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Abstract. A new information-theoretic distance measure for images is proposed.
The measure is based on the concept of average common sub-matrix by consider-
ing the pixel matrices associated with the images. An algorithm to compute such
a value is described, and its computational complexity analyzed. Experimental re-
sults show that the measure is able to discriminate images by correctly reflecting
human perception. Furthermore, comparison with state-of-the-art information-
theoretic measures, points out that the new measure outperforms these measures
in terms of retrieval precision.

Keywords: image retrieval, similarity measure, pattern matching.

1 Introduction

Distance computation between images is an important and challenging problem in com-
puter vision, image recognition, image registration, and, more in general, pattern recog-
nition. Many different distance measures have been defined based on Euclidean distance
among pixels [8], Hausdorff distance [4], cross correlation [5], and on the concept of
entropy [1]. In particular, information-theoretic (dis)similarity measures rely on pixel
intensity distributions and use the histograms of two images, i. e. the number of times
each gray value occurs in an image, to determine the similarity between the images to
be matched. Several information-theoretic measures have been defined and successfully
applied in different contexts, such as medical imaging [6].

In this paper a new information-theoretic measure to compute the distance between
two images IA and IB is proposed. The measure, named Average Common Sub-Matrix
(ACSM ), considers the pixel matrices A and B, defined on an alphabet Σ, associated
with IA and IB respectively, and counts the number of square sub-matrices of matrix
A that exactly occur in B, to quantify the distance between IA and IB . ACSM is an
extension in two dimensions of the average common substring (ACS) measure defined
in [7] to measure the pairwise distances between sequences. Intuitively, if we have a
matrix C on the same alphabet Σ, A is considered more similar to B than to C, if the
average area of the sub-matrices of A that occur in B, is larger than the area of the sub-
matrices of A occurring in C. In order to evaluate the ACSM measure, two preliminary
experimentations have been performed. The former computes distances among images
containing similar objects, and shows that the ACSM measure is able to reflect the con-
cept of similar images as perceived by a human, i.e. it assigns smaller distance value to

A. Petrosino (Ed.): ICIAP 2013, Part I, LNCS 8156, pp. 170–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357393543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ACSM: A New Image Distance Measure 171

two images considered perceptually similar, and larger distance value to images deemed
different. The second experimentation compares the ACSM measure with other seven
information-theoretic measures, and shows that ACSM outperforms these measures in
terms of retrieval precision.

The paper is organized as follows. In the next section the ACSM measure is intro-
duced, an algorithm to compute it described, and its complexity analyzed. In section
3 the experimental results are reported, showing that the new distance measure is very
competitive with respect to the other information-theoretic measures. Section 4, finally,
concludes the paper and gives some suggestion on future work.

2 Average Common Sub-matrix Measure

In this section we introduce a new (dis)similarity metric between matrices as extension
in two dimensions of the average common substring (ACS) measure defined in [7], and
we prove that it can be used to evaluate the distance among data in two dimensions,
such as images. Intuitively, consider three matrices A, B and C defined on the same
alphabet Σ. A can be considered more similar to B than to C if the average area of the
sub-matrices in A that are also sub-matrices in B is larger than the same average area
in C. This idea can be formalized as follows.

Let Σ be a finite alphabet, and A a square matrix over Σ of size N ×N .

Definition 1. For any position (i, j) of A, let An
i,j denote the set of all the square sub-

matrices of size n × n, for 1 ≤ n ≤ min{i, j}, whose bottom right corner occurs
at position (i, j). When n = min{i, j}, the sub-matrix P of A of size n × n is said
maximal.

Example 1. Figure 1 shows a 5× 5 matrix A. Fixed position (3, 4), being min{3, 4} =
3, the square sub-matrices starting at position (3, 4) are A3

3,4 of size 3× 3, A2
3,4 of size

2× 2, and A1
3,4 of size 1× 1. Thus An

3,4 = {A3
3,4, A

2
3,4, A

1
3,4}, with n = 1, 2, 3. A3

3,4 is
the maximal sub-matrix.

Definition 2. Given two matrices A and B over Σ, of size N ×N and M ×M respec-
tively, for any position (i, j) of A, let P ∈ An

i,j be the sub-matrix of A of greatest size
r × r, for 1 ≤ r ≤ min{i, j}, that exactly matches a sub-matrix Q ∈ Bm

k,l starting at
some position (k, l) of B. The size r× r of such sub-matrix is called area of P and it is
denoted as W (i, j).

Example 2. Figure 2 shows a 5× 5 matrix A and a 4× 4 matrix B. For position (3, 5)
in A, P = A2

3,5 is the sub-matrix with the greatest n value that exactly matches a sub-
matrix Q = B2

3,3 starting at position (3, 3) in B. Consequently, the greatest n value
r = 2. In fact, A3

3,5, that is greater than P and of maximal size (n = 3) for position
(3, 5), does not match with any sub-matrices in B. The area W (3, 5) of P is thus equal
to 2× 2.

The average of all these areas of the sub-matrices of A that match sub-matrices of B
can be used to define a similarity measure between A and B. Note that m is dependent
from n. In fact, if an exact match of size n × n, n = min{i, j}, does not exists, we
consider An−1

i,j and search for an exact match in B of size m ×m, where m = n− 1,
and so on until n = 1.
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A[5,5] =

1 0 0 1 1
0 1 0 0 1
1 1 1 0 0
0 0 1 1 1
0 1 0 1 0

A3
3,4 =

0 0 1
1 0 0
1 1 0

A2
3,4 =

0 0
1 0

A1
3,4 = 0

Fig. 1. A matrix A of size 5×5, and the set of sub-matrices An
3,4, n = 3, 2, 1 whose bottom right

corner occurs at (3, 4)

A[5,5] =

1 0 0 1 1
0 1 0 0 1
1 1 1 0 0
0 0 1 1 1
0 1 0 1 0

B[4,4] =

1 1 0 0
1 0 1 0
0 0 0 1
1 1 1 1

A3
3,5 =

0 1 1
0 0 1
1 0 0

P = A2
3,5 =

0 1
0 0 A1

3,5 = 0 Q = B2
3,3 =

0 1
0 0

Fig. 2. Two input matrices, A of size 5 × 5 and B of size 4 × 4. Fixed the position (3, 5) in A,
P = A2

3,5 is the sub-matrix with the greatest n value that exactly matches a sub-matrix Q = B2
3,3

starting at position (3, 3) in B.

Definition 3. Given two square matrices A and B, the Average Common Sub-Matrix
(ACSM) similarity of A and B is defined as

S(A,B) =
N∑

i=1

N∑

j=1

W (i, j)/N2 (1)

Thus S(A,B) computes the average of all the areas of the sub-matrices of A and B
that match. Given another matrix C, if S(A,B) > S(A,C), then A will be considered
more similar to B than to C since the content of A is more embedded in B than in C.

In our basic measure, we need to identify, for any position (i, j) in A, the largest sub-
matrix exactly matching some sub-matrix in B. Sometimes, this exact match is available
only at a very small sub-matrix level. The problem is that, in some contexts, the simi-
larity evaluation by using this thin granularity could be trivial due to the redundancy of
very small patches in common between the two images. So, we introduce a parameter-
ization in the size of the smallest sub-matrices considered in the similarity measure. A
parameter α is introduced to fix a lower bound to the size of the sub-matrices.

More formally, the similarity measure is changed as,

Sα(A,B) =

N∑

i=1

N∑

j=1

W (i, j)/N2 s.t. W (i, j) ≥ α (2)

Now we derive a distance measure from this similarity measure. For a fixed α, since
Sα(A,B) increases if B size increases, analogously to [7], we normalize Sα(A,B)
with respect to the size of B by dividing it by log(M2). We take the inverse of the
normalized similarity and then subtract a correction term in order to obtain zero if the
two matrices are the same. The distance measure is then defined as,

dα(A,B) =
log(M2)

Sα(A,B)
− log(N2)

Sα(A,A)
(3)

Note that if A = B the left part of the formula coincides with the right part, thus
dα(A,A) = 0. This distance measure is not symmetric, thus we compute,

ds(A,B) = ds(B,A) =
dα(A,B) + dα(B,A)

2
(4)
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Input:
- two matrices A and B of size N × N and M × M
- α
Output:

- the distance measure ds(A, B)
begin

1. dα(A, B) = computeACSM(A, B, α)
2. dα(B, A) = computeACSM(B, A, α)

3. ds(A, B) =
dα(A,B)+dα(B,A)

2
end

computeACSM(A, B, α){
1.Wα(A, B) := 0, d := 0, Wα(A, A) := 0, k := 0
2. for each i = 1...N in A
3. for each j = 1...N in A
4. d = min{i, j}, found = false, k = d
5. if d ≥ √

α

6. Wα(A,A) = Wα(A,A) + d2

7. end
8. while (k ≥ √

α AND ¬found)

9. if exactMatch(Ak
i,j , B)

10. Wα(A, B) = Wα(A, B) + W (i, j)
11. found = true
12. end
13. k = k − 1
14. end
15. end
16. end

17. Sα(A, B) = Wα(A,B)/N2

18. Sα(A, A) = Wα(A, A)/N2

19. dα(A, B) =
log(M2)
Sα(A,B)

− log(N2)
Sα(A,A)

20. return dα(A, B)}

Fig. 3. The ACSM algorithm

that is the final distance measure in 2D. It is worth to note that the granularity is not lost
in the definition of the symmetric version, as the same α is adopted for both dα(A,B)
and dα(B,A).

2.1 The ACSM Algorithm

An algorithm to compute the distance between two matrices, by applying the concept
of Average Common Sub-Matrix, introduced in the previous section, is shown in figure
3. The main procedure receives as input two matrices A and B, and the granularity
parameter α. Then, it computes the ACSM distance between A and B (step 1) and
between B and A (step 2), given the α parameter. At the end of the procedure, the sym-
metric distance ds(A,B) is evaluated (step 3) by employing the computed dα(A,B)
and dα(B,A), as in equation (4), and returned as output.

The ACSM distance between two generic matrices A and B, given the α parame-
ter, is calculated by the function computeACSM(A,B,α). Step 1 of the function initializes
some variables, including the cumulative area Wα(A,B) of the greatest common sub-
matrices between A and B, and the cumulative area Wα(A,A) of the greatest common
sub-matrices between A and itself. Observe that the similarity of the matrix A with
itself Sα(A,A) can be computed simply by considering that, for each (i, j) in A, the
greatest common sub-matrix matching inside A itself is exactly the sub-matrix of max-
imal extension at that position, whose size is ≥ α. Consequently, given a position (i, j)
in A (steps 2-3), the function computes the area of the sub-matrix of maximal size
d × d, with d = min{i, j} at that position and updates Wα(A,A) only if this area is
larger than or equal to α, i.e. d ≥ √

α (steps 4-6). After that, the function finds the
sub-matrix Ak

i,j with the greatest size k × k that exactly matches a sub-matrix in B
(steps 8-14). Searching starts from k equal to d = min{i, j} and gradually decreases
the k value (step 13). In any case, this value cannot be smaller than

√
α, which is the

lower bound for k (step 8). As soon as the greatest sub-matrix at position (i, j) in A
matching inside B is detected, the cumulative area Wα(A,B) is augmented (step 10)
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with the area W (i, j) of the found greatest common sub-matrix, and the next position
in A is considered. Note that if no common sub-matrix is found at position (i, j) within
the α bound, the current position of A does not contribute to the computation of the
distance measure. Finally, equations (2) and (3) are evaluated (step 17 and step 19), by
computing also the similarity of the A matrix with itself Sα(A,A) (step 18), and the
value of dα(A,B) is returned as output of the function.

Theorem 1. The ACSM algorithm takes O(M2N3) time. It can be reduced to
O(M2N2log(N)) time by performing a binary search on d.

Proof. The cost of the ACSM algorithm is mainly dependent on the exactMatch pro-
cedure. Given the current pattern Ak

i,j and the input matrix B, it searches Ak
i,j in B,

by verifying if the pattern exactly occurs into the input matrix. Consider the worst case
where α = 1 and the size k × k of the greatest common sub-matrix is equal to 1 for
each position (i, j) in A. This means that, for each (i, j) in A, the algorithm will exactly
match all the patterns with k varying from d = min{i, j} to 1 with the input matrix B,
and that the correspondence will be found between the pattern of size k × k = 1 and
B. The number of comparisons is:

nc =
∑

i,j

d∑

k=1

MC =
∑

i,j

d∑

k=1

M2 = M2
∑

i,j

d∑

k=1

1 (5)

where MC is the execution time of exactMatch. A pattern matching procedure for
searching a two dimensional pattern P inside the matrix B can take O(M2) time [2],
independently from the size k × k of the pattern P , with k that varies from 1 to d =
min{i, j}. Because the number of positions (i, j) is N2 and d is at most equal to N ,
the overall cost is O(M2N3).

However, for a given position (i, j) in A, the cost for searching the largest pattern
P exactly matching a sub-matrix of B can be improved by employing a binary search
strategy. In particular, starting from the patternP of size k×k with k = d

2 , the matching
of P inside B is verified. If a correspondence is found, P occurs in B and eventually
also a larger pattern containing P could be there. Consequently, the larger patterns
of size k × k, with d ≤ k ≤ d

2 + 1 will be checked as possible expansion of P to
match with B. Otherwise, looking at the patterns which are larger than P and that
contain P is useless. In fact, if P doesn’t match inside B, none of the larger patterns
containing P can match inside B. Consequently, the smaller patterns of size k×k, with
d
2 − 1 ≤ k ≤ 1 will be considered as possible reductions of P to match with B. In both
cases, the process will start from the new middle points of the two intervals and it will
continue, until the greatest common sub-matrix is found at that position. By performing
this binary search along d, the number of patterns of size k × k to match with B for
each position (i, j) in A, is reduced to log(N). Consequently, nc is:

nc =
∑

i,j

M2log(N) (6)

Because the number of positions (i, j) is N2 in A, the overall cost can be reduced to
O(M2N2log(N)).
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(a) texture1 (b) texture2 (c) texture3 (d) hanging man (e) sun (f) spiral

(g) wave (h) line (i) vessel (j) box1 (k) box2 (l) box3

Fig. 4. The test images: the distance is computed for the triples (a-c), (d-f), (g-i) and (j-l)

2.2 Accelerating the ACSM Procedure

Recall that, for each position (i, j) in A, the ACSM algorithm finds the largest sub-
matrix exactly matching some sub-matrix in B. In order to find, for each position (i, j)
in A, the largest sub-matrix matching inside B, a generalized suffix tree in two dimen-
sions can be constructed by employing the Lsuffix tree for a matrix [3], generalized for
a set of matrices {A1...As}, each of size ni × ni, 1 ≤ i ≤ s. In this case, the set of
matrices is composed of A and B. The generalized Lsuffix tree is a compacted trie rep-
resenting the set of all the square sub-matrices of both A and B matrices in a linearized
form. Visiting properly this trie, the sub-matrices of maximal extension in A that are
also sub-matrices in B, for each position (i, j) in A, can be discovered. This is mainly
because a path from the root to a leaf node in the tree represents a sub-matrix start-
ing at a given position inside A or B, and all the positions inside the two matrices are
considered. This procedure would reduce the execution time from O(M2N2log(N))
to O(N2 + M2), which is linear in the size of the input images, i.e. the area of the
matrices.

3 Experimental Results

In this section preliminary tests to evaluate the proposed distance measure are pre-
sented. In particular, two kinds of experimentations have been performed. The former
aims at assessing the correspondence between the distance values computed and the
visual perception of a human. The latter quantitatively compares the capability of the
ACSM measure, with respect to state-of the art similarity measures, in finding images
belonging to the same class of a given query image.

The test images used are extracted from the online database of the Computer Vision
Group, University of Granada, freely available at http://decsai.ugr.es/cvg/dbimagenes/.
This database contains gray level and color images of various size. For our experimen-
tation, we used gray level illusory and color miscellaneous images of size 128 × 128.
Without loss of generality, the size of the selected images is always the same. Gray
level illusory images represent synthetic objects with some recurrent patterns inside,
and relevant shapes useful for testing the effectiveness of the distance measure. Color
miscellaneous images consist of real world objects under different poses, helpful for
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Fig. 5. ACSM distance for different values of
√
α between (a) texture1 with texture2 and

texture3, (b) hanging man with sun and spiral, (c) wave with line and vessel, and (d)
box1 with box2 and box3

evaluating the robustness of the distance measure. The used images have been manu-
ally grouped into five classes: textures, symbols, lines, boxes and carafes.

3.1 Human Perception Evaluation

An important characteristics of a distance measure between images is that it should
reflect human perception, i.e. images deemed more similar than others by a human
observer should have smaller distance among them. In order to evaluate the ability of the
ACSM measure to discriminate according to the visual similarity, we considered four
out of the five different classes of objects, namely textures, symbols, lines, and boxes
with three images each. Then we chose one target image out of the three images and
computed the distance between the target image and the other two. Figure 4 shows the
four image classes, the first of each is selected as the target image. A visual inspection
of the figure clearly points out that texture1 (Figure 4(a)) is more similar to texture3
than to texture2, hanging man (Figure 4(d)) is more similar to spiral than to sun, wave
(Figure 4(g)) is more similar to line than to vessel, and box1 (Figure 4(j)) is more similar
to box3, than to box2. This insight is confirmed by the computation of the ACSM
distance at different granularity values, as depicted in Figure 5. In all cases we can
observe that the distance measure increases as the minimum size of the patches grows,
until it goes to infinity. The motivation is that the distance between two images depends
on the exact match of increasingly large patches. If such an exact match does not exists,
then the value of formula (2) becomes zero, and consequently, the value of distance as
computed in (3) is infinity. Figure 5(a) shows that the distance between texture1 and
texture3, with α varying from 5 × 5 to 60× 60, is lower than that between texture1
and texture2, and it slightly increases for larger values of α. This is due to the presence
of recurrent regular and compact patterns shared by the first and the third image, even
for sub-matrices of larger size. On the contrary, even if texture1 and texture2 have
common small patches, if α is above 10 × 10, there is no overlap between the two
objects, thus their similarity is zero, and, consequently, their distance grows to infinity.
As regards the hanging man figure, the distance with sun and spiral becomes to be
distinguished for sub-matrices of size larger than 20× 20, and clearly returns a higher
similarity between hanging man and spiral for α ≥ 30 × 30. The necessity of higher
values of α comes from the presence in both sun and spiral of many small pure black
and white parts that overlap and that should not contribute to the similarity evaluation.
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They are no more overlapping only if areas of larger size are considered. In such a case
the value computed for the distance allows to correctly discriminate the shape of the
inner objects and, consequently, the more similar object. An analogous behavior can be
observed in Figure 5(c). In this case wave, line, and vessel are rather similar among
them, thus a granularity of 40 × 40 is necessary in order to obtain a higher distance
between wave and vessel. It’s important to observe that, if small sub-matrices are also
included, the difference in distance computed between wave and vessel and between
wave and line is low. In fact, the background of all the three images is almost the same.
However, visually wave and line contain a curved and straight line splitting the image
area in two vertical parts, while in vessel two lines “draw“ something similar to a vessel
and split the image in two concentric regions. Finally, Figure 5(d) shows the distance
values for boxes. These images are color images having an alphabet of very large size.
The high variability in the pixel values drastically reduces the probability to have an
exact match between two sub-matrices if their size is large. So, differently from the
previous tests, we chose a range of small values of the α parameter for the computation
of ACSM distance. In particular, because

√
α is fixed between 1 and 7, α is between 1

and 49. box1 and box3 images contain some details that are absent in box2, that consists
of a single box. Furthermore, in box1 and box3 the same internal objects are placed in a
different position, and some of them are rotated or located under a different perspective.
Although the objects around the boxes are only small details, their presence influences
the computation of the distance. In fact, box1 appears as more distant from box2 than
from box3, for α values between 3× 3 and 5× 5.

3.2 Comparative Evaluation

In this section we compare the ACSM measure with other seven standard similarity
measures well known in Information Theory: Joint entropy, Conditional entropy, Mu-
tual information, Normalized mutual information, Kullback-Leibler divergence, Arith-
metic geometric mean divergence, Jensen divergence [6].

The performance index adopted to compare ACSM and the above measures is the
retrieval precision used in content-based image retrieval, and employed by Tourassi
and Harrawood [6] in the medical context.

(a) (b) (c) (d) (e) (f)

Fig. 6. Images representing the queries. Images (a) and (b) belong to symbols class, image (c) to
textures class, image (d) to lines class, image (e) to boxes class and image (f) to carafes class.

As pointed out in [6], relevance in image retrieval can be of two types: visual and
semantic. A retrieved image IR is considered relevant if it belongs to the same class
of the query image IQ. Since the precision depends on the query, precision results are
averaged across multiple queries. In our case, the concept of relevant retrieved image
that belongs to the correct class is interpreted as follows. We consider six query images
belonging to the five different classes. The queries and the classes are reported in Figure
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Images belonging to the symbols class. They represent abstract objects, although some of
them are similar to objects of real life, such as sun (d-g), spirals (e), columns (b).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 8. Images belonging to the textures class (a-e). They represent synthetic textures. Images
belonging to the boxes class (f-j).

(a) (b) (c) (d) (e) (f)

Fig. 9. Images belonging to the lines class (a-c). Two different figures in images (b) and (c) are
depicted by the same lines background. Images belonging to the carafes class (d-f).

6. In particular, two query images (Figures 6(a-b)) belong to the class symbols, and
there is one query image for each of the classes textures, lines, boxes, and carafes
(Figures 6(c-f)). For each class we examine a set of particularly significative images. For
the class symbols we have seven images (Figure 7), for textures five images (Figure
8 (a-e)), for the classes lines and carafes three images each are considered (Figure
9), and for the class boxes five images (Figure 8 (f-j)). As regards the total number of
retrieved images, this number depends on the number of images contained in the query
class. In order to detect the number of relevant images, for each query image IQ, the
similarity between IQ and each image I of the five classes is computed. After that, the
top K most similar images are selected. This procedure is performed for each similarity
measure and all the similarity measures are evaluated by counting how many of the top
K images belong to the query class.

Table 1 reports the average retrieval precision obtained by averaging on multiple
query images for the top K retrieved images. Observe that the number of images in
each class is different. Consequently, we computed the retrieval precision by averag-
ing on all the queries, for K = 1, 2, 3, because some query classes don’t contain more
than 3 images. Then, for K = 4, 5, we considered queries (a), (b), (c) and (e) in Fig.
6, because their classes contain at least 5 images. Finally, for K = 6, 7, we averaged
on queries (a) and (b) in Fig. 6, because they are the only queries whose number of
images in the corresponding class is at least 7. The table points out that the ACSM
measure obtains the same precision of Arithmetic-geometric mean divergence, Jensen
divergence, and Kullback-Leibler divergence for the first top 1 and 2 most similar im-
ages. In all the other cases ACSM outperforms the other measures for increasing val-
ues of K . These results show that the new measure, based on the concept of average
common sub-matrix is able to better discriminate (dis)similar images with respect to
state-of-the-art measures.
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Table 1. Average retrieval precision achieved by multiple similarity measures: Joint entropy (JE),
Conditional entropy (CE), Mutual information (MI), Normalized mutual information (NMI),
Arithmetic-geometric mean divergence (AGM), Jensen divergence (JD), KL divergence (KL),
Average common submatrix distance (ACSM)

k JE CE MI NMI AGM JD KL ACSM

1 0.34 0.50 0.50 0.67 1.00 1.00 1.00 1.00
2 0.34 0.58 0.58 0.84 1.00 1.00 1.00 1.00
3 0.29 0.50 0.50 0.72 0.89 0.89 0.89 0.94

4 0.19 0.50 0.50 0.75 0.69 0.69 0.75 0.94
5 0.25 0.45 0.45 0.65 0.60 0.60 0.65 0.80

6 0.50 0.00 0.00 0.34 0.42 0.42 0.50 0.67
7 0.43 0.00 0.00 0.00 0.50 0.43 0.43 0.58

4 Conclusions and Future Work

A new information-theoretic distance measure for two dimensional matrices A and B
of symbols has been proposed. The measure is based on the concept of average common
sub-matrix, and considers the number of square sub-matrices of matrix A that exactly
occur in B, to quantify the distance between the two matrices. The ACSM measure has
been applied to compute the similarity between images. Preliminary experimental re-
sults showed that ACSM outperforms other information-theoretic similarity measures
well known in the literature, by obtaining higher precision values in finding images
belonging to the same class of query images. The ACSM distance requires as input
parameter the granularity level α. Experimentations have pointed out that, if images
to compare are visually very different, small values of α are necessary to better dis-
criminate similar images. Future work will extend the ACSM approach to rectangular
matrices. Furthermore it will realize a more efficient implementation of the algorithm,
by taking in account also an approximate matching between sub-matrices, and investi-
gating more deeply the invariance of the distance measure to object rotation and scaling.
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