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This paper is concerned with asymptotical behavior for a class of impulsive delay differential equations. The new criteria for
determining attracting sets and attracting basin of the impulsive system are obtained by developing the properties of quasi-invariant
sets. Examples and numerical simulations are given to illustrate the effectiveness of our results. In addition, we show that the
impulsive effects may play a key role to these asymptotical properties even though the solutions of corresponding nonimpulsive
systems are unbounded.

1. Introduction

Impulsive delay differential equations have attracted increas-
ing interests since time delays and impulsive effects com-
monly exist in many fields such as population dynamics,
automatic control, drug administration, and communication
networks [1–4]. In past two decades, its asymptotical behav-
iors such as stability and attractivity of the equilibrium point
or periodical solutions have been deeply studied for impulsive
functional differential equations (see, [5–18]).

However, under impulsive perturbation, the solutions
may not be attracted to an equilibrium point or periodical
trajectory but to some bounded region. In this case, it is
interesting to investigate the attracting set and attracting
basin, that is, the region attracting the solutions and the range
in which initial values vary when remaining the attractivity
for impulsive delay differential equations. In [19], Xu and
Yang first give the method to estimate global attracting set
and invariant set for impulsive delayed systems by developing
delayed differential inequalities. The techniques are further
developed to study global attractivity for some complex
impulsive systems such as impulsive neutral differential equa-
tions [20, 21] and impulsive stochastic systems [22]. But the
techniques andmethods given in the existing publications are
invalid for determining locally attracting set and attracting
basin for impulsive delay differential equations.

In this paper, our objective is tomainly discuss the asymp-
totical behavior on (locally) attracting set and its attracting
basin for a class of impulsive delay differential equations.
Based on the quasi-invariant properties, we estimate the
existence range of attracting set and attracting basin of the
impulsive delay systems by solving algebraic equations and
employing differential inequality technique. Examples are
given to illustrate the effectiveness of our method and show
that the asymptotic behavior of the impulsive systemsmay be
different from one of the corresponding continuous systems.

2. Preliminaries

Let 𝑁 be the set of all positive integers, 𝑅𝑛 the space of 𝑛-
dimensional real column vectors, and 𝑅

𝑚×𝑛 the set of 𝑚 × 𝑛

real matrices. For 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛 or 𝐴, 𝐵 ∈ 𝑅

𝑛, 𝐴 ≥ 𝐵(𝐴 ≤

𝐵, 𝐴 > 𝐵, 𝐴 < 𝐵) means that each pair of corresponding
elements of 𝐴 and 𝐵 satisfies the inequality “≥(≤, >, <).” 𝑅

𝑛

+
=

{𝑥 ∈ 𝑅
𝑛

| 𝑥 ≥ 0}, 𝐸 = (1, 1, . . . , 1)
𝑇

∈ 𝑅
𝑛, and 𝐼 denotes an

𝑛 × 𝑛 unit matrix.
Let 𝜏 > 0 and 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ be the fixed points with

lim
𝑘→∞

𝑡
𝑘
= ∞ (called impulsive moments).

𝐶[𝑋, 𝑌] denotes the space of continuous mappings from
the topological space 𝑋 to the topological space 𝑌. Let 𝐶

Δ

=

𝐶[[−𝜏, 0], 𝑅
𝑛

] especially.
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Morever, PC Δ= {𝜙 : [−𝜏, 0] → 𝑅
𝑛

| 𝜙(𝑡
+

) = 𝜙(𝑡) for
𝑡 ∈ [−𝜏, 0), 𝜙(𝑡

−

) exists for 𝑡 ∈ (−𝜏, 0], 𝜙(𝑡
−

) = 𝜙(𝑡) for all but
at most a finite number of points 𝑡 ∈ (−𝜏, 0]}. PC is a space of
piecewise right-hand continuous functions which is a nature
extension of the phrase space 𝐶.

We define PC[[𝑡
0
,∞), 𝑅

𝑛

]
Δ

= {𝜓 : [𝑡
0
,∞) → 𝑅

𝑛

| 𝜓(𝑡) is
continuous at 𝑡 ̸= 𝑡

𝑘
, 𝜓(𝑡
+

𝑘
) and 𝜓(𝑡

−

𝑘
) exist, 𝜓(𝑡

𝑘
) = 𝜓(𝑡

+

𝑘
), for

𝑘 ∈ 𝑁}.
For 𝑥 ∈ 𝑅

𝑛, 𝐴 ∈ 𝑅
𝑛×𝑛, 𝜙 ∈ 𝐶 or 𝜙 ∈ PC, we define

[𝑥]
+

= (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨)
𝑇

,

[𝐴]
+

= (
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
)
𝑛×𝑛

,

[𝜙]
+

𝜏
= (

󵄩󵄩󵄩󵄩𝜙1
󵄩󵄩󵄩󵄩𝜏

,
󵄩󵄩󵄩󵄩𝜙2

󵄩󵄩󵄩󵄩𝜏
, . . . ,

󵄩󵄩󵄩󵄩𝜙𝑛
󵄩󵄩󵄩󵄩𝜏

) ,

(1)

where ‖ 𝜙
𝑖
‖
𝜏
= sup

𝑠∈[−𝜏,0]
‖ 𝜙
𝑖
(𝑠) ‖ and ‖ ⋅ ‖ is an norm in 𝑅

𝑛.
In this paper, we will consider a impulsive delay differen-

tial equations:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑥 = 𝐵𝑥 (𝑡
−

𝑘
) + 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑘 ∈ 𝑁,

(2)

where �̇�(𝑡) denotes the right-hand derivative of 𝑥(𝑡), Δ𝑥 =

𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
), 𝐴= diag{𝑎

1
,𝑎
2
, . . . , 𝑎

𝑛
}, 𝐵 =

diag{𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
}, 𝑓 ∈ 𝐶[[𝑡

𝑘−1
, 𝑡
𝑘
) × PC, 𝑅

𝑛

], and the limit
lim
(𝑡,𝜙)→ (𝑡

−

𝑘

,𝜑)
𝑓(𝑡, 𝜙) = 𝑓(𝑡

−

𝑘
, 𝜑) exists, 𝐼

𝑘
∈ 𝐶[[𝑡

0
,∞) ×

𝑅
𝑛

, 𝑅
𝑛

], and 𝑥
𝑡
∈ PC is defined by 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−𝜏, 0].

A function 𝑥(𝑡) : [𝑡
0
− 𝜏,∞) → 𝑅

𝑛 is called to be a
solution of (2) through (𝑡

0
, 𝜙), if 𝑥(𝑡) ∈ PC[[𝑡

0
,∞), 𝑅

𝑛

] as
𝑡 ≥ 𝑡
0
, and satisfies (2) with the initial condition

𝑥 (𝑡
0
+ 𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜙 ∈ PC. (3)

Throughout the paper, we always assume that for any 𝜙 ∈ PC,
system (2) has at least one solution through (𝑡

0
, 𝜙), denoted

by 𝑥(𝑡, 𝑡
0
, 𝜙) or 𝑥

𝑡
(𝑡
0
, 𝜙) (simply 𝑥(𝑡) and 𝑥

𝑡
if no confusion

should occur), where 𝑥
𝑡
(𝑡
0
, 𝜙) = 𝑥(𝑡 + 𝑠, 𝑡

0
, 𝜙) ∈ PC, 𝑠 ∈

[−𝜏, 0].
In this paper, we need the following definitions involving

attracting set, attracting basin, the quasi-invariant set of
impulsive systems, and monotonous vector functions.

Definition 1. The set 𝑆 ⊂ PC is called to be an attracting set
of (2), and 𝐷 ⊂ PC is called an attraction basin of 𝑆, if for
any initial value 𝜙 ∈ 𝐷, the solution 𝑥

𝑡
(𝑡
0
, 𝜙) converges to 𝑆

as 𝑡 → +∞. That is,

dist (𝑥
𝑡
(𝑡
0
, 𝜙) , 𝑆) 󳨀→ 0, a𝑠 𝑡 󳨀→ +∞, (4)

where dist(𝜑, 𝑆) = inf
𝜓∈𝑆

dist(𝜑, 𝜓), dist(𝜑, 𝜓) = sup
𝑠∈[−𝜏,0]

‖𝜑(𝑠) − 𝜓(𝑠)‖, for 𝜑 ∈ PC.

Definition 2. The set 𝐷 ⊂ PC is called to be a positive quasi-
invariant set of (2), if there is a positive diagonal matrix
𝐿= diag{𝑙

𝑖
} such that for any initial value 𝜙 ∈ 𝐷, the solutions

𝑥
𝑡
(𝑡
0
, 𝜙) satisfy 𝐿𝑥

𝑡
(𝑡
0
, 𝜙) ∈ 𝐷, for 𝑡 ≥ 𝑡

0
. When 𝐿 =

𝐼(identity matrix) especially, the set 𝐷 is called positively
invariant.

Definition 3. Let Ω ⊂ 𝑅
𝑛. The vector function 𝐹(𝑥) : Ω →

𝑅
𝑛 is called to be monotonically nondecreasing in Ω, if for

any 𝑥
󸀠

, 𝑥
󸀠󸀠

∈ Ω, 𝑥󸀠 ≤ 𝑥
󸀠󸀠 implies 𝐹(𝑥

󸀠

) ≤ 𝐹(𝑥
󸀠󸀠

).

3. Main Results

In this paper, we always make the following assumptions.
(𝐻
1
) There exist nonnegative constants 𝜃, 󰜚 such that 0 <

𝜃 ≤ 𝑡
𝑘
− 𝑡
𝑘−1

≤ 󰜚, for 𝑘 ∈ 𝑁.
(𝐻
2
) [𝑓(𝑡, 𝜑)]

+

≤ 𝑝([𝜑]
+

𝜏
) for 𝑡 ≥ 𝑡

0
and 𝜑 ∈ PC, where the

vector function 𝑝(⋅) : 𝑅
𝑛

+
→ 𝑅
𝑛

+
is continuous and

monotonically nondecreasing in 𝑅
𝑛

+
.

(𝐻
3
) [𝐼
𝑘
(𝑡, 𝑥)]

+

≤ 𝑞([𝑥]
+

), for 𝑡 ≥ 𝑡
0
, 𝑘 ∈ 𝑁 and 𝑥 ∈

𝑅
𝑛, where the vector function 𝑞(⋅) : 𝑅

𝑛

+
→ 𝑅

𝑛

+
is

continuous and monotonically nondecreasing in 𝑅
𝑛

+
.

To obtain attractivity, we first give the quasi-invariant prop-
erties of (2).

Theorem 4. Assume that in addition to (𝐻
1
)–(𝐻
3
), there is a

vector 𝑧
∗

≥ 0 such that

𝑝 (𝑀𝑧
∗

) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧
∗

) − 𝑊𝑧
∗

< 0, (5)

where 𝑊= diag{𝑤
1
, . . . , 𝑤

𝑛
}, 𝑀= diag{𝑚

1
, . . . , 𝑚

𝑛
}, 𝑤
𝑖

>

0,𝑚
𝑖
≥ 1, 𝑖 = 1, 2, . . . , 𝑛, are defined by

𝑤
𝑖
=

{{{{

{{{{

{

−𝑎
𝑖
−
ln 󵄨󵄨󵄨󵄨1 + 𝑏

𝑖

󵄨󵄨󵄨󵄨

󰜚
, if 0 <

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨 < 1,

−𝑎
𝑖
−
ln 󵄨󵄨󵄨󵄨1 + 𝑏

𝑖

󵄨󵄨󵄨󵄨

𝜃
, if 󵄨󵄨󵄨󵄨1 + 𝑏

𝑖

󵄨󵄨󵄨󵄨 ≥ 1,

𝑚
𝑖
=

{

{

{

1

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨

, if 0 <
󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨 < 1,

1, if 󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨 ≥ 1.

(6)

Then, the set 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑧
∗

} is a positive quasi-
invariant set of (2). When 𝑀 = 𝐼 especially, 𝐷 is a positive
invariant set of (2).

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be a solution of (2) through

(𝑡
0
, 𝜙). It is easily verified that the following formula for the

variation of parameters is valid:

𝑥 (𝑡) = 𝐾 (𝑡, 𝑡
0
) 𝜙 (0) + ∫

𝑡

𝑡
0

𝐾 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝐾(𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑡 ≥ 𝑡

0
,

(7)

where𝐾(𝑡, 𝑠) is the Cauchy matrix of linear impulsive system

{{

{{

{

�̇� (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
+

𝑘
) = 𝐵𝑦 (𝑡

−

𝑘
) , 𝑘 ∈ 𝑁.

(8)

According to the representation of the Cauchy matrix (see
page 74 [2]),

𝐾 (𝑡, 𝑠) = 𝑒
𝐴(𝑡−𝑠)

∏

𝑠<𝑡
𝑘

≤𝑡

(𝐼 + 𝐵) , 𝑡 ≥ 𝑠 ≥ 𝑡
0
. (9)
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Since 0 < 𝜃 ≤ 𝑡
𝑘
−𝑡
𝑘−1

≤ 󰜚, for 𝑘 ∈ 𝑁, we obtain the following
estimate:

∏

𝑠<𝑡
𝑘

≤𝑡

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨

≤

{{{

{{{

{

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨

((𝑡−𝑠)/󰜚)−1

=
1

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨

𝑒
(ln|1+𝑏

𝑖

|/󰜚)(𝑡−𝑠)

, if 0 <
󵄨󵄨󵄨󵄨1 + 𝑏

𝑖

󵄨󵄨󵄨󵄨 < 1,

󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨

(𝑡−𝑠)/𝜃

= 𝑒
(ln|1+𝑏

𝑖

|/𝜃)(𝑡−𝑠)

, if 󵄨󵄨󵄨󵄨1 + 𝑏
𝑖

󵄨󵄨󵄨󵄨 ≥ 1.

(10)

In terms of the definition of 𝑀 and 𝑊,

[𝐾 (𝑡, 𝑠)]
+

≤ 𝑀𝑒
−𝑊(𝑡−𝑠)

, 𝑡 ≥ 𝑠 ≥ 𝑡
0
. (11)

By (7) and (11) and the assumptions (𝐻
2
) and (𝐻

3
), then

[𝑥 (𝑡)]
+

≤ 𝑀𝑒
−𝑊(𝑡−𝑡

0

)

[𝜙]
+

𝜏
+ 𝑀∫

𝑡

𝑡
0

𝑒
−𝑊(𝑡−𝑠)

𝑝 ([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+ 𝑀 ∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝑒
−𝑊(𝑡−𝑡

𝑘

)

𝑞 ([𝑥 (𝑡
−

𝑘
)]
+

) , 𝑡 ≥ 𝑡
0
.

(12)

Since 𝑡
𝑘
−𝑡
𝑘−1

≥ 𝜃 > 0 and𝑊= diag{𝑤
1
, . . . , 𝑤

𝑛
} > 0, we have

∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝑒
−𝑊(𝑡−𝑡

𝑘

)

= ∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝑒
−𝑊(𝑡−𝑡

𝑘

)

[𝐼 − 𝑒
−𝑊𝜃

] [𝐼 − 𝑒
−𝑊𝜃

]
−1

≤ ∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝑒
−𝑊(𝑡−𝑡

𝑘

)

[𝐼 − 𝑒
−𝑊(𝑡

𝑘

−𝑡
𝑘−1

)

] [𝐼 − 𝑒
−𝑊𝜃

]
−1

= ∑

𝑡
0

<𝑡
𝑘

≤𝑡

[𝑒
−𝑊(𝑡−𝑡

𝑘

)

− 𝑒
−𝑊(𝑡−𝑡

𝑘−1

)

] [𝐼 − 𝑒
−𝑊𝜃

]
−1

≤ [𝐼 − 𝑒
−𝑊(𝑡−𝑡

0

)

] [𝐼 − 𝑒
−𝑊𝜃

]
−1

.

(13)

From the strict inequality (5), there is an enough small
number 𝜀 > 0 such that

𝑝 (𝑀𝑧) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧) − 𝑊𝑧 < 0,

𝑧
Δ

= 𝑧
∗

+ 𝜀𝐸 > 0.

(14)

In the following, we will prove that [𝜙]
+

𝜏
< 𝑧 implies

[𝑥 (𝑡)]
+

= [𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

< 𝑀𝑧, 𝑡 ≥ 𝑡
0
. (15)

Otherwise, from the piecewise continuity of 𝑥(𝑡), there must
be an integer 𝑖 and 𝑡

∗

> 𝑡
0
such that

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡
∗

)
󵄨󵄨󵄨󵄨 ≥ 𝑚
𝑖
𝑧
𝑖
, (16)

[𝑥 (𝑡)]
+

≤ 𝑀𝑧, 𝑡
0
≤ 𝑡 < 𝑡

∗

. (17)

By using (12), (13), (14), (17), 𝑊 > 0, and the monotonicity of
𝑝(⋅), 𝑞(⋅), we can get

[𝑥 (𝑡
∗

)]
+

≤ 𝑒
−𝑊(𝑡

∗

−𝑡
0

)

𝑀[𝜙]
+

𝜏
+ 𝑀∫

𝑡
∗

𝑡
0

𝑒
−𝑊(𝑡

∗

−𝑠)

𝑝 (𝑀𝑧) 𝑑𝑠

+ 𝑀 ∑

𝑡
0

<𝑡
𝑘

≤𝑡
∗

𝑒
−𝑊(𝑡

∗

−𝑡
𝑘

)

𝑞 (𝑀𝑧)

< 𝑒
−𝑊(𝑡

∗

−𝑡
0

)

𝑀𝑧 + 𝑀(𝐼 − 𝑒
−𝑊(𝑡

∗

−𝑡
0

)

)𝑊
−1

𝑝 (𝑀𝑧)

+ 𝑀(𝐼 − 𝑒
−𝑊(𝑡

∗

−𝑡
0

)

) [𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧)

= 𝑒
−𝑊(𝑡

∗

−𝑡
0

)

𝑀𝑊
−1

× [𝑊𝑧 − 𝑝 (𝑀𝑧) − 𝑊[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧)]

+ 𝑊
−1

𝑀𝑝(𝑀𝑧) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧)

< 𝑀𝑊
−1

[𝑊𝑧 − 𝑝 (𝑀𝑧) − 𝑊[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧)]

+ 𝑊
−1

𝑀𝑝(𝑀𝑧) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑀𝑧)

= 𝑀𝑧.

(18)

This contradicts (16), and so (15) holds. Letting 𝜀 → 0, from
(15), we have for any 𝜙 ∈ 𝐷 (i.e., [𝜙]

+

𝜏
≤ 𝑧
∗),

[𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

≤ 𝑀𝑧
∗

, that is, [𝑀−1𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

≤ 𝑧
∗

,

𝑡 ≥ 𝑡
0
.

(19)

Therefore, the set 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑧
∗

} is a positive
quasi-invariant set of (2). When 𝑀 = 𝐼 especially, 𝐷 is a
positive invariant set of (2). The proof is complete.

Based on the obtained quasi-invariant set, we have the
following

Theorem 5. Let

Δ (𝑧) = 𝑝 (𝑧) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝑧) − 𝑀
−1

𝑊𝑧, 𝑧 ∈ 𝑅
𝑛

+
.

(20)

Assume that all conditions in Theorem 4 hold. Define

Ω
1
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑀𝑧) < 0} ,

Ω
2
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) < 0} ,

Ω
3
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) ≥ 0} ,

Ω
∗

1
= ⋃

𝑧
∗

∈Ω
1

{𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ 𝑧

∗

} ,

Ω
∗

2
= ⋃

𝑧
∗

∈Ω
2

{𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ 𝑧

∗

} .

(21)
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Then, 𝑆 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
∗

2
∩ Ω
3
} is an attracting set of

(2) and 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
∗

1
} is the attracting basin of 𝑆.

Proof. From (5) and the definitions of the above sets, then
𝑧
∗

∈ Ω
1
, 𝑀𝑧
∗

∈ Ω
2
, 0 ∈ Ω

∗

1
, 0 ∈ Ω

∗

2
, 0 ∈ Ω

3
. Obviously,

Ω
1
, Ω
2
, Ω
∗

1
, Ω
∗

2
, Ω
3
and Ω

∗

2
∩ Ω
3
are nonempty, and so the

definitions of the sets of 𝑆 and 𝐷 are valid. For any 𝜙 ∈ 𝐷,
there is a 𝑧

∗

∈ Ω
1
satisfying [𝜙]

+

𝜏
≤ 𝑧
∗. According to

Theorem 4, we obtain

[𝑥 (𝑡)]
+

= [𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

≤ 𝑀𝑧
∗

∈ Ω
2
, ∀𝑡 ≥ 𝑡

0
. (22)

That is,

𝜎
Δ

= lim sup
𝑡→∞

[𝑥 (𝑡)]
+

∈ Ω
∗

2
. (23)

Then, for any given 𝜀 > 0, there is a 𝑇
1
> 𝑡
0
such that

[𝑥 (𝑡)]
+

≤ 𝜀𝐸 + 𝜎, 𝑡 ≥ 𝑇
1
. (24)

In light of 𝑊= diag{𝑤
𝑖
} > 0, for the above 𝜀 > 0 and 𝑇

1
, we

can find an enough large 𝑇
2
> 0 such that

∫

∞

𝑇
2

𝑒
−𝑊𝑠

𝑑𝑠 ≤ 𝜀𝐼,

∑

𝑡
0

<𝑡
𝑘

≤𝑇
1

𝑒
−𝑊(𝑡−𝑡

𝑘

)

≤ 𝜀𝐼, 𝑡 > 𝑇
2
.

(25)

Using (12), (13), (22), (24), and (25), we have for 𝑡 ≥ 𝜏+𝑇
1
+𝑇
2
,

[𝑥 (𝑡)]
+

≤ 𝑒
−𝑊(𝑡−𝑡

0

)

𝑀[𝜙]
+

𝜏
+ ∫

𝑡

𝑡
0

𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+ ∑

𝑡
0

<𝑡
𝑘

≤𝑡

𝑀𝑒
−𝑊(𝑡−𝑡

𝑘

)

𝑞 ([𝑥 (𝑡
−

𝑘
)]
+

)

≤ 𝑒
−𝑊(𝑡−𝑡

0

)

𝑀[𝜙]
+

𝜏

+ {∫

𝑡−𝑇
2

𝑡
0

+∫

𝑡

𝑡−𝑇
2

} 𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+
{

{

{

∑

𝑡
0

<𝑡
𝑘

≤𝑇
1

+ ∑

𝑇
1

<𝑡
𝑘

≤𝑡

}

}

}

𝑀𝑒
−𝑊(𝑡−𝑡

𝑘

)

𝑞 ([𝑥 (𝑡
−

𝑘
)]
+

)

≤ 𝑒
−𝑊(𝑡−𝑡

0

)

𝑀𝑧
∗

+ ∫

∞

𝑇
2

𝑒
−𝑊𝑠

𝑀𝑝(𝑀𝑧
∗

) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑇
2

𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝(𝜀𝐸 + 𝜎) 𝑑𝑠

+ 𝑀 ∑

𝑡
0

<𝑡
𝑘

≤𝑇
1

𝑒
−𝑊(𝑡−𝑡

𝑘

)

𝑞 (𝑀𝑧
∗

)

+ 𝑀 ∑

𝑇
1

<𝑡
𝑘

≤𝑡

𝑒
−𝑊(𝑡−𝑡

𝑘

)

𝑞 (𝜀𝐸 + 𝜎)

≤ 𝑒
−𝑊(𝑡−𝑡

0

)

𝑀𝑧
∗

+ 𝜀𝑀𝑝 (𝑀𝑧
∗

)

+ (𝐼 − 𝑒
−𝑊𝑇
2)𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝜀𝑀𝑞 (𝑀𝑧
∗

)

+ 𝑀(𝐼 − 𝑒
−𝑊(𝑡−𝑇

1

)

) [𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝜀𝐸 + 𝜎)

≤ 𝑒
−𝑊(𝑡−𝑡

0

)

𝑀𝑧
∗

+ 𝜀𝑀[𝑝 (𝑀𝑧
∗

) + 𝑞 (𝑀𝑧
∗

)]

+ 𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝜀𝐸 + 𝜎) .

(26)

This implies that

𝜎 = lim sup
𝑡→+∞

[𝑥 (𝑡)]
+

≤ 𝜀𝑀[𝑝 (𝑀𝑧
∗

) + 𝑞 (𝑀𝑧
∗

)]

+ 𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝜀𝐸 + 𝜎) .

(27)

Letting 𝜖 → 0
+, then

𝜎 ≤ 𝑊
−1

𝑀𝑝(𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]
−1

𝑞 (𝜎) . (28)

That is, Δ(𝜎) ≥ 0 and 𝜎 ∈ Ω
3
. Thus,

𝜎 ∈ Ω
∗

2
∩ Ω
3
. (29)

From the definition of 𝜎 and 𝑆, dist (𝑥
𝑡
(𝑡
0
, 𝜙), 𝑆) → 0 as 𝑡 →

+∞. The proof is complete.

From the above theorems, we can obtain sufficient condi-
tions ensuring global attractivity and stability in the following
corollaries.

Corollary 6. Assume that (𝐻
1
)–(𝐻
3
) hold with

𝑝 ([𝜑]
+

𝜏
) = 𝑃[𝜑]

+

𝜏
+ 𝜇,

𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

≥ 0, 𝜇 = (𝜇
1
, . . . , 𝜇

𝑛
)
𝑇

≥ 0,

𝑞 ([𝑥]
+

) = 𝑄[𝑥]
+

+ ],

𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

≥ 0, ] = (]
1
, . . . , ]

𝑛
)
𝑇

≥ 0.

(30)

If the spectral radius

𝜌 (Λ) < 1, whereΛ = 𝑊
−1

𝑀𝑃 + 𝑀[𝐼 − 𝑒
−𝜃𝑊

]
−1

𝑄, (31)

then 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑍
Δ

= (𝐼 − Λ)
−1

𝑊
−1

(𝜇 + 𝑊[𝐼 −

𝑒
−𝜃𝑊

]
−1])} is a positive quasi-invariant set of (2), and 𝑆 = {𝜙 ∈

PC | [𝜙]
+

𝜏
≤ (𝐼 −Λ)

−1

𝑊
−1

𝑀(𝜇+𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1])} is a global

attracting set of (2).



Abstract and Applied Analysis 5

Proof. Since 𝑝(𝑧) = 𝑃𝑧 + 𝜇 and 𝑞(𝑧) = 𝑄𝑧 + ], we directly
calculate

Δ (𝑧) = 𝑀
−1

𝑊(Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

],

Δ (𝑀𝑧) = 𝑊 (Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

].

(32)

Without loss of generality, we assume that 𝜇, ] > 0. Since
𝜌(Λ) < 1, (𝐼 − Λ)

−1 exists and (𝐼 − Λ)
−1

≥ 0 (see [23]), and so
𝑍 > 0. For any 𝜅 > 0, we take 𝑧

∗

= (1+𝜅)𝑍 > 0 inTheorem 4
and verify the condition (5):

Δ (𝑀𝑧
∗

) = −𝜅 (𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

]) < 0. (33)

According to Theorem 4, when 𝜅 → 0, we deduce that 𝐷 is
a positive quasi-invariant set of (2). Furthermore, by (33),

(1 + 𝜅)𝑍 ∈ Ω
1
, (1 + 𝜅)𝑀𝑍 ∈ Ω

2
. (34)

From the arbitrariness of 𝜅, we obtain Ω
∗

1
= Ω
∗

2
= 𝑅
𝑛

+
.

Moreover,

Ω
3
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) ≥ 0}

= {𝑧 ∈ 𝑅
𝑛

+
| 𝑀
−1

𝑊(Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

] ≥ 0}

= {𝑧 ∈ 𝑅
𝑛

+
| (𝐼 − Λ) 𝑧 ≤ 𝑊

−1

𝑀(𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

])}

⊂ {𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ (𝐼 − Λ)

−1

𝑊
−1

𝑀

× (𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1

])} .

(35)

It follows fromTheorem 5 that 𝑆󸀠 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
3
} is a

global attracting set of (2) and 𝑆 is also a global attracting set
due to 𝑆

󸀠

⊂ 𝑆. The proof is complete.

Corollary 7. Assume that all conditions in Corollary 6 hold
with 𝜇 = ] = 0. Then, the zero solution 𝑥(𝑡) = 0 of (2) is
globally asymptotically stable.

4. Illustrative Examples

The following illustrative examples will demonstrate the
effectiveness of our results and also show the different
asymptotical behaviors between the impulsive system and the
corresponding continuous system.

Example 8. Consider a scalar nonlinear impulsive delay
system

�̇� (𝑡) = 0.2𝑥 (𝑡) + 0.2𝑥
2

(𝑡 − 1) + 0.1,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁, 𝑡 ≥ 𝑡

0
= 0,

Δ𝑥 = −0.6𝑥 (𝑡
−

𝑘
) + 0.1𝑥

2

(𝑡
−

𝑘
) + 0.1 sin (𝑒

𝑡
𝑘) ,

𝑡
𝑘
= 𝑡
𝑘−1

+ 0.15.

(36)

According to Theorems 4 and 5, we have 𝜃 = 󰜚 = 0.15, 𝐴 =

0.2, 𝐵 = −0.6, 𝑀 = 2.5, 𝑊 ≐ 5.9086, 𝑝(𝑧) = 0.2𝑧
2

+ 0.1,
𝑞(𝑧) = 0.1𝑧

2

+ 0.1, Δ(𝑧) ≐ 1.2052𝑧
2

− 2.3634𝑧 + 1.1052, and
so

Ω
1
= {𝑧 ∈ 𝑅

+
| Δ (𝑀𝑧) < 0} = (0.3079, 0.4765) ,

Ω
∗

1
= [0, 0.4765] ,

Ω
2
= {𝑧 ∈ 𝑅

+
| Δ (𝑧) < 0} = (0.7698, 1.1913) ,

Ω
∗

2
= [0, 1.1913] ,

Ω
3
= {𝑧 ∈ 𝑅

+
| Δ (𝑧) ≥ 0} = [0, 0.7698] ∪ [1.1913, +∞) ,

Ω
∗

2
∩ Ω
3
= [0, 0.7698] .

(37)

Thus, 𝑆 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 0.7698} is an attracting set of (36),

and 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 0.4765} is an attracting basin of 𝑆.

However, solutions of the corresponding continuous system
(i.e., Δ𝑥 = 0 in (36)) may be unbounded. Taking the initial
condition 𝜙(𝑠) = 0.2, 𝑠 ∈ [−1, 0], Figure 1 shows the different
asymptotic behavior between the solution of (36) with no
impulse and one with impulses.

Example 9. Consider a 2-dimensional impulsive delay system

�̇�
1
(𝑡) = 𝑥

1
(𝑡) + 0.5 sin (𝑥

1
(𝑡 − 1)) − 0.4𝑥

2
(𝑡 − 1) − 0.5,

𝑡 ≥ 0,

�̇�
2
(𝑡) = −4𝑥

2
(𝑡) − 0.5𝑥

1
(𝑡 − 1) + 0.4 cos (𝑥

2
(𝑡 − 1)) + 0.5,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
1
= −0.5𝑥

1
(𝑡
−

𝑘
) + 0.1 cos (𝑥

1
(𝑡
−

𝑘
)) + 0.5 sin (𝑒

𝑡
𝑘) ,

𝑡
𝑘
= 0.1𝑘,

Δ𝑥
2
= 0.1𝑥

2
(𝑡
−

𝑘
) + 0.2 sin (𝑥

2
(𝑡
−

𝑘
)) − 0.5 cos (𝑒𝑡𝑘) ,

𝑘 ∈ 𝑁.

(38)

According to Corollary 6, we have 𝜃 = 󰜚 = 0.1,
𝐴= diag{1, −4}, 𝐵= diag{−0.5, 0.1}, 𝑀= diag{2, 1},
𝑊= diag{5.9315, 3.0469}, 𝑝(𝑧) = 𝑃𝑧 + 𝜇, 𝑞(𝑧) = 𝑄𝑧 + ],
Λ = 𝑊

−1

𝑀𝑃 + 𝑀[𝐼 − 𝑒
−𝜃𝑊

]
−1

𝑄, where

𝑃 = (
0.5 0.4

0.5 0.4
) , 𝑄 = (

0.1 0

0 0.2
) ,

𝜇 = ] = (
0.5

0.5
) , Λ = (

0.6156 0.1349

0.1641 0.8928
) ,

(39)

and so 𝜌(Λ) = 0.9575 < 1. Therefore, 𝐷 = {𝜙 ∈ PC |

[𝜙]
+

𝜏
≤ (1.7105, 2.5228)

𝑇

} is a positive quasi-invariant set of
(38), and 𝑆 = {𝜙 ∈ PC | [𝜙]

+

𝜏
≤ (1.8637, 2.8720)

𝑇

} is a
global attracting set of (38). Figure 2 shows the asymptotic
properties of solutions of (38) under the different initial
conditions.
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Figure 1: The trajectory of (36) with: (a) no impulse (i.e., Δ𝑥 = 0) and (b) impulses.
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Figure 2: Global attracting set of (38).
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