
Performance Degradation in the Presence of
Subnormal Floating-Point Values

Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, Laxmikant Kale∗

Department of Computer Science
201 N Goodwin, Urbana, IL 61801

University of Illinois at Urbana-Champaign
olawlor@acm.org,{gpnthpnc, idooley2, brtnfld, kale}@uiuc.edu

Abstract

Operating system interference in parallel programs can
cause tremendous performance degradation. This paper
discusses the interference caused by the quiet generation
of subnormal floating point values. We analyze the perfor-
mance impact of subnormal values in a parallel simulation
of a stress wave propagating through a three dimensional
bar. The floating-point exception handling mechanisms of
various parallel architectures and operating systems lead
to widely differing performance for the same program. We
show that a parallel program will exhibit greatly amplified
performance degredation due to this interference. In ad-
dition we provide an simple example program that demon-
strates underflow on a single processor. Finally we suggest
a novel option for fixing these undesired slowdowns.

1. Introduction

It is a general belief that floating point underflows are
not very common in real applications [7]. Large numbers
of subnormal values which can greatly slow down the com-
putation on a processor designed with the assumption that
their occurrence would be rare. The reason for such a slow
down may not be obvious to an application programmer
who is not usually concerned with the nuances of floating
point computation, including how each operating system
and compiler handles subnormal values. Here we investi-
gate the effect of subnormals in a real parallel simulation as
well as a simple serial program. We show that the occur-
rence of subnormal values is not rare, and that their exis-
tance can significantly degrade performance.

The IEEE 754 Standard specifies a standard method for
implementing floating-point values and operations. It does
not, however, suggest any exact implementation details.

∗This material is based upon work supported by the NSF under Grants
NGS 0103645 and DMR 0121695, and by the DOE under grant B341494.

Systems using the standard may implement it entirely in
hardware or software or in a combination of both. Often the
common cases are handled in hardware, but traps to soft-
ware cause the operating system to handle rare cases. Per-
formance penalties vary greatly across architectures and op-
erating systems due to different ways the rare floating-point
cases such as underflow are handled. Furthermore, even
different processors in the same architecture family can ex-
hibit large variations in their handling of subnormal floating
point values.

Subnormal floating-point numbers are the class of small-
est floating-point numbers, with magnitudes from approxi-
mately2−149 to 2−126 for single-precision and2−1074 to
2−1022 for double precision. The IEEE 754 standard for
floating-point numbers defines a denormalized, also called
a subnormal, value as “A nonzero floating-point number
whose exponent has a reserved value, usually the format’s
minimum, and whose explicit or implicit leading signif-
icand bit is zero” [6]. Since all subnormal values have
the same exponent, the smallest subnormal value will have
much lower accuracy than the larger subnormal values.
Thus an unacceptable loss of precision may occur when us-
ing subnormal numbers. The processor must notify the pro-
gram of the loss of precision in some manner via a software
trap or other mechanism. Also modern processors may not
be designed to accellerate the handling of these and other
supposedly rare occurrences. Different processors may han-
dle subnormal values directly in pipelined hardware, escape
out to a microcode handler, or even issue a trap to the OS.

2. Parallel simulation

Our example parallel program simulates a1Dwave prop-
agating through a finite3D bar. The bar is initially at rest
with zero displacements and zero stresses. A velocity is im-
posed at one end and this produces, as is evident from the
solution of the displacement equation of motion,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357393447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


∂2u

∂x2
=

1
C2

d

∂2u

∂t2
,

a one-dimensional stress wave propagating at the dilata-
tional wave speedCd with a magnitude of

σx = −ρCdV,

whereρ is the density via the displacement equation of mo-
tion. Note that the stress at a point in the bar is theoreti-
cally zero until the stress wave reaches it and has a value
of σx thereafter. Numerically it is impossible to capture the
step function perfectly which results in numerical artifacts
before the wave reaches the point (round-off) and after the
wave passes (overshoot). An initial stress can not simply be
applied everywhere in the bar unless the full solution of the
equilibrium state is given. This would involve a static so-
lution of the stress state for which the dynamic code is not
set-up to solve.

The unstructured tetrahedral mesh that spans the bar is
initially partitioned into chunks using METIS [10] and
these chunks are then mapped to 32 processors. Subnormal
values are generated when the stress wave travels along the
bar. The processors advance in lockstep with frequent syn-
chronizing communication. This wave of subnormal val-
ues overloads the processor or processors currently hosting
the wavefront, since traps to the operating system will oc-
cur for each subnormal value. The load imbalance caused
by them further compounds the performance problem. The
processors advance in lockstep with frequent synchronizing
communication.

We now give a general analysis of the impact of the
slower operations due to subnormals in a parallel context.
Let f be the fraction of operations which are impacted
by subnormal operands throughout the computation. As-
sume each computation involving a subnormal takesk times
longer than it would with a normalized number. Assume
also thatN operations are performed, each taking one unit
of time. Then the serial program’s runtime isN when no
subnormals are present, andkN when all denormalized
numbers are present. In general the serial case has runtime
N (kf + (1− f)). In practicek may greatly exceed 100
on some processors, since a software trap may take over
100 times as long as a floating point operation.

In parallel the effect of the slow operations on subnor-
mals is greatly amplified. Assume there arep processors.
The runtime for the parallel program without any subnor-
mals is N

p and it is kN
p when any processor has all sub-

normals. Letf ′ be the maximum fraction of subnormals

on any processor. The runtime is then
kf ′N+N(1−f ′)

p . It
is significant that the entire simulation can be held up by
one processor, and ifk is large, large amounts of idle time
will exist on processors with few subnormals. Assume ex-
actly one processor has all the subnormal numbers and that

it does not have any normalized values. Then the average
utilization over all processors for the run isp+k−1

kp . Sup-
pose in some programk = 50 andp = 32, the average
utilization of the processors is just over 4%. Ifk = 250
andp = 128, then the average processor utilization is about
1%. Ideally, a load balanced parallel application will have
utilization slightly less than 100%.

3. Parallel simulation on AlphaEV6.8CB pro-
cessor cluster

Initially the wave propagation simulation was carried out
on an Alpha cluster without using any special compiler
flags or architectural modifications. These computations
were performed on Lemieux, a National Science Founda-
tion Terascale Computing System at the Pittsburgh Super-
computing Center. The Alpha processor by default, flushes
the subnormals to zero.

Figure 1 shows the overall utilization of 32 processors
during the simulation. They-axis denotes the utilization,
while x-axis, the wall clock time. When the overall utiliza-
tion is high it implies that most or all of the processors are
being well utilized. On the other hand a lower utilization
implies that many processors are idle for a portion of the
time. The flat portion of low utilization at the beginning
is due to the serial partitioning of the mesh on processor 0
while all other processors are idle.

Figure 1. Overall processor utilization on the
Alpha cluster which flushes all subnormals to
zero in default mode.

Figure 2 gives an overview of the utilization for each
processor throughout the entire simulation at any instant.
Corresponding to each processor is a row of different col-
ored bands indicating processor utilization over time. White
represents 100% utilization while black represents 0% uti-
lization. Thex axis for the overview is wall-time, just as in



figure 1. The top row represents processor 0 while the bot-
tom row represents processor 31. There are 32 horizontal
bands, corresponding to the 32 processors used. Henceforth
we shall refer to such figures succinctly as just ”overview”.

Figure 2. Processor utilization overview on Al-
pha processors when flushing subnorms to
zero.

Processor zero is heavily loaded in the begin-
ning(indicated by the white band on the top), since the ini-
tial mesh is partitioned on that processor. After partitioning
each processor is assigned a chunk.

The simulation was repeated again enabling denormal
numbers instead of flushing them to zero. This results in
a considerable slowdown by a factor of nine. This is due
to the fact that we used the nondefault compiler option “-
fpe1”, causes traps to software when subnormal numbers
are generated. This compiler flag is not very obvious to
users who are not aware of the Alpha’s default flush to zero
behavior. Figure 3 shows the much slower simulation with
denormalized numbers enabled. The overall utilization is
significantly lower, and only a few processors have high uti-
lization at any time. To accurately detect the existence or
impact of subnormal values on this platform, the different
”-fpe*” compiler flags can be used.

To more clearly demonstrate the phenomenon that
causes the problem, we partition the bar linearly along the
length into rectangular slabs. Under this partitioning, the
wave originates at processor 31 which hosts chunk number
31 and travels in decreasing order through all chunks and
processors until it reaches processor zero. The figures 4 and
5 clearly illustrate the overloading caused by subnormals
generated when the wave front is on a particular processor.
The subnormal and stress waves traverse together, the stress
wave generating the subnormal numbers. Observe that the
execution time is even longer than with the original METIS
partitioning. The new linear partitioner is faster than the
more complicated topological METIS based partitioner, but
results in a poor decomposition.

Figure 3. Utilization graph when flush to zero
is disabled leading to software traps.

Figure 4. Overall processor utilization with
linear partitioning along the bar.

The overview in figure 5 clearly illustrates the overload-
ing caused by subnormals generated when the wave front
is on a particular processor. Since each processor can only
progress in timestep with the others, one processor is busy
while all the rest are mostly idle. Clearly this is an undesired
performance hindrance. In contrast, in sequential computa-
tion, the impact of the subnormal values will not hinder the
progress of any additional processors. Table 1 gives a sum-
mary of the results.

4. Parallel simulation on Intel Xeon processors

The same simulation was also performed on Tungsten,
an NCSA Xeon Linux Cluster. The Intel Xeon processor,
unlike the Alpha processor, enables underflow to subnor-
mal numbers by default. This could lead to poor perfor-



Figure 5. Overview with linear partitioning
shows a wave of denormals that overloads
individual processors.

Table 1. Summary of execution times on Al-
pha cluster.

Processor mode Execution time
Default(flush to zero) 50.3s
Subnormals enabled (-fpe1) 392.4s
Linear partitioning 522.6s

mance compared to the cases where they can be flushed to
zero without harm, but the default conforms to the IEEE
754 standard.

Intel Pentium 4 and Xeon processors internally store
double precision values in their register stack in a higher
precision format called double extended-precision [9].
Thus a subnormal value may exist in a processor without
causing a trap until the value is written out to memory, at
which point it is converted to a standard double precision
64-bit value. One problem with this method is that a user
cannot test for the presence of denormalized numbers with-
out them being converted to the 64-bit equivalents. Thus in-
termediary subnormal values may arise, although they will
never hinder the performance of a program until they are
written out from a floating point register. Simple methods
for detecting the denormalized numbers may lead to false
positive decisions that the denormalized numbers are the
cause of other performance problems. To accurately detect
the impact of these values, a compiler based method must
be used.

Figure 6 illustrates the default behavior of the parallel
simulation on the Xeon cluster. The Intel Pentium 4 and
Xeon processors have a specific mode to enable flushing
subnormals to zero. After enabling the FTZ mode, the sim-
ulation is much faster. Figure 7 shows the corresponding

utilization. The simulation is nearly twice as fast with the
FTZ mode as it was with the gradual underflow mode, as
observed by the corresponding execution times in the first
two rows of Table 2.

Figure 6. Overall utilization graph from the
Xeon cluster.

Figure 7. Utilization on Xeon cluster with the
flush to zero enabled.

5. Effects on a single processor

We analyzed the impact of subnormal values in a serial
program to assess the slowdowns which might become am-
plified in a parallel program. Tables 3 and 4 show the sum-
mary of a large number of exhaustive tests for commonly



Table 2. Execution times on Xeon cluster.

Processor mode Execution time
Default(Subnormals enabled) 56.8s
Flush to zero mode 33.1s
Load Balancing(Subnormals enabled) 45.6s

available processors, compilers, and compiler flags. When
available, the compilers included gcc, icc, icpc, and xlc, and
its variants gxlc and xlcr. The compiler flags “-O”, “-O2”,
“-O3”, and “-ffast-math” were each tested. Our aim was to
analyze how badly subnormal values can impact a simple
program on some common modern processors.

The test program is a simple Gauss-Seidel type relax-
ation, which exhibits performance degredation similar to
standard Jacobi or Stencil examples. These types of appli-
cations are common. Our test program repeatedly iterates
over an array of double precision values, replacing them
with an average of its previous value and its neighboring
values. Our simple serial program illustrated by the code
below is a simple example that portrays characteristics of
other common real-world examples including our parallel
wave propagation code. The full code is available at our
website [4]. This code will cause many subnormals to be
created. As a comparison, we run the same code with dif-
ferent initial values, namely 1.0 and 2.0 instead of 0.0 and
1.0 for the array a[i].

for (i=1; i<ARRAYLEN-1; i++)
a[i] = 0.0;

a[0] = a[ARRAYLEN-1] = 1.0;
for (j=0; j<ITER; j++)

for (i = 1; i<ARRAYLEN-1; i++)
a[i]=(a[i-1]+a[i]+a[i+1])/3.0;

Tables 3 and 4 do not give the relative performance be-
tween the different compiler options, but rather only looks
at the slowdown that occurs when compared to the same
program with initial values that do not cause underflow.
What can be seen here is that compiler choice is important
for applications that demand high performance, especially
when subnormal numbers appear.

The results shown in Tables 3 and 4 are significant be-
cause they demonstrate that applications on common mod-
ern processors may be drastically impacted by floating-
point underflow to subnormal values. It is worth noting
that the gcc flag “-ffast-math” does not eliminate the slow-
down caused by subnormal numbers. It was interesting
that greater slowdowns occurred when higher levels of op-
timization such as “-O3” were applied to the program. The
slowdown ratio is significantly higher with certain opti-
mization flags, because the optimized version without the
subnormal numbers is significantly faster, while the subnor-

mals tend to hamper the performance more with the opti-
mization flags. Complete results are available on our web-
site [4].

Table 3. Slowdown when subnormal values
occur on a single processor, Worst case sce-
nario.

Processor Worst Case
Compiler slowdown

PPC 970(Apple G5) xlc -O3 2.24
AMD Athlon-32 gcc-ffast-math 5.29
AMD Athlon-64 gcc-ffast-math 23.22
Pentium 4 gcc-ffast-math 125.04

Table 4. Slowdown when subnormal values
occur on a single processor, Best case sce-
nario.

Processor Best Case
Compiler slowdown

PPC 970(Apple G5) xlc -O2 1.57
AMD Athlon-32 icpc 0.94
AMD Athlon-64 gcc -O3 14.03
Pentium 4 icpc -O3 1.17

6. Suggestions for performance improvement

We now discuss some options for avoiding the huge per-
formance hits that occur when subnormal numbers arise.
Some of our suggestions are similar to those already noted
in [2], [5], [3].

The easiest solution is to use compiler flags or architec-
tures which cause all subnormal values to be flushed to zero,
provided it does not alter the program behavior. Thus the
future operations on these numbers will not trap. However,
numerical solutions may lose some precision, which may or
may not be acceptable.

In situations where the numerical solution relies upon the
accuracy subnormal numbers provide, the simple solution
provided above will not work. In these cases, conventional
wisdom is to use a better set of initial values. This may not
solve the problem, especially in cases where a difference
between two numbers is calculated, perhaps as an approx-
imation to a derivative. The difference itself may become
a subnormal value. Thus shifting or mapping the range of
initial values to larger values may not suffice. In some cases
rewriting the numerical algorithms may eliminate the oc-
currences of subnormal values, and is outside of the scope
of this paper, but is addressed in [2].



In parallel programs, the impact of the phenomenon de-
scribed is amplified into a load imbalance problem. Such
problems can be solved by using the load balancing fea-
tures in a migratable object based parallel framework like
Charm++ [8]. In order to apply load balancing [12] we use
the technique of virtualization which creates larger number
of objects than the number of processors.

When a processor gets overloaded it migrates some of
its objects to an under-loaded processor, thus improving the
overall utilization and running time. Figure 8 along with
the last row of Table 2 illustrate the effect of applying load
balancing to Xeon cluster, showing that load balancing can
significantly improve processor utilization, without flushing
to zero, when underflow arises. Similar results are observed
on the Alpha cluster.

Figure 8. Utilization on Xeon cluster with load
balancing. The vertical spikes correspond to
load balancing steps.

7. Related work

Schwarz [11] discussed how the subnormal numbers can
be implemented using small amount of additional hardware
instead of handling them in software, which is usually done
due to the complexity of the floating-point units required to
handle them. In conclusion they state that using tagging and
prenormalization, the new PowerFPU processor can execute
instructions on subnormal operands with an additional over-
head of very few cycles. However, our proposed solutions
use only software based solutions. For the single processor
case their solution can be more robust if our previous sug-
gestions are not appropriate. Blackford [1] deals with chal-
lenges that exist when writing portable numerical libraries.
They encounter some of the same issues and their sugges-
tions vary from not using problematic software on particular
architectures to additional programming.

8. Conclusion

In this paper we suggest a new technique that reduces the
performance degradation associated with subnormal num-
bers in parallel programs, by load-balancing to remove
load-imbalances. We have also shown that some real world
applications exhibit behaviors that were previously thought
to be rare or unavoidable. Our solutions require no hard-
ware modifications. Further analysis and information may
be found on our website [4].

References

[1] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley,
J. Demmel, I. Dhillon, K. Stanley, J. Dongarra, S. Hammar-
ling, G. Henry, and D. Walker. ScaLAPACK: A portable
linear algebra library for distributed memory computers —
design issues and performance. InACM Transactions on
Mathematical Software, volume 23, pages 133–147, 1996.

[2] J. Demmel. Underflow and the reliability of numerical soft-
ware.SIAM J. Sci. Stat. Comput., 5(4):887–919, 1984.

[3] J. W. Demmel and X. Li. Faster numerical algorithms via
exception handling. In E. E. Swartzlander, M. J. Irwin, and
J. Jullien, editors,Proceedings of the 11th IEEE Symposium
on Computer Arithmetic, pages 234–241, Windsor, Canada,
1993. IEEE Computer Society Press, Los Alamitos, CA.

[4] I. Dooley. Subnormals in parallel programs.
http://charm.cs.uiuc.edu/subnormal.

[5] J. R. Hauser. Handling floating-point exceptions in numeric
programs.ACM Transactions on Programming Languages
and Systems, 18(2):139–174, March 1996.

[6] IEEE Task P754.ANSI/IEEE 754-1985, Standard for Binary
Floating-Point Arithmetic. IEEE, New York, 1985.

[7] W. Kahan. Lecture notes on the status of IEEE standard 754
for binary floating-point arithmetic. 1996.

[8] L. V. Kal é. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. InLACSI
2002, Albuquerque, October 2002.

[9] Intel Pentium 4 and Intel Xeon Processor Optimization,
1999-2002.

[10] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning
for high-performance scientific simulations.Sourcebook of
parallel computing, pages 491–541, 2003.

[11] E. M. Schwarz, M. Schmookler, and S. D. Trong. Hard-
ware implementations of denormalized numbers. InARITH
’03: Proceedings of the 16th IEEE Symposium on Computer
Arithmetic (ARITH-16’03), page 70, Washington, DC, USA,
2003. IEEE Computer Society.

[12] G. Zheng.Achieving High Performance on Extremely Large
Parallel Machines. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.


