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Abstract. The arithmetic of natural numbers with addition and divis-
ibility has been shown undecidable as a consequence of the fact that
multiplication of natural numbers can be interpreted into this theory, as
shown by J. Robinson [Rob49]. The most important decidable subsets
of the arithmetic of addition and divisibility are the arithmetic of addi-
tion, proved by M. Presburger [Pre29], and the purely existential subset,
proved by L. Lipshitz [Lip76]. In this paper we define a new decidable
fragment of the form QzQ1x1 . . . Qnxnϕ(x, z) where the only variable
allowed to occur to the left of the divisibility sign is z. For this form,
called L(1)

| in the paper, we show the existence of a quantifier elimination
procedure which always leads to formulas of Presburger arithmetic. We
generalize the L(1)

| form to ∃z1, . . .∃zmQ1x1 . . . Qnxnϕ(x, z), where the
only variables appearing on the left of divisibility are z1, . . . , zm. For this
form, called ∃L(∗)

| , we show decidability of the positive fragment, namely
by reduction to the existential theory of the arithmetic with addition and
divisibility. The L(1)

| , ∃L(∗)
| fragments were inspired by a real application

in the field of program verification. We considered the satisfiability prob-
lem for a program logic used for quantitative reasoning about memory
shapes, in the case where each record has at most one pointer field. The
reduction of this problem to the positive subset of ∃L(∗)

| is sketched in
the end of the paper.

1 Introduction

The undecidability of first-order arithmetic of natural numbers occurs as a con-
sequence of Gödel’s Incompleteness Theorem [G3̈1]. The basic result has been
discovered by A. Church [Chu36], and the essential undecidability (undecidabil-
ity of its every consistent extension) by B. Rosser [Ros36], both as early as
1936. Consequences of this result are the undecidability of the theory of natu-
ral numbers with multiplication and successor function and with divisibility and
successor function, both discovered by J. Robinson in [Rob49]. To complete the
picture, the existential fragment of the full arithmetic i.e., Hilbert’s Tenth Prob-
lem was proved undecidable by Y. Matiyasevich [Mat70]. The interested reader
is further pointed to [B0́2] for an excellent survey of the (un)decidability results
in arithmetic.
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On the positive side, the decidability of the arithmetic of natural numbers
with addition and successor function has been shown by M. Presburger [Pre29],
result which has found many applications in modern computer science, especially
in the field of automated reasoning. Another important result is the decidability
of the existential theory of addition and divisibility, proved independently by A.
P. Beltyukov [Bel76] and L. Lipshitz [Lip76]. Namely, it is shown that formulas
of the form ∃x1, . . .∃xn

∧K
i=1 fi(x)|gi(x) are decidable, where fi, gi are linear

functions over x1, . . . xn and the symbol | means that each fi is an integer divisor
of gi when both are interpreted over Nn. The decidability of formulas of the form
∃x1, . . .∃xnϕ(x), where ϕ is an open formula in the language 〈+, |, 0, 1〉, is stated
as a corollary in [Lip76].

Our main result is the decidability of formulas of the form QzQ1x1 . . .Qnxn

ϕ(x, z) where Q, Q1 . . . Qn ∈ {∃, ∀}, ϕ is quantifier-free, and all divisibility
propositions are of the form f(z)|g(x, z), with f, g linear functions. This form
is called L(1)

| , as there is only one variable that appears on the left of |. We
show that any formula in this fragment can be evaluated by applying quantifier
elimination to the open formula Q1x1 . . .Qnxnϕ(x, z), the result being a Pres-
burger formula in which z occurs free. This fact is somewhat surprising, since
the L(1)

| fragment allows to encode queries apparently beyond the scope of Pres-
burger arithmetic such as: given a Presburger formula ϕ with n free variables, is
it true that all values v1, . . . , vn which satisfy ϕ, are altogether relatively prime?

Second, a generalization is made by allowing multiple existentially quanti-
fied variables occur to the left of the divisibility sign that is, formulas of the
form ∃z1 . . .∃znQ1x1 . . .Qmxmϕ(x, z), for quantifier-free ϕ, where the only di-
visibility propositions are of the form f(z)|g(x, z). Using essentially the same
method as in the case of n = 1, we show decidability of the positive form of
the ∃L(∗)

| subset i.e., in which no divisibility proposition occurs under negation.

However the result of quantifier elimination for the positive ∃L(∗)
| fragment can-

not be expressed in Presburger arithmetic, but in the existential fragment of
〈N, +, |, 0, 1〉. This result is also the best possible in the sense that, if negation
of divisibility propositions is allowed, the ∃L(∗)

| fragment is undecidable. The
worst-case complexity of the quantifier elimination method is non-elementary
and the decision complexity for the alternation-free fragments of L(1)

| , ∃L(∗)+
| are

bounded by a triple exponential.
We applied the decidability result for the positive ∃L(∗)

| fragment to a con-
crete problem in the field of program verification. More precisely, we consider a
specification logic used to reason about the shape of the recursive data structures
generated by imperative programs that handle pointers. This logic, called alias
logic with counters [BIL04] is interpreted over deterministic labeled graphs. It
allows to express linear arithmetic relations between the lengths of certain paths
within a graph. The satisfiability problem has been shown undecidable over un-
restricted dag, and implicitly, graph models, but decidability can be shown over
tree models. We complete the picture by showing decidability of this logic over
structures composed of an arbitrary finite number of lists. The difficulty w.r.t
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trees consists in the fact that lists may have loops, which introduce divisibility
constraints. However, as it is shown, the problem remains within the bounds of
the positive ∃L(∗)

| fragment of 〈N, +, |, 0, 1〉. Despite its catastrophic complex-
ity upper bound, this result enables, in principle, the automatic verification of
quantitative properties for an important class of programs that manipulate list
structures only.

2 Preliminaries

In this paper we work with first-order logic over the language 〈+, |, 0, 1〉. A
formula in this language is interpreted over N in the standard way: + denotes
the addition of natural numbers, | is the divisibility relation, and 0, 1 are the
constants zero and one. In particular, we consider that 0|0, 0 & | n and n|0, for all
n ∈ N \ {0}. In the following we will intentionally use the same notation for a
mathematical constant symbol and its interpretation, as we believe, no confusion
will arise from that.

The results in this paper rely on two theorems from elementary number
theory. The first one is the well-known Chinese Remainder Theorem (CRT)
[DPS99] and the second one is a (prized) conjecture proposed by P. Erdös in
1963 and proved by R. Crittenden and C. Vanden Eynden in 1969 [CE69]. The
CRT says that: ∃x

∧K
i=1 mi|(x − ri) ↔

∧
1≤i,j≤K(mi, mj)|(ri − rj), where mi ∈

N, ri ∈ Z and (a, b) denotes the greatest common divisor of a and b 1. The CRT
can be slightly generalized as follows:

Corollary 1. For any integers mi ∈ N and ai ∈ Z \ {0}, ri ∈ Z with 1 ≤ i ≤ K
we have:

∃x
K∧

i=1

mi|(aix − ri) ↔
∧

1≤i,j≤K

(aimj, ajmi)|(airj − ajri) ∧
K∧

i=1

(ai, mi)|ri

Usually the CRT is used as a means of solving systems of linear congruences.
A linear congruence equation is an equation of the form ax ≡ b mod m, for
some a, b ∈ Z and m ∈ N \ {0}. Such an equation is solvable if and only if
(a, m)|b. If the equation admits one solution y, then the solutions are given by
the arithmetic progression {x ≡ y mod m

(a,m)}. The second Theorem, stated as
a conjecture by Erdös, is the following:

Theorem 1 ([CE69]). Let a1, . . . , an ∈ Z, b1, . . . , bn ∈ N \ {0}. Suppose there
exists an integer x0 satisfying none of the congruences: {x ≡ ai mod bi}n

i=1.
Then there is such an x0 among 1, 2, 3, . . . , 2n.

We shall use this theorem rather in its positive form i.e., n arithmetic progres-
sions {ai + biZ}n

i=1 cover Z if and only if they cover the set 1, 2, 3, . . . , 2n.
1 The second part of the Theorem, expressing the solutions x to the system of linear

congruences on the left hand of the equivalence is not used in this paper.
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If we interpret a linear congruence over Z instead of N we obtain that the
solutions form an infinite progression containing both positive and negative num-
bers. In other words, ax ≡ b mod m has a solution in N if and only if it has
a solution in Z. The same reasoning applies to the CRT, since the solution of
a system of linear congruences is the intersection of a finite number of progres-
sions, hence a progression itself. As for Erdös’ Conjecture, we can see that it
is true for positive integers only . In conclusion, the above theorems hold for Z
as well as they do for N. In general, all results in this paper apply the same to
integer and natural numbers, therefore we will not make the distinction unless
necessary2.

3 Decidability of L(1)
|

In this section we show that the L(1)
| class can be effectively reduced to the

〈N, +, 0, 1〉 theory. Mostly for clarity, we will work first with a simplified form,
in which each divisibility atomic proposition is of the form z|f(x, z), and then
we generalize to propositions of the form h(z)|f(x, z), with f, h linear functions.
Hence we start explaining the reduction of formulas of the following simple form:

Q1x1 . . . Qnxn

N∨

i=1

( Mi∧

j=1

z|fij(x, z) ∧
Pi∧

j=1

z & |gij(x, z) ∧ ϕi(x, z)
)

(1)

where fij and gij are linear functions with integer coefficients and ϕi, are Pres-
burger formulas with x and z free.

As Presburger arithmetic has quantifier elimination [Pre29], we can assume
w.l.o.g. that ϕi(x, z) ≡

∨
k

∧
l ∃tkl tkl ≥ 0 ∧ hkl(x, z)+tkl = 0 ∧

∧
l ckl|h′

kl(x, z),
with hkl, h′

kl linear functions with integer coefficients, and ckl positive integer
constants. Suppose now that xm, for some 1 ≤ m ≤ n, appears in some hkl(x) =
aklxm + bkl(x, z) with coefficient akl &= 0. We multiply through with akl by
replacing all formulas of the form h(x, z) + t = 0 with aklh(x, z) + aklt =
0, c|h′(x, z) with aklc|aklh′(x, z), and z|f(x, z) with aklz|aklf(x, z). Then we
eliminate aklxm by substituting it with −bkl(x, z)− tkl, which does not contain
xm. The CRT can be applied a number of times to eliminate the tkl variables3.
We repeat the above steps until all x variables occurring within linear equations
have been eliminated. The resulting formula is of the form:

Q1x1 . . . Qnxn

N∨

i=1

( Mi∧

j=1

zij |fij(x, z) ∧
Pi∧

j=1

zij & |gij(x, z) ∧ ψi(z)
)

(2)

2 For instance, it is not clear whether one can define the order relation in the existen-
tial fragment of 〈Z, +, |, 0, 1〉, hence we will work with 〈Z, +, |,≤, 0, 1〉 instead of it,
whenever needed.

3 Notice that the constraint tkl ≥ 0 is trivially satisfied if we work with N, otherwise,
for Z, we can use the fact that the solutions to a linear congruence system form a
progression that contains infinitely many positive and negative numbers.
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where each zij is either aijz, aij ∈ N \ {0}, or a constant cij ∈ N and ψi(z)
are Presburger formulas in which z occurs free. In the rest of the section we
show how to reduce an arbitrary formula of the form (2) to an equivalent Pres-
burger formula in two phases: first, we successively eliminate the quantifiers
Q1x1, . . . , Qnxn and second, we define the resulting solved form into Presburger
arithmetic.

Quantifier Elimination

We consider three cases, based on the type of the last quantifier Qn (∃, ∀) and the
sign of the divisibility propositions occurring in the formula (positive, negative).
Namely, we treat the cases existential positive, universal positive and universal
mixed. The remaining case (existential mixed) can be dealt with by first negating
and then applying the universal mixed case.

The Existential Positive Case In this case the formula (2) becomes:

N∨

i=1

∃xn

Mi∧

j=1

zij |fij(x, z) ∧ ψi(z) (3)

W.l.o.g. we can assume that Mi &= 0 for all 1 ≤ i ≤ N , and that fij(x, z) =
aijxn+gij(x′, z), where x′ = x\{xn}, and with all coefficients aij &= 0. Applying
Corollary 1 to the i-th disjunct, we obtain (the original i subscript has been
omitted):

∧
1≤k,l≤M (akzl, alzk)|(akgl − algk)∧

∧
1≤k≤M (ak, zk)|gk ∧ψ(z). In the

resulting formula we have three types of divisibility propositions, which we can
write equivalently as:

– (aia′z, aja′′z)|(aigj − ajgi) : (aia′, aja′′)z|(aigj − ajgi)
– (ai, az)|gi :

∨ai−1
r=0 (az ≡ r) mod ai ∧ (ai, r)|gi

– (aicj , ajci)|(aigj − ajgi) and (ai, ci)|gi are left untouched.

We have used the equivalence (az, c)|f ↔
∨c−1

r=0 az ≡ r mod c ∧ (r, c)|f . Now
az ≡ r mod c is a Presburger formula with z free. The formula can now be
easily written back in the form (3), with n − 1 variables of type xi, instead of
n. The size of the resulting formula (in DNF) is at most quadratic in the size of
the input.

The Universal Positive Case It is now convenient to consider the matrix of
(2) in conjunctive normal form. In this case the formula (2) becomes:

P∧

i=1

∀xn

Qi∨

j=1

zij |fij(x, z) ∨ ψi(z) (4)

W.l.o.g. we can assume that fij(x, z) = aijxn + bij(x′, z), where x′ = x \ {xn},
and with all coefficients aij &= 0. In each i-conjunct, the union of Qi arithmetic
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progressions {x | aijx ≡ −bij mod zij}Qi
j=1 covers N. By Theorem 1 it is sufficient

(and trivially necessary) to cover only the first 2Qi values. The equivalent form,
with xn eliminated, is the following:

∧P
i=1

∧2Qi

t=1

∨Qi

j=1 zij |aijt + bij ∨ ψi(z). The
size of the resulting formula (in CNF this time) is simply exponential in the size
of the input.

The Universal Mixed Case Let us consider again the formula (2) with the
matrix written in conjunctive normal form:

P∧

i=1

∀xn

( Qi∨

j=1

zij |fij(x, z) ∨
Ri∨

j=1

zij & |gij(x, z)
)
∨ ψi(z) (5)

Again, we can assume w.l.o.g. that xn occurs in each fij , gij with a non-zero coef-
ficient. Also Qi, Ri can be considered greater than zero for all 1 ≤ i ≤ n, the other
cases being treated in the previous. Each i-conjunct, omitting the i subscript,
is: ∀xn

( ∧R
j=1 zj|gj(x, z) →

∨Q
j=1 zj|fj(x, z)

)
∨ψ(z). The parenthesized formula

can be understood as coverage of an arithmetic progression by a finite union of
arithmetic progressions. Assuming gj(x, z) = ajxn + bj(x, z) with aj &= 0, let
us compute the period of the set {x :

∧R
j=1 zj |gj(x, z)} =

⋂R
j=1{x : ajx ≡ bj

mod zj}. Each linear congruence ajx ≡ bj mod zj has a periodic solution with
period zj

(zj,aj)
. The period of the intersection is the least common multiple of the

individual periods i.e.,
[{ zj

(zj ,aj)

}R

j=1

]
. Since all zj’s are either a′

jz, for a′
j ∈ N\{0}

or some constants cj , we can simplify the expression of the period to the form
zkj

(z,lj)
for some (effectively computable) constant values kj , lj ∈ N \ {0}. Now we

can apply Theorem 1 and eliminate ∀xn from the i-th conjunct of the formula
(5). Supposing fj(x, z) = cjxn + dj(x, z) for some cj , dj ∈ Z, cj &= 0, the result
is: ¬∃y

∧R
j=1 zj |ajy + bj(x, z) ∨ ∃y

∧R
j=1 zj|ajy + bj(x, z) ∧

∧2Q

t=1

∨Q
j=1 zj|cj

(
y +

zkj t
(z,lj)

)
+ dj(x, z). The first disjunct is for the trivial case, in which the set

{x :
∧R

j=1 zj |gj(x, z)} is empty, while the second disjunct assumes the existence
of an element y of this set and encodes the equivalent condition of Theorem 1,
namely that the first 2Q elements of this set, starting with y, must be covered by
the union of Q progressions. Now y can be eliminated from the above formula
using CRT, as in the existential positive case, treated in the previous. Notice
that, in addition to the existential positive case, we have introduced a subterm
of the form zk

(z,l) within the functions fj. This is reflected in the definition of the
solved form, in the next section. As in the previous case, the size of the output
formula is simply exponential in the size of the input formula.

The Solved Form The three cases from the previous section can be successively
applied to eliminate all quantified variables Q1x1, . . .Qnxn from (2). For any
formula of type (2), the result of this transformation belongs to the following
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solved form:
N∨

i=1

Mi∧

j=1

aijz|fij(z) ∧
Pi∧

j=1

bijz & |gij(z) ∧ ψi(z) (6)

where aij and bij are positive integers, fij and gij are linear combinations of
terms of the form z

(z,k) with k ∈ N \ {0}4 and ψi are Presburger formulas in z.
We will consider the expressions az|f(z), where a is one of aij , bij and f is

one of fij , gij . Let f(z) = Σn
i=1

zci
(z,ki)

+ c0. We write az|f(z), equivalently as:∨
(d1,...,dn) ∈ div(k1)×...×div(kn)

∧n
i=1(z, ki) = di ∧ aDz|zΣn

i=1ciDi + c0D, where
D = Πn

i=1di, Di = D
di

and div(k) denotes the set of divisors of k. Notice that the
last conjunct of each clause implies that z|c0D, i.e., z ∈ div(c0D). The entire
formula is equivalent to:

∨
(d,d1,...,dn) ∈ div(c0D)×div(k1)×...×div(kn)

∧n
i=1(d, ki) =

di ∧ aDd|dΣn
i=1ciDi + c0D. Each divisibility proposition of the solved form can

thus be evaluated. The solved form is then either trivially false or equivalent to
a disjunction of the form ψi1 ∨ . . .∨ψin , for some 1 ≤ i1, . . . , in ≤ N . The latter
is obviously a Presburger formula.

Block Elimination of Universal Quantifiers

This section presents results that are used in a generalization of the universal
positive and universal mixed cases, to perform the elimination of an entire block
of successive universal quantifiers with simple exponential complexity. A set of
vectors (x1, . . . , xn) ∈ Zn satisfying the linear congruence a1x1+. . .+anxn+b ≡ 0
mod m is called a n-dimensional arithmetic progression. The block quantifier
elimination problem is equivalent to the coverage of an n-dimensional arithmetic
progression by a finite union of n-dimensional progressions. The latter can be
solved in simple exponential time, as shown by the following consequence of
Theorem 1:

Corollary 2. Let aij ∈ Z, bi ∈ Z, mi ∈ N, 1 ≤ i ≤ k, 1 ≤ j ≤ n. The set of
progressions {Σn

j=1aijxj + bi ≡ 0 mod mi}k
i=1 covers Zn if and only if it covers

the set {1 . . . 2k}n.

This takes care of the universal positive case. In the universal mixed case we
need to effectively compute the period of the intersection of any given number
of n-dimensional progressions. Let LZ[z] denote the monoid of first degree poly-
nomials in z, with integer coefficients. Since our problem is parameterized by z,
we consider a system of progressions of the form

∧k
i=1 Σ

n
j=1aijxj ≡ 0 mod z,

with solutions from LZ[z]. We need to show that this set is a finitely generated
monoid, and moreover, that its base is effectively computable. The following
theorem gives the result:

Theorem 2. Let ai ∈ Z, 1 ≤ i ≤ n, n > 1.

4 Notice that we can also write z as z
(z,1) .
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1. The set of integer solutions to the equation Σn
i=1aixi = 0 is a finitely gener-

ated submonoid M of (Zn, +). It is moreover possible to construct a base of
M of size n − 1.

2. The set of integer coefficient solutions to the congruence Σn
i=1aixi ≡ 0

mod z is a finitely generated submonoid M [z] of (LZn[z], +). It is moreover
possible to construct a base of M [z] of the form {v1, . . . , vn−1, zv1, . . . , zvn−1,
zvn}, with v1, . . . , vn ∈ Zn.

Theorem 2 gives us the means to characterize the solution of a system of n-
dimensional progressions, parameterized by z. This is done inductively. Suppose
that we have already computed a base {v1, . . . , vn−1, zv1, . . . , zvn−1, zvn} for the
system

∧k−1
i=1 Σn

j=1aijxj ≡ 0 mod z, according to the second point of Theorem 2.
We are now looking after a base generating the solutions to

∧k
i=1 Σ

n
j=1aijxj ≡ 0

mod z. The solutions to the system are of the form x = Σn−1
j=1 αjvj + zΣn

j=1βjvj

with αj , βj ∈ Z. Introducing those values into Σn
i=1akixi ≡ 0 mod z, we ob-

tain that Σn
i=1aki

(
Σn−1

j=1 αjv
(i)
j + zΣn

j=1βjv
(i)
j

)
≡ 0 mod z must be the case,

where v(i) denotes the i-th component of a vector v. This is furthermore equiv-
alent to Σn

i=1akiΣ
n−1
j=1 αjv

(i)
j ≡ 0 mod z, or to the system with unknowns αj :

Σn−1
j=1

(
Σn

i=1akiv
(i)
j

)
αj ≡ 0 mod z. According to Theorem 2, the solutions of the

latter system are generated by a base {u1, . . . , un−2, zu1, . . . , zun−1}. Thus the
solutions of the original system

∧k
i=1 Σ

n
j=1aijxj ≡ 0 mod z are of the form

x = Σn−2
l=1 γlΣ

n−1
j=1 u(j)

l vj + zΣn−1
l=1 δlΣn

j=1u
(j)
l vj , with γl, δl ∈ Z. The block quan-

tifier elimination can be now performed along the same lines of the universal
mixed case, discussed in the previous.

Extending to the entire L(1)
|

Let us now revisit the quantifier elimination procedure for the general case,
where the divisibility propositions are of the form f(z)|g(x, z), with f, g linear
functions. The only two differences w.r.t. the case f(z) = z are encountered
when applying the existential positive and the universal mixed cases.

In the existential positive case, subsequent to the application of the CRT,
we need to simplify formulas of the following two forms, where ai ∈ N and
fi(z), fj(z), hij(x, z), hi(x, z) are arbitrary linear functions:

1. (fi, fj)|hij . We distinguish two cases:
– if either fi divides fj or fj divides fi in terms of polynomial division,

then (fi, fj) = fi or (fi, fj) = fj , respectively. Let us consider the first
situation, the other one being symmetric. We obtain, equivalently, fi|r,
where r is the constant polynomial representing the remainder of hij

divided by fi. This can be expressed as a finite disjunction in Presburger
arithmetic.

– otherwise, (fi, fj) can be written equivalently as (gij , k) where gij is a
linear function in z and k ∈ Z, by applying Euclid’s g.c.d. algorithm in
the polynomial ring Z[z]. We have reduced the problem to case 2.
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2. (fi, ai)|hi is equivalent to
∨

0≤r<ai
fi ≡ r mod ai ∧ (r, ai)|hi.

In the universal mixed case, subsequent to the application of Erdös Con-
jecture, we obtain subterms of the form π =

[{ hj

(hj,aj)

}R

j=1

]
occurring within

atomic propositions of the form hi|aiπ + gi. where hi(z), hj(z) and gi(x, z) are
linear functions. The first step is to substitute (hj , aj) for constants i.e. π =
[{hj

dj

}R

j=1

]
, for some dj ∈ div(aj). The equivalent form is now π =

[
{Djhj}R

j=1

]

D =
ΠR

j=1Djhj

D
(
{Djhj}R

j=1

) , where D = ΠR
j=1dj and Dj = D

dj
. Now the denominator expres-

sion is the g.c.d. of a number of linear functions in z, and can be reduced either
to a linear function or to a constant, chosen from a set of divisors, like in the
existential positive case above. Hence π is a polynomial from Q[z], of degree at
most R. Every atomic proposition involving π can be put in the form h(z)|p(z),
where h, p ∈ Z[z] (just multiply both sides with the l.c.m of all denominators in
π). We consider the following two cases:

– if z occurs in h with a non-zero coefficient, let r be the remainder of p divided
by h, the degree of r being zero. Hence h(z)|r, which is written as a finite
disjunction in Presburger arithmetic.

– otherwise, h is a constant c ∈ Z. We have p(z) ≡ 0 mod c, which is further
equivalent to

∨
r∈{0,...,|c|−1} z ≡ r mod c ∧ p(r) ≡ 0 mod c

Example It is time to illustrate our method by means of an example. Let us find
all positive integers z that satisfy the formula ∀x∀y z|12x + 4y → z|3x + 12y.
To eliminate y we apply the universal mixed case and obtain:

∀x
[
¬∃y z|12x + 4y ∨ ∃y z|12x + 4y ∧ z|3x + 12y ∧ z|3x + 12(y +

z

(z, 4)
)
]

By an application of the CRT, ∃y z|12x + 4y is equivalent to (z, 4)|12x which is
trivially true, since (z, 4)|4 and 4|12x. Moreover, if z|3x+12y, then z|3x+12y+
12 z

(z,4) is equivalent to z|12 z
(z,4) , which is also trivially true. Hence, the formula

can be simplified down to: ∀x∃y z|12x + 4y ∧ z|3x + 12y By an application
of the CRT we obtain: ∀x z|33x ∧ (z, 4)|12x ∧ (z, 12)|3x which, after trivial
simplifications, is equivalent to z|33∧ (z, 12)|3, leading to z ∈ {1, 3, 11, 33}. /0

Complexity Assessment The quantifier elimination has non-elementary worst
case complexity. Let ϕ be any formula of L(1)

| . Since the elimination of an ex-
istential quantifier in the positive case can be done in time |ϕ|2, and the elimi-
nation of any block of n universal quantifiers in time 2n|ϕ|, the only reason for
non-elementary blow-up lies within the alternation of existential and universal
quantifiers. Even in the positive case, alternation of quantifiers causes a for-
mula to be translated from disjunctive to conjunctive normal form or viceversa,
this fact alone introducing an exponential blow-up. However it is clear that the
alternation-free subset of L(1)

| can be dealt with in at most simple exponential
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time. the whole decision procedure takes at most 2m2···2
m|ϕ|

}
2d

time, where d
is the alternation depth of ϕ and m the maximum size of an alternation-free
quantifier block.

4 Decidability of ∃L(∗)+
|

After performing the preliminary substitution of variables xi that occur together
with some zj in a linear constraint, we reduce a formula of the ∃L(∗)

| class to the
following form:

∃z1 . . . ∃znQ1x1 . . . Qmxm

N∨

i=1

( Mi∧

j=1

fij(z)|gij(x, z)∧
Pi∧

j=1

f ′
ij(z) & |g′ij(x, z)∧ϕi(z)

)

where fij , gij , f ′
ij , g

′
ij are all linear functions. In this section we reduce an arbi-

trary positive ∃L(∗)
| formula to an existentially quantified formula of 〈N, +, |, 0, 1〉.

In other words, we suppose that Pi = 0, for all 1 ≤ i ≤ n.
We are going to apply essentially the same quantifier elimination method

from Section 3 and analyze its outcome in case of multiple variables of type
zi. Let us have a look first at the existential case i.e., Qm ≡ ∃. Application
of the CRT to eliminate xm yields atomic propositions of the form (f1, f2)|g12,
where g12(x, z) is a linear function. On the other hand, in the universal case
(Qm ≡ ∀) we just substitute xm by a constant quantified over a finite range
{1, . . . , 2Mi} for some 1 ≤ i ≤ N . Since negation does not involve divisibility
propositions, the universal mixed case does not apply. The solved form is, in
this case:

∨N
i=1

∧Mi

j=1

(
{fk(z)}Pij

k=1

)
|hij(z) ∧ ψi(z), where fk and hij are linear

functions over z. Since the g.c.d. operator is left-right associative, we can ap-
ply CRT and write each divisibility proposition (f1, . . . , fP )|h in the equivalent
form: ∃y1 . . .∃yP−1 f1|y1 − h ∧

∧P−1
i=2 fi|yi − yi−1 ∧ fP |yP−1. Since z1, . . . , zn

occur existentially quantified, we have obtained that ∃L(∗)+
| can be reduced to

〈N, +, |, 0, 1〉∃, hence it is decidable5. The worst-case complexity bound for the
quantifier elimination is, as in the case for L(1)

| , non-elementary. According
to [Lip76], the decision complexity for the underlying theory is bounded by
2(N+1)8N3

, where N is the maximum between |ϕ| and the maximum absolute
value of the coefficients in ϕ6.

To show the undecidability of the ∃L(∗)
| fragment with negation, we define

the existential subset of the 〈N, +, [], 0, 1〉 theory into it. This is done using the
classical definition of the l.c.m. relation [x, y] = z [Rob49]: ∀t x|t ∧ y|t ↔ z|t.

5 When interpreting ∃L(∗)
| over Z we assume the ≤ relation, since the decidability proof

from [Lip76] uses orderings of variables.
6 Actually this expression is the result of some simplifications, the original expression

being rather intricate.
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To show undecidability of the latter, we use that, for x &= 0, x2 = y ↔ y + x =
[x, x + 1] to define the perfect square relation7, and (x + y)2 − (x− y)2 = 4xy to
define multiplication. The rest is an application of the undecidability of Hilbert’s
Tenth Problem [Mat70].

5 Application to the Verification of Programs with Lists

The results in this paper are used to solve a decision problem related to the
verification of programs that manipulate dynamic memory structures, specified
by recursive data types. Examples include lists, trees, and, in general, graphs.
We are interested in establishing shape invariants such as e.g. absence of cycles
and data sharing, but also by quantitative properties involving lengths of paths
within the heap of a program. For instance, consider a list reversal program that
works by keeping two disjoint lists and moving pointers successively from one
list to another. A shape invariant of this program is that, given a non-cyclic list
as input, the two lists are always disjoint. A quantitative invariant is that the
sum of their lengths must equal the length of the input list.

In order to express shape and quantitative properties of the dynamic memory
of programs performing selector updating operations, we have defined a speci-
fication logic called alias logic with counters [BIL04]. Formulas in this logic are
interpreted over finite directed graphs with edges labeled with symbols from a
finite alphabet Σ. Formally such a graph is a triple G = 〈N, V, E〉, where N is
the set of nodes, E : N × Σ → N is the deterministic edge relation, V ⊆ N is
a designated set of nodes called variables on which the requirement is that for
no n ∈ N, σ ∈ Σ: E(n, σ) ∈ V . In other words, the graph is rooted on V . A
path in the graph is a finite sequence π = vσ1σ2 . . . ∈ V Σ∗. Since the graph is
deterministic, every path may lead to at most one node. Let π̂ denote this node,
if defined. We say that two paths π1 and π2 are aliased if π̂1, π̂2 are defined and
π̂1 = π̂2. A quantitative path is a sequence π(x) = vσf1

1 σf2
2 . . . , where x is a

finite set of variables, interpreted over N, and f1, f2, . . . are linear functions on
x. Given an interpretation of variables ι : x → N, the interpretation of a quanti-
tative path π, denoted as ι(π), is the result of evaluating the functions f1, f2, . . .
and replacing each occurrence of σk by the word σ . . . σ, repeated k times.

The logic of aliases with counters is the first-order additive arithmetic of
natural numbers, to which we add alias propositions of the form π1(x)!π2(x).
Given an interpretation of variables, an alias proposition π1!π2 holds in a graph
if the interpretations of the quantified paths involved are defined and they ”meet”
in the same node: ι̂(π1) = ι̂(π2). The satisfaction of a closed formula ϕ on a graph
G, denoted as G |= ϕ, is defined recursively on the syntax of ϕ, as usual.

We have studied the satisfiability problem for this logic and found that it
is undecidable on unrestricted graph and dag models, and decidable on tree
models. For details, the interested reader is pointed to [BIL04]. The problem in
case of simply linked lists is surprisingly more difficult than for trees, due to the

7 If we interpret over Z, we use −y − x = [x, x + 1] for negative x.
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presence of loops. However, we can show decidability now, with the aid of the
positive fragment of the theory ∃L(∗)

| .
Since all memory structures considered are lists, we can assume that they are

implemented using only one selector field. In other words, the label alphabet can
be assumed to be a singleton Σ = {σ}. Hence we can write each quantitative
path in the normal form vσf , with f a linear function over x. Consequently,
from now on we will only consider alias propositions of the form uσf!vσg.

To decide whether a closed formula ϕ in alias logic with counters has a model,
we use a notion of parametric graph G(z) over a set of variables z, which is an
abstraction of an infinite class of graphs. A formal definition of a parametric
graph is given in the next section. The important point is that, in the case
of lists with one selector, the total number of parametric graphs is finite. In
fact, this number depends only on the number of program variables. Hence, the
satisfiability problem is reduced to deciding whether there exists z1, . . . , zn such
that G(z) |= ϕ. To solve the latter problem, we shall derive an open formula
ΨG,ϕ(z) in the language of L(∗)

| , such that, for all interpretations ι : z → N,
ΨG,ϕ(ι(z)) holds if and only if G(ι(z)) |= ϕ. The formula ϕ is then satisfiable,
if and only if there exists a parametric graph G such that ∃z1, . . .∃znΨG,ϕ is
satisfiable. Moreover, as it will be pointed out, ΨG,ϕ is positive and the only
variables occurring on the left of the divisibility are z. Hence the latter condition
is decidable. The following discussion is meant only as a proof of decidability for
alias logic with counters in the case Σ = {σ}, the algorithmic effectiveness of
the decision procedure being left out of the scope of this paper.

A Parametric Model Checking Problem

A parametric graph over a set of variables z is a graph G = 〈N, V, E〉, the only
difference w.r.t. the previous definition being the edge alphabet, which is taken
to be Σ× z, instead of Σ. In other words, each edge is of the form n

σ,z−→ m. We
assume that each edge is labeled with a different variable from z, and thus ||E|| =
||z||. Given an interpretation of variables ι : z → N, we define the interpretation
of an edge to be the sequence of edges n = n1

σ−→ n2
σ−→ . . . nk = m of length

k = ι(z), with no branching along the way. The interpretation of a graph is the
graph obtained by replacing each edge with its interpretation. As a convention,
the values of z are assumed to be strictly greater than one. The reason is that,
allowing zero length paths in the graph might contradict with the requirement
that the graph is deterministic. A parametric graph is said to be in normal form
if and only if:

– there are no two adjacent edges labeled with the same symbol e.g., m
σ,z1→

n
σ,z2→ p, such that either the indegree or the outdegree of their common node

(n) is greater than one.
– each node in the graph is reachable from a root node in V .

Notice that each parametric graph can be put in normal form by replacing
any pair of edges violating this condition by a single edge labeled with the same
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symbol. The interested reader may also consult [BFN04] for a notion very similar
to the parametric graph.

In the rest of this section we shall consider the case Σ = {σ}. For any given
set V of program variables, the number of parametric graphs 〈N, V, E〉 in normal
form, is finite. This fact occurs as consequence of the following lemma:

Lemma 1. Let G = 〈N, V, E〉 be a parametric graph over a singleton alphabet,
in normal form. Then ||N || ≤ 2||V ||.

Given a parametric graph and a closed formula in alias logic, we are interested
in finding an open formula ΨG,ϕ(z) that encodes G(z) |= ϕ, for all possible
interpretations of z. We will define ΨG,ϕ inductively on the structure of ϕ, by
first defining characteristic formulas for the alias literals (alias propositions and
negations of alias propositions). Intuitively, π1!π2 holds on G(z) = 〈N, V, s〉 if
and only if the paths π1 and π2 meet either in an ”explicit” node n ∈ N or
in a node that does not occur in N but is ”abstracted” within a parametric
edge. For the latter case, we need some notation. Given an interpretation ι of
variables z ∪ {y}, let d(n, y) denote the node situated at distance ι(y) from n
in the (non-parametric) graph G(ι(z)). With this notation, Figure 1 defines the
characteristic formulas ΨG,l, for alias literals l.

G |= π1!π2 :
_

n∈N

cπ1 = n ∧ cπ2 = n ∨ ∃y
_

n
z→m

cπ1 = d(n, y) ∧ cπ2 = d(n, y) ∧ y < z

G )|= π1!π2 : ∃y1∃y2

_

n1
z1→ m1

n2
z2→ m2

n1 )= n2

cπ1 = d(n1, y1) ∧ cπ2 = d(n2, y2) ∧ y1 < z1 ∧ y2 < z2

∨
_

n
z→ m

cπ1 = d(n, y1) ∧ cπ2 = d(n, y2) ∧ y1 < z ∧ y2 < z ∧ y1 )= y2

Fig. 1.

Since both positive and negative literals can be encoded as positive boolean
combinations of equalities of the form π̂ = d(n, y)8, it is sufficient to show how
such an equality can be defined as a positive formula of L(∗)

| with the only vari-
ables occurring on the left of divisibility being the ones in z. Let π = vσf(x) be
a quantitative path. There are three possibilities:

1. if there is no path in G from v to n, then π̂ = d(n, y) is false.
2. if there is an acyclic path v

z1→ n1
z2→ . . . nk−1

zk→ n in G, then π̂ = d(n, y) is
equivalent to f(x) = Σk

i=1zi + y.
8 bπ = n is bπ = d(n, 0).
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3. otherwise, there is a cyclic path v
z1→ . . . nk−1

zk→ nk = n
zk+1→ nk+1 . . . nl−1

zl→
nl = n in G, and for all 1 ≤ i < l, i &= k we have ni &= n. Then π̂ = d(n, y) is
equivalent to f(x) ≥ Σk

i=1zi + y ∧Σl
i=k+1zi|f(x) −Σk

i=1zi − y, for the v
f→

path may iterate through the nk, nk+1, . . . , nl loop multiple times.

Example The encoding of a query of the form G(z) |= π̂(x) = n as a formula of
L(∗)
| is better understood by means of an example. Figure 2 shows a parametric

graph and three sample queries with their equivalent encodings. /0

v1 v2

z4 z2

z5

z3

n1 n2

n3

z1

z6

v3

v̂1σx = n1 : x ≥ z1 ∧ z4 + z5 + z6|x − z1

v̂1σx = n2 : x ≥ z1 + z4 ∧ z4 + z5 + z6|x − z1 − z4

v̂1σx = n3 : x ≥ z1 + z4 + z5 ∧ z4 + z5 + z6|x − z1 − z4 − z5

Fig. 2.

Theorem 3. If ||Σ|| = 1, then the satisfiability problem for the logic of aliases
with counters is decidable.

6 Conclusion

We studied the decision problem for fragments of the arithmetic of addition
and divisibility. It is known that the entire theory is undecidable [Rob49], while
its existential subset is decidable [Lip76]. In defining our fragment we take in
consideration on which side of the divisibility sign | do variables occur. Our
main result is the decidability of the fragment of the form QzQ1x1 . . . Qnxnϕ
where the only divisibility propositions are of the form f(z)|g(x, z). For this
fragment we show the existence of a quantifier elimination procedure. We apply
the same procedure to formulas of the form ∃z1, . . . ,∃znQ1x1, . . . , Qmxmϕ where
the only divisibility propositions are of the form f(z)|g(x, z). Here we show
decidability of the positive form i.e., in which no divisibility propositions occur
negated. Moreover, the full fragment of this form is shown to be undecidable. We
have applied the decidability results to a problem concerning the verification of
programs with mutable data structures. Having introduced a specification logic
for expressing shape and quantitative properties of recursive data structures,
we show that this logic is decidable on list models, by reduction to first-order
formulas using addition and divisibility.
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Further directions of work concern, on one hand, algorithmic aspects of the
decision problem, and namely, efficient implementations of the method. On the
other hand, we are investigating the possibility of applying this theory to the
problem of computing loop invariants of integer counter automata. This problem
has been explored using Presburger arithmetic [CJ98], and extending the results
by means of theories with divisibility seems to be a promising approach.

Acknowledgments: The authors are greatly indebted to their colleagues Yas-
sine Lakhnech, Laurent Mazaré and Romain Janvier for the interesting discus-
sions and enlightening suggestions concerning this paper.
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