

Fault Tolerant Design of Neuro-Processors Using
Weight Limitation

 and Ternary Output

Nobuhiro Tomabechi* and Yoshichika Fujioka*

 * Hachinohe Institute of Technology, Japan

Abstract This paper presents a fault tolerant design of
hardware-type neural networks for real time control usage
combining the following two methods; (1) a method to reduce
the effect of a fault by weight limitation of synapses and (2) a
method to reduce the effect of a fault by setting the output of the
faulty neuron to the middle level of the ternary logic. Fault
simulation is carried out on a numeric pattern recognition
system that is implemented using a 3-layered feed-forward
neural network. Fault generation is assumed to occur on a
neuron rather than an interconnection line. It is demonstrated
that a fault tolerant design of neural networks to cover all of the
neurons included in the input layer, intermediate layer and
output layer can be carried out by combining the weight
limitation and the ternary output.

I. INTRODUCTION

In this paper, the fault tolerant design of hardware-type

neural networks for real time control usage is studied.
Concerning fault tolerant design of neural networks, several
studies have been reported [1]-[4], however a fault is almost
assumed to occur on an interconnection line and is also
assumed to occur in the intermediate layer.

This paper presents a fault tolerant design of neural
networks combining the following two methods; (1) a
method to reduce the effect of a fault by weight limitation of
synapses and (2) a method to reduce the effect of a fault by
setting the output of the faulty neuron to the middle level of
the ternary logic.

Fault generation is assumed to occur on a neuron rather
than an interconnection line, that is, all of the interconnection
lines connected to the output of the faulty neuron will be
failed. Fault generation is also assumed to occur anywhere in
the network including the input layer, intermediate layer, and
output layer.

Fault simulation is carried out on a numeric pattern

recognition system which is implemented using a 3-layered
feed-forward neural network.

It is demonstrated that a fault tolerant design of neural
networks to cover all of the neurons included in the input
layer, intermediate layer and output layer can be carried out
by combining the weight limitation and the ternary output.

II. TARGETED SYSTEMS AND FAULT MODEL

A. Targeted Systems
This paper studies concerning the fault tolerant design of

hardware-type neural networks for real time control usage.
Three-layered feed-forward neural networks are dealt with.
Following 3 character pattern recognition systems are
implemented using a 3-layered feed-forward neural network
and their fault tolerant abilities are simulated.
1. 7-segment numeric pattern recognition system
2. 12-segment numeric pattern recognition system
3. 12-segment alpha-numeric recognition system
Only the results on the 7-segment system will be shown here,
since its input data has the least redundancy and hence it is
most severely affected by the fault compared with other two
systems.
Fig. 1 shows a model of a neuron. Let us express the input

as Ii, the weight of a synapse as Wi, the threshold as H, and
the output as O.

Then the function of a neuron is expressed by the
following equations.

x= (∑
i

ii IW)-H (1)

O=1/(1+e–x)

In Fig. 2, a 7-segment numeric pattern recognition system

is illustrated.

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357393476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig.1 Neuron model

Fig. 2 7-segment numeric pattern recognition system

The learning of the system is carried out by the error back
propagation method. The calculation is done by the
following equations, where Tj (j=0~9), OO

j, OI
j, Wj, and

ε denote a teacher signal, the output of a neuron in the
output layer, the output of a neuron in the intermediate layer,
a weight of a neuron, and the weight changing coefficient,
respectively.
dO

j=(OO
j-Tj)OO

j(1-OO
j) for output layer (2)

dI
j=∑

a
dO

aWI
j,aOI

j(1-OI
j) for intermediate layer (3)

dW=-ε djOj (4)
Wj=Wj+dW. (5)
 Calculations of (1)~(5) are repeated changing input data to
all of the numeric patterns. The recognition error, R is given
by

R=∑
j

 (Oo
j -Tj)2. (6)

 Calculation of (1)~(6) are repeated until R reaches
 R<R min.

B. Fault Model
 The following model will be adopted here.
(1) A fault occurs on a neuron rather than on an
interconnection line, that is, all of the interconnection lines
connected to the output of the faulty neuron will fail.
(2) A fault can occur anywhere in the network including the
input layer, intermediate layer and output layer.
(3) The output of the faulty neuron is fixed at 0 in the ordinal
case or is fixed at 0.5 in the ternary output method. Fault
detection will be discussed in another paper.

C. Estimation of Fault Tolerant Ability
 Let us express the number of neurons in the intermediate
layer as IM. In general, greater IM results in greater fault
tolerance. IM will be taken as 6~10.

Let us express input data as I(i)k and the corresponding
output of the output layer as O(i,j)k, where i, k, and j denote
the sequential number of input data, the location of the fault,
and the terminal number of the output layer, respectively. In
normal operation, following relationship stands.

If i=j then O(i,j)k ≅ 1 else O(i,j)k ≅ 0 where k=0~IM-1.
Hence, we can judge that there is no recognition error as
follows.
[judgment] If O(i,i)k ≥ 0.5 for any i and k, there is no
recognition error, otherwise there is recognition error.

Let us refer to O(i, i) as the coincident point output.
To estimate the degree of fault tolerant ability, we will

take the distribution of O(i,i) value. CO(N) (N=0~9) denotes
the total number of O(i,i) where N+1>O(i,i)≥ N, k=0~IM-1
and i=0~9.

The sum of CO(N) (N=0~4) indicates the number of
recognition errors and CO(5) indicates the number of critical
cases where there is no error but there is a high possibility of
generating a recognition error.

D. Fault Simulation for the System without Fault
Protection

As shown later in Table 2, we find O(i,i)<0.5, that is,
recognition errors even if IM ≥ 10.

INPUT OUTPUT

INPUT
LAYER

INTERMEDIATE

LAYER
OUTPUT

LAYER

I0

I1

I2

IM-1

W0

WM-1

OUT

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004

Table 1 O(i,i) of the system using S-figure function weight limitation the case of B=20, W0=1.5, IM=10

k

O(0,0) O(1,1) O(2,2) O(3,3) O(4,4) O(5,5) O(6,6) O(7,7) O(8,8) O(9,9)

0 0.93 0.86 0.88 0.90 0.85 0.87 0.95 0.91 0.91 0.93

1 0.81 0.95 0.94 0.89 0.94 0.95 0.81 0.91 0.79 0.92

2 0.82 0.85 0.96 0.93 0.93 0.71 0.94 0.78 0.90 0.93

3 0.93 0.89 0.96 0.93 0.86 0.94 0.74 0.76 0.73 0.92

4 0.87 0.95 0.96 0.94 0.94 0.93 0.92 0.95 0.96 0.95

5 0.88 0.96 0.81 0.93 0.88 0.94 0.93 0.93 0.95 0.79

6 0.93 0.94 0.96 0.77 0.96 0.95 0.93 0.95 0.81 0.86

7 0.93 0.95 0.93 0.91 0.85 0.93 0.95 0.91 0.78 0.78

8 0.94 0.88 0.96 0.78 0.96 0.93 0.86 0.75 0.91 0.82

9 0.94 0.95 0.96 0.93 0.90 0.84 0.82 0.76 0.74 0.84

III. SYSTEM USING WEIGHT LIMITATION

The recognition error by a fault may be generated on the
synapses with large weight. Hence, the influences of a fault
will be reduced by limiting the weight of synapses in a small
range. The weight limitation is effective only for faults on
neurons in the intermediate layer, and hence, the weight
limitation is applied to the synapses of neurons only in the
output layer.

A. Weight Limitation Function
(1) Step function

As the weight limiting function, the step function will
be considered first. This is expressed by

W0 ≥ W ≥ W0,
where W and W0 denote the weight of a synapse and a
limited value, respectively.

The above condition will be realized by stopping the
addition of dW to Wj in Eq. 5.

As shown later in Table 2, recognition error can be
suppressed by using the step function limitation when IM ≥ 9.
However, the convergence is not assured, that is, it is
frequently observed that R does not continuously decrease
and does not reach Rmin.

(2) S-figure function

In order to maintain the convergence, this paper proposes
S-figure function, which is expressed bellow, where W, W0,
and B denote the weight, a limited value, and the base of an
exponential function, respectively.

σ =1/(1+B(W-W0)) (W≥ 0)
 =1/(1+B(-W-W0)) (W<0)
In Fig.3, S-figure function is shown for the case of B=20

and W0=1.8. Weight limitation using σ is realized by
changing Eq. 4 to Eq. 7.

dW=-σε djOj (7)

Fig. 3 S-figure function the case of B=20, W0=1.8

B. Fault Simulation

In Table 1, O(i,i)k (k=0~IM-1) is shown for fault injection
into neurons in the intermediate layer, where k denotes the
location of the faulty neuron.

From Table 1, we see that no recognition error is
generated by using S-figure function limitation.

Ｗ

σ

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004

Table 2 distribution of O(i,i) the case of IM=10

 no limitation step function

limitation

S-figure function

limitation

CO(0) 0 0 0

CO(1) 2 0 0

CO(2) 1 0 0

CO(3) 0 0 0

CO(4) 1 0 0

CO(5) 2 0 0

CO(6) 2 6 0

CO(7) 3 17 14

CO(8) 7 10 23

CO(9) 82 67 63

Table 2 shows the distribution of O(i,i), where 3 cases of
no weight limitation, step function limitation, and S-figure
function limitation are shown. From Table 2, we see that
there are 4 recognition errors in the system without fault
protection, and also see that the possibility of recognition
error in the case of S-figure function is smaller than that of
step function.

So we can state that;
[Result 1] By applying a weight limitation, the recognition
error caused by a fault in the intermediate neurons can be
suppressed. By applying S-figure function limitation, the
possibility of generating a recognition error can be reduced
compared with the case of applying the step function
limitation.
[Consideration 1] Since the S-figure function has not only a
sharp rise and fall shape but also continuity, both the weight
limitation and the convergence are satisfied.

In Fig. 4 (a), (b) and (c), examples of the weight
distribution are shown for the case respectively, without
weight limitation, with the step function limitation, and with
the S-figure function limitation. We see that the S-figure
function limitation leads to a more uniform distribution than
that of the step function limitation.

(a) Without weight limitation

(b) Step function limitation

(c) S-figure function limitation

Fig.4 weight distribution

-6 -5 –4 –3 -2 –1 0 1 2 3 4

W

20

10

 -2 –1 0 1 2

W

40

20

 –3 -2 –1 0 1 2

W

40

20

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004

Ａ
Ｂ

If we have a weight limitation function to lead to a more

flat distribution, the convergence will be more improved.

IV. SYSTEM USING TERNARY OUTPUT

 The weight limitation is effectively applied only to a fault
in the intermediate layer and not to a fault in other layers. We
propose a method in which the output of the faulty neuron is
fixed at 0.5. This method is applicable to neurons in all
layers.
 When the normal output is 0, the output value is not
changed by fault injection and nothing will occur. On the
other hand, when the normal output is 1, output value 1 is
changed to 0 by fault injection. In the latter case, the
influence of the fault can be reduced to one-half by setting
the output of the faulty neuron at 0.5.

A. Fault Tolerance of Input Layer

There are only connecting points instead of neurons in the
input layer. However, we will deal with the situation that the
output value of a faulty connecting point is fixed at 0.5.

In Table 4, fault simulation of the numeric pattern
recognition system is shown. From Table 4, we can state
that;
[Result 2] By setting the faulty output at 0.5, recognition
error can be greatly reduced, but it cannot be reduced
perfectly to 0.
[Consideration 2] The reason why no recognition error
cannot be realized is as follows.
As shown in Fig. 5, if segment A is faulty, then the numeric
pattern for number 8 and that for number 9 cannot be
distinguished, and also if segment B becomes faulty, the
numeric pattern for number 0 and that for number 8 cannot
be distinguished. To reduce the recognition error to 0,
another numeric pattern system other than a 7-segment one,
for example a 12-segment one, must be used.

B. Fault Tolerance of Output Layer

By using ternary output, a fault generated in the output
layer is easily processed.
1. When the normal output of the faulty neuron is 0, there
will be another output whose value is nearly equal to 1, so
the faulty output 0.5 can be neglected.
2. When the normal output of the faulty neuron is 1, there
will be no output whose value is greater than 0.5, so the
faulty output 0.5 is recognized as 1.

Table 4 O(i,i) distribution using ternary output

for input layer the case of IM=10

 ordinary output

(faulty output is 0)

ternary output

(faulty output is 0.5)

CO(0) 10 0

CO(1) 5 0

CO(2) 1 1

CO(3) 2 1

CO(4) 0 2

CO(5) 2 7

CO(6) 5 10

CO(7) 4 8

CO(8) 8 11

CO(9) 33 30

Fig. 5 undistinguished faults

C. Fault Tolerance of Intermediate Layer

Table 5 shows the distribution of O(i,i) when a fault is
injected into the intermediate layer for both the case of
ternary output only and the case of combining ternary output
and weight limitation. From Table 5, we conclude the
following.
[Result 3] By using ternary output, the fault tolerance ability
is greatly enhanced. When IM ≥ 14, recognition error can be
suppressed. However, there is the possibility of easily
generating recognition errors since CO(5) is not 0.
[Result 4] By combining ternary output and weight
limitation, recognition error can be completely avoided in
the entire range of IM. In addition, there is less possibility of
generating recognition error since CO(5) is 0.
[Consideration 3] Result 3 and Result 4 imply that weight
limitation and ternary output enhance fault tolerance not only
individually but also cooperatively.

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004

Table 5 O(i,i) distribution using ternary output

for intermediate layer the case of IM=14

ordinary output

(faulty output is 0)

ternary output

(faulty output is 0.5)

no weigh

limitation

weight

limitation

no weigh

limitation

weight

limitation

CO(0) 0 0 0 0

CO(1) 1 0 0 0

CO(2) 2 0 0 0

CO(3) 1 0 0 0

CO(4) 4 0 0 0

CO(5) 2 0 4 0

CO(6) 6 2 6 0

CO(7) 7 16 14 15

CO(8) 18 23 40 53

CO(9) 99 99 76 72

 V. CONCLUSIONS

This paper has presented a fault tolerant design of
hardware-type neural networks combining the following two
methods; (1) a method to reduce the effect of a fault by
weight limitation of synapses and (2) a method to reduce the
effect of a fault by setting the output of the faulty neuron to
the ternary output.

It is demonstrated that a fault tolerant design of neural
networks that covers all of the neurons included in the input
layer, intermediate layer and output layer can be achieved by
combining the weight limitation and the ternary output.
 Next subjects will be studied in the future.
(1) trade off of the fault tolerance between the weight
limitation and the ternary output
(2) realization of a more effective weight limitation function

REFERENCES

[1] Y. Tan and T. Nanya, “Fault-tolerant back-propagation model
and its generation ability”, Digest IJCNN, pp. 2516-2519, 1993.
[2] N. C. Hammadi and H. Ito, "A learning algorithm for fault
tolerant feedforward neural networks", IEICE Trans. INF. & SYST.,
Vol. E80-D, No. 1, pp. 21-27, 1997-1.
[3] N. Tomabechi, “Hierarchical redundancy design of WSI
oriented high-speed neuro-processors”, IEICE Japan Trans. D-I, Vol.
J81-D-I, No. 7, pp. 933-936, 1997-7.
 [4] M. Nishigaki, T. Tsuzuki and M. Soga, "A fault tolerant
learning algorithm considering the worst-case fault of neural
networks", Proc. 2000 IEEE Int. Symp. on Intelligent Signal
Processing and Communication Systems, pp. 1045-1050, 2000-11.

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T22-004

