor-
mance in head-to-head matches also in larger variants of the
games.

4.4.1 Convergence at the root

First we evaluate the speed of convergence of the proposed
algorithm when run in the root of the games. The strategy
in the information sets, which are not included in the tree
yet, is assumed to be a fixed random action identical for all
algorithms. The impact of the exploration parameters of the
algorithms is not very strong here and we set it to 0.6 for
OOS. The results are in Figures 3(a,d,h). OOS clearly con-
verges the fastest in all games, eventually converging to the
exact equilibrium. The exact convergence is not surprising,
because the algorithm run from the root is MCCFR, only
with incremental tree building.

In all three games, the empirical action frequencies in
UCT first converge quite quickly towards less exploitable
strategies, but they always start to become more exploitable
at some point. This does not happen with RM, but its initial
convergence is slower.
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Figure 3: Exploitability ISMCTS with various selection functions and OOS with various parameter settings
in the smaller game variants (rows).

4.4.2 Aggregated strategy exploitability

Figures 3(b,e,i) present the exploitability of the strategies
computed by different algorithms estimated by the aggregate
method. The OOS in this graphs is run with IST, γ = 0.4 for
exploration and δ = 0.5 for targeting. The x-axis denotes the
amount of computation per move. In Goofspiel 3(b), both
ISMCTS variants produce a more exploitable strategy with
more computation time per move. For any of the evaluated
time settings, OOS is substantially less exploitable. In Liar’s
Dice 3(e), ISMCTS does not seem to get worse with addi-
tional computation time, but it improves marginally with
more than 0.4 seconds per move. OOS steadily approaches
the equilibrium. In Poker 3(i), the exploitability is lower for
ISMCTS variants than for OOS with the default settings.
With the limited computation time, having more iterations
to avoid bad moves seems to be more important than guess-
ing and hiding the private information of the players.

The remaining plots in Figures 3 present how the ex-
ploitability of the strategies produced by OOS depends on
the selected targeting scheme and parameters: the amount
of targeting shown by color and the amount of exploration
shown by point shapes. Figures 3(c,f,j) show the information
set targeting and 3(g,k) show the public subgame targeting.
Overall, OOS produces strategies closer to the equilibrium
as the computation time per move increases. The only ex-
ception is IST with full targeting (δ = 1) in Liar’s Dice (Fig-
ure 3(f)). This confirms that sampling the histories that will

certainly not occur in the game anymore is necessary to con-
verge to the optimal strategy in LD. In the other two games,
full targeting produces the least exploitable strategies with
very short computation times. This indicates that sophis-
ticated modeling of hidden information can be counterpro-
ductive with very short computation times. With more time
per move, weaker targeting performs as well as the stronger
targeting or even better in case of PST.

4.4.3 Head-to-head performance

After we confirmed that we achieved the goal of creat-
ing an online game playing algorithm that converges close
to Nash equilibrium, we evaluate its game playing perfor-
mance in head-to-head matches with ISMCTS. For each
game, we focus on two sizes: the smaller variant, for which
we analyzed the exploitability in the previous section and a
substantially larger variant that is closer to the size of the
domains where online search algorithms are typically ap-
plied. The largest domain is II-GS(13) with approximately
3.8× 1019 terminal histories.

The results are summarized in Figure 4. For Goofspiel
and Liar’s Dice, we present the win-rate, where a tie is con-
sidered half win half loss. II-GS is perfectly balanced for
both players. In LD, the first player has a slight disadvan-
tage corresponding to approximately 1% in the win rate
and we do not compensate for that. Poker is not balanced.
If both players play the optimal strategy, the first player
loses 0.11 chips on average. This value is practically the
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0.1s OOS UCT RM RND
OOS 49.3(2.7) 50.0(1.3) 50.5(1.3) 83.1(1.5)
UCT 51.2(2.2) 62.9(2.6) 62.7(2.5) 84.0(2.1)
RM 52.3(1.4) 70.6(1.7) 73.1(2.1) 87.8(1.4)

RND 17.1(2.2) 15.7(2.2) 10.3(1.8) 49.7(3.0)

(a) II Goofspiel (6)

0.1s OOS UCT RM RND
OOS 48.5(2.0) 51.7(2.0) 56.8(2.8) 83.3(1.5)
UCT 45.7(2.0) 49.7(2.0) 52.9(2.8) 87.2(1.3)
RM 47.9(2.8) 49.0(2.8) 54.3(2.8) 84.8(2.0)

RND 16.9(1.5) 19.5(1.6) 18.1(2.2) 47.7(2.0)

(b) Liar’s Dice (1,1)

0.1s OOS UCT RM RND
OOS 0.25(0.53) -0.45(0.10) -0.40(0.10) 1.85(0.16)
UCT 0.53(0.10) 0.21(0.15) 0.20(0.15) 1.35(0.36)
RM 0.39(0.13) 0.21(0.40) -0.12(0.32) 1.75(0.44)

RND-2.17(0.20) -2.22(0.54) -3.24(0.55) 1.07(0.61)

(c) Generic Poker (3,3,2,2)

1s OOS UCT RM RND
OOS 49.2(2.5) 28.3(3.9) 35.1(4.2) 83.0(3.2)
UCT 69.2(4.0) 70.0(2.8) 61.0(3.0) 90.6(1.8)
RM 67.5(4.0) 73.8(2.7) 67.5(2.9) 92.8(1.5)

RND 19.6(3.4) 6.2(1.5) 4.9(1.3) 49.0(3.0)

(d) II Goofspiel (13)

5s OOS UCT RM RND
OOS 49.9(3.7) 55.4(2.3) 53.3(3.7) 91.3(1.7)
UCT 49.8(2.2) 56.2(3.1) 49.8(3.1) 93.7(1.5)
RM 53.3(3.5) 51.7(4.0) 51.0(4.0) 88.7(2.0)

RND 7.3(1.6) 12.9(2.1) 12.7(2.1) 47.3(3.0)

(e) Liar’s Dice (2,2)

1s OOS UCT RM RND
OOS -0.54(0.47) -1.79(0.27) -2.19(0.32) 8.36(0.54)
UCT -0.07(0.35) 0.22(0.10) -0.76(0.18) 9.48(0.40)
RM -0.12(0.38) -0.28(0.17) -0.97(0.22) 9.09(0.44)

RND -3.25(0.43) -3.91(0.27) -4.12(0.31) 2.51(0.51)

(f) Generic Poker (4,6,4,4)

Figure 4: Head-to-head matches in small (a-c) and large (d-f) game variants. The top left corner indicates
the computation time per move and the brackets show 95% confidence intervals. OOS run with IST for II-GS
and PST for the other games, targeting δ = 0.9 and exploration ǫ = 0.4; UCT with C = 2 ·max; RM with γ = 0.2.

same for both evaluated sizes of the game. For clarity, we
present the difference between this game value and the mean
reward obtained by the players in the matches. A value 0.1
in the tables means that the row player on average wins
0.1 more than the game value from the column player per
match. Each entry in the tables presents the result of at
least 500 mutual matches between two algorithms from the
perspective of the one in the row header. The values in the
brackets are the size of half of the 95% confidence intervals
centered in the presented mean. If it is not specified other-
wise, OOS was run with IST for II-Goofspiel and PST for
the other games, targeting δ = 0.9 and exploration ǫ = 0.4.

Figure 4(a) presents the results for the smaller Goofspiel
and 0.1 second of computation per move. Even though the
game is balanced, the results of ISMCTS are strongly bi-
ased towards the first player. The second player has gener-
ally larger information sets and needs to better evaluate the
hidden information to choose a good move. OOS does not
have this problem in the smaller game. It is the only algo-
rithm that managed to prevent ISMCTS from exploiting it.
In both positions, the algorithm won approximately 50% of
matches, which corresponds to the value of the game. On the
other hand, the first line in the table shows that OOS did not
exploit the weaker play of ISMCTS, even though it is pos-
sible. This is a common disadvantage of Nash equilibrium
play. One simple way to overcome this would be to trade a
bit of exploitability to gain some exploitation; computing a
restricted Nash response using MCRNR [30] (a minor mod-
ification of MCCFR) allows the best possible trade-off for
a given importance between exploitability and exploitation.
In the large variant of Goofspiel (see Figure 4(d)) with one
second per move, the situation is different. OOS does not
manage to converge sufficiently close to the equilibrium and
ISMCTS exploits it from both positions to a similar extent.
Increasing the computation time to 5 seconds per move helps
OOS to win 35% matches against UCT, but it would likely
need a substantially longer time to reach the equilibrium.

The results on Liar’s Dice are even more promising for
OOS. In the smaller game with 0.1 second per move (Fig-
ure 4(b)), OOS statistically significantly wins over both vari-
ants of ISMCTS from at least one position. This is not the
case for the larger game and 1 second per move, where OOS
already wins only 45% and 40% of matches against UCT
and RM from the first position and loses 69% and 66% from
the second position. However, with 5 seconds and the ex-
ploration parameter set to ǫ = 0.8 to balance the need for

exploring a large number of actions in this game, OOS again
wins over UCT and ties with RM (Figure 4(e)).

As indicated by the exploitability results, OOS performs
the worst against ISMCTS in the Poker domain. In the
smaller variant (Figure 4(c)), it is losing from both posi-
tions. The result of OOS from the first position against
UCT improves to -0.22 with 5 seconds per move, but even
more time would be required to tie. From the first (generally
more difficult) position, the situation is similar also in the
larger Poker (Figure 4(f)). It is not the case for the second
position, where OOS is able to tie both ISMCTS variants.
This could be because Poker games have very high variance.

5. CONCLUSION
We have introduced Online Outcome Sampling, the first

online game playing algorithm for imperfect information ga-
mes that is guaranteed to produce approximate equilibrium
strategies as search time per move increases. In order to
achieve this, we do not modify a perfect information search
algorithm to avoid the main problems caused by imperfect
information, as in previous work. We instead start from
an offline equilibrium computation method and adapt it to
make the most of the limited time it has by using the in-
formation about the current position in the match. Besides
incremental tree building, we propose two methods for tar-
geting relevant parts of the game based on the current match
history. In empirical evaluation, we show that a player us-
ing ISMCTS can suffer almost arbitrarily large loss when
the opponent knows the algorithm she uses. The expected
worst-case loss of using OOS decreases close to its minimum
with additional search time. Furthermore, even with these
guarantees, we can achieve comparable game playing perfor-
mance to ISMCTS in mutual matches.

In future work, we hope to investigate more and larger
games and the effect of informed playout policies. We hope
to compare practical performance against other baseline al-
gorithms such as PIMC [28], MMCTS [1], IIMC [10], and
Smooth UCT [18]. Finally, one interesting question is whether
the subgame decomposition ideas of [4, 19] could be adapted
to the online search setting.
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