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Abstract.In this work the collocation method based on quartic B-spline is developed and
applied to two-point boundary value problem in ordinary differential equations. The error
analysis and convergence of presented method is discussed. The method illustrated by two
test examples which verify that the presented method is applicable and considerable accurate.
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1. Introduction

Consider the general form of linear two-point boundary value problem:

Ly ≡ y′′(x) + p(x)y′(x) + q(x)y(x) = r(x), x ∈ [a, b], (1)

with boundary conditions

y(a) = α, y(b) = β. (2)
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The problem has a unique solution, if p, q, r ⊂ C1[a, b] and q(x) < 0 [5]. Generally
speaking this problem is difficult analytically. Some of the most frequently used
numerical methods are shooting, finite difference, finite element and finite volume
methods [1],[8] and, etc [2],[7],[13],[16]. These methods, although requiring little
computational time, evaluate the approximated solutions only at the collocation
points, y(xi) for i = 0, 1, 2, ..., n.
A different approach of solving linear two-point boundary value problem has been
suggested first, by Bickley in 1968 [4], he used cubic spline interpolation to model
the solution curve and applied to the differential equations as well as the bound-
ary conditions. Following this, Albasiny and Hoskins [1] applied the cubic spline
interpolation which was introduced by Ahlberg et al. Fyfe [9] worked on this ap-
proach and concluded that spline method is better than the usual finite difference
method. Caglar [6] proposed the use of cubic B-spline interpolation to solve this
problem. Spline solution for regular boundary value problems have been used by
many authors[11],[17], in [17] the non-polynomial cubic spline has been used to
develop second and fourth order methods. Many authors used spline for numerical
solution of singular two-point boundary value problems[14], the cubic spline has
been used by [18],[19] and extended cubic B-spline used by [10] without any con-
vergence analysis and comparison.
Recently the extended cubic B-spline methods have been used for solution bound-
ary value problem in [15], but in this paper, cubic B-spline which contains a pa-
rameter λ has been used to solve boundary value problem, without any comparison
and convergence analysis. Parametric cubic spline solution for linear second order
boundary value problem has been used to develop fourth order method for a spe-
cific choice of the parameter by [3].
In this paper the derivation of quartic B-spline is presented in section 2. The nu-
merical method based on quartic B-spline for solving two-point boundary value
problem is given in section 3. Error analysis is presented in section 4. In section 5,
convergence analysis of the presented method discussed which is based on Green’s
function approach and two-step method. In section 6, Numerical application of the
method is illustrated by two test examples to demonstrate the efficiency of the
method. Conclusion is given in section 7.

2. Quartic B-Spline

We consider the uniform grid partition ∆ = {x0, x1, · · · , xn} of interval [a, b], with
mesh size h = b−a

n . Let s4∆ be the space of quartic B-spline with respect to ∆ and
with smoothness C3[a, b]. The quartic B-splines are defined on n+2 nodes over the
problem domain plus 8 additional nodes outside the problem domain [a, b]. These
additional nodes are positioned as:

x−4 < x−3 < x−2 < x−1 < x0 and xn < xn+1 < xn+2 < xn+3 < xn+4

Donate the basis functions for quartic B-splines by ϕi(x), i = −1, 0, 1..., n +
1, n+ 2.
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ϕi(x) =
1

h4



(x− xi−3)
4 xi−3 ⩽ x ⩽ xi−2

(x− xi−3)
4 − 5(x− xi−2)

4 xi−2 ⩽ x ⩽ xi−1

(x− xi−3)
4 − 5(x− xi−2)

4 + 10(x− xi−1)
4 xi−1 ⩽ x ⩽ xi

(xi+2 − x)4 − 5(xi+1 − x)4 xi ⩽ x ⩽ xi+1

(xi+2 − x)4 xi+1 ⩽ x ⩽ xi+2

0 otherwise

(3)

are quartic B-splines that vanish outside of the interval [xi−3, xi+2] and is
positive on the interior of that interval, that is ϕi(x) > 0 for xi−3 ⩽ x ⩽ xi+2

and provides a local partition of unity, that is
∑

i ϕi(x) = 1 on ∆.

By using the above equation we have these properties too:

ϕi(xj) =


11 i− j = 0, i− j = 1

1 i− j = −1, i− j = 2

0 i− j = −2,

ϕ′i(xj) =


12
h ,

−12
h i− j = 0, i− j = 1

4
h ,

−4
h i− j = −1, i− j = 2

0 i− j = −2,

ϕ′′i (xj) =


−12
h2 i− j = 0, i− j = 1

12
h2 i− j = −1, i− j = 2

0 i− j = −2.

3. Numerical Method for Boundary Value Problems

We consider a second-order two-point the following boundary value problem (1),(2).
Based on collocation approach the solution of (1),(2) can be approximated by:

s(x) =

n+2∑
i=−1

ciϕi(x), (4)

where ci are the unknown real coefficients and ϕi is quartic B-spline.

s(xj) ≈ y(xj) =
n+2∑
i=−1

ciϕi(xj), 0 ⩽ j ⩽ n, (5)
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Thus the approximation at the point xj can be written as

s(xj) = ci−1ϕi−1(xj) + ciϕi(xj) + ci+1ϕi+1(xj) + ci+2ϕi+2(xj) ≈ y(xj), (6)

We can easily get

s′(xj) = ci−1ϕ
′
i−1(xj) + ciϕ

′
i(xj) + ci+1ϕ

′
i+1(xj) + ci+2ϕ

′
i+2(xj) ≈ y′(xj), (7)

s′′(xj) = ci−1ϕ
′′
i−1(xj) + ciϕ

′′
i (xj) + ci+1ϕ

′′
i+1(xj) + ci+2ϕ

′′
i+2(xj) ≈ y′′(xj). (8)

By substituting the relation (3) into eqs. (6)-(8) we have these relations:

s(xi) = ci−1 + 11ci + 11ci+1 + ci+2,

s′(xi) =
4

h
(−ci−1 − 3ci + 3ci+1 + ci+2),

s′′(xi) =
12

h2
(ci−1 − ci − ci+1 + ci+2).

By substituting eqs. (6)-(8) into eqs. (1),(2) we obtain

s′′(xj) + p(xj)s
′(xj) + q(xj)s(xj) = r(xj), 0 ⩽ j ⩽ n, (9)

s(x0) = α, s(xn) = β,

By using equation (5) into equation (9) we have:

n+2∑
i=−1

ci[ϕ
′′
i (xj) + p(xj)ϕ

′
i(xj) + q(xj)ϕi(xj)] = r(xj), 0 ⩽ j ⩽ n, (10)

solving the collocation equation (10) leads to the (n+1) linear equations in (n+4)
unknowns. So we can obtain equation (11) for 0 ⩽ i ⩽ n:

ri =
1

h2
(12− 4hpi + qih

2)ci−1 +
1

h2
(−12− 12hpi + 11qih

2)ci

+
1

h2
(−12 + 12hpi + 11qih

2)ci+1 +
1

h2
(12 + 4hpi + qih

2)ci+2.

(11)
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By using the given boundary conditions yield to the following equations:

c−1 + 11c0 + 11c1 + c2 = α, (12)

cn−1 + 11cn + 11cn+1 + cn+2 = β. (13)

The eqs. (12),(13) associated with equation (11) lead to the (n + 3) linear
equations in (n+ 4) unknowns, C = (c−1, c0, ..., cn+2)

T .
For solving this system we need to one equation, because of this we use the
midpoints of subintervals. Consider the set of collocation points [12]:

Γ = {τ0 = x0, τ1 =
x0+x1

2 , ..., τi =
xi−1+xi

2 , ..., τn = xn−1+xn

2 , τn+1 = xn}

That Γ includes the midpoints of subintervals and we have x = x0 +
h
2

By using relation (3) we have these properties:

ϕi(xj) =


76
16 i− j = 0, i− j = −2

1
16 i− j = 1, i− j = −3

230
16 i− j = −1,

ϕ′i(xj) =


−11
h , 11h i− j = 0, i− j = −2

−1
2h ,

1
2h i− j = 1, i− j = −3

0 i− j = −1,

ϕ′′i (xj) =


12
h2 i− j = 0, i− j = −2

3
h2 i− j = 1, i− j = −3

−30
h2 i− j = −1.

By substituting these properties into the boundary problems (1),(2) we obtain
equation (14) for τ1 = x0 +

h
2 .

r(x0 +
h

2
) =

1

h2
(3c−1 + 12c0 − 30c1 + 12c2 + 3c3)

+
p(x0 +

h
2 )

h
(
−1

2
c−1 − 11c0 + 11c2 +

1

2
c3)

+
q(x0 +

h
2 )

16
(c−1 + 76c0 + 230c1 + 76c2 + c3),

(14)

Now by eliminating c−1, cn+2 from eqs. (11)-(13) we obtain:
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r0 −
α

h2
(12− 4hp0 + q0h

2) =
1

h2
[(−144 + 32hp0)c0

+ (−144 + 56hp0)c1 + (8hp0)c2],

(15)

and

rn − β

h2
(12 + 4hpn + qnh

2) =
1

h2
(−144− 32hpn)cn+1

+
1

h2
(−144− 56hpn)cn +

1

h2
(−8hpn)cn−1,

(16)

and

ri =
1

h2
(12− 4hpi + qih

2)ci−1 +
1

h2
(−12− 12hpi + 11qih

2)ci

+
1

h2
(−12 + 12hpi + 11qih

2)ci+1 +
1

h2
(12 + 4hpi + qih

2)ci+2.

(17)

The equation (17) is for 1 ⩽ i ⩽ n − 1. Finally eqs.(14)-(16) associated by (17)
lead to (n + 2) × (n + 2) linear system, this system can be solved by any Gausse
eliminations or any iteration methods.

4. Error Analysis

Theorem 1: Let S be the quartic spline interpolating of y ∈ C10[a, b], defined by
as follows

si = yi, 1 ⩽ i ⩽ n, (18)

s(4)(xi) = y(4)(xi)−
h2

24
y(6)(xi) +

7h4

5760
y(8)(xi), i = 1, 2, n− 1, n. (19)

So the following relations hold for i = 1(1)n.

s′(xi) = y′(xi)−
7h4

5760
y(5)(xi) +O(h6), (20)

s′′(xi) = y′′(xi) +
7h4

1920
y(6)(xi) +O(h6). (21)
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Proof :
By substituting the relation (3) into eqs.(6)-(8) we have these relations:

s(xi) = ci−2 + 11ci−1 + 11ci + ci+1,

s′(xi) =
4

h
(−ci−2 − 3ci−1 + 3ci + ci+1),

s′′(xi) =
12

h2
(ci−2 − ci−1 − ci + ci+1).

So these relations can be obtained.

s′i =
1

h
(si+1 − si)−

h

6
(s′′i+1 + 2s′′i ) +

h3

384
(7s

(4)
i+1 + 9s

(4)
i ), 1 ⩽ i ⩽ n− 1, (22)

s′′i =
1

h2
(si−1 − 2si + si+1)−

h2

384
(s

(4)
i−1 + 30s

(4)
i + s

(4)
i+1), 2 ⩽ i ⩽ n− 1. (23)

To prove the relation (20), first we consider the relation (22) and by using the
operator notation E0s(xi) = s(xi), the relation (22) can be written in the following
form:

s′(xi) =
1

h
(E − 1)y(xi)−

h

6
(E + 2)y′′(xi) +

h3

384
(7E + 9)y(4)(xi), (24)

By donating D = d
dx , the shift operator E can be expressed in term of D by

E = ehD or

E = ehD = 1 + (hD) +
(hD)2

2!
+

(hD)3

3!
+

(hD)4

4!
+

(hD)5

5!
+

(hD)6

6!
+ ...,

E−1 = e−hD = 1− (hD) +
(hD)2

2!
− (hD)3

3!
+

(hD)4

4!
− (hD)5

5!
+

(hD)6

6!
+ ...,

Therefor, by using these expansions , the equation (24) can be simplified into

s′(xi) =
1

h
((hD) +

(hD)2

2!
+

(hD)3

3!
+

(hD)4

4!
+

(hD)5

5!
+

(hD)6

6!
+ ...)y(xi)

− h

6
(3 + (hD) +

(hD)2

2!
+

(hD)3

3!
+

(hD)4

4!
+

(hD)5

5!
+

(hD)6

6!
+ ...)y′′(xi)

+
h3

384
(16 + 7(hD) + 7

(hD)2

2!
+ 7

(hD)3

3!
+ 7

(hD)4

4!
+ 7

(hD)5

5!
+ 7

(hD)6

6!
+ ...)y(4)(xi),

Hence we obtained the relation (20) as
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s′(xi) = y′(xi)−
7h4

5760
y(5)(xi) +O(h6).

Now we have to prove the relation (21), by using the relations (19),(23) we obtain

s′′i =
1

h2
(si−1 − 2si + si+1)−

h2

384
[(y

(4)
i−1 −

h2

24
y
(6)
i−1 +

7h4

5760
y
(8)
i−1 +O(h6))

+ 30(y
(4)
i − h2

24
y
(6)
i +

7h4

5760
y
(8)
i +O(h6)) + (y

(4)
i+1 −

h2

24
y
(6)
i+1 +

7h4

5760
y
(8)
i+1 +O(h6))],

So by same approach we have:

s′′i =
1

h2
(E−1 + E − 2)y(xi)−

h2

384
(E−1y

(4)
i − h2

24
E−1y

(6)
i +

7h4

5760
E−1y

(8)
i +O(h6))

− 30h2

384
(y

(4)
i − h2

24
y
(6)
i +

7h4

5760
y
(8)
i +O(h6))

− h2

384
(Ey

(4)
i − h2

24
Ey

(6)
i +

7h4

5760
Ey

(8)
i +O(h6)),

and

s′′i =
1

h2
((hD)2 + 2

(hD)4

4!
+ 2

(hD)6

6!
+ ...)y(xi)

− h2

384
(32 + (hD)2 + 2

(hD)4

4!
+ 2

(hD)6

6!
+ ...)y(4)(xi)

− h4

9216
(32 + (hD)2 + 2

(hD)4

4!
+ 2

(hD)6

6!
+ ...)y(6)(xi)

− 7h6

2211840
(32 + (hD)2 + 2

(hD)4

4!
+ 2

(hD)6

6!
+ ...)y(8)(xi) +O(h6),

Hence

s′′(xi) = y′′(xi) +
7h4

1920
y(6)(xi) +O(h6).

The proof of relation (21) is completed.

Theorem 2: Let S be the quartic spline interpolating of y ∈ C10[a, b], defined
by eqs. (18),(19) the following relations hold on the grid points xi, i = 0(1)n.

s(xi) = y(xi) +O(h6), (25)

s′(xi) = y′(xi) +
h4

720
y(5)(xi) +O(h6), (26)
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s′′(xi) = y′′(xi)−
h4

240
y(6)(xi) +O(h6). (27)

Proof :
The proof of this theorem is similar to theorem 1. But the following remark can
be obtained from this theorem.
Further we define two discrete difference operators δgi and δ

2gi which will be used
to formulate the quartic spline collocation methods:

δgi = gi−1 − 2gi + gi+1, 2 ⩽ i ⩽ n− 1,

δ2gi = gi−2 − 4gi−1 + 6gi − 4gi+1 + gi+2, 3 ⩽ i ⩽ n− 2.

From eqs. (20),(21) and (25)-(27) and by [21] the following relations can be
obtained

y
(5)
i =

1

h4
δ2s′i +O(h2), 3 ⩽ i ⩽ n− 2, (28)

y
(6)
i =

1

h4
δ2s′′i +O(h2), 3 ⩽ i ⩽ n− 2. (29)

If y ∈ C10[a, b] then the following approximations to y(5) and y(6) are obtained
at boundary and near-boundary points {x0, τ1, τ2, τn−1, τn, x0} for k = 5, 6:

y(k)(x0) =
1

2h4
(7δ2s

(k−4)
3 − 5δ2s

(k−4)
4 ) +O(h2),

y(k)(τ1) =
1

h4
(3δ2s

(k−4)
3 − 2δ2s

(k−4)
4 ) +O(h2),

y(k)(τ2) =
1

h4
(2δ2s

(k−4)
3 − δ2s

(k−4)
4 ) +O(h2),

y(k)(τn−1) =
1

h4
(2δ2s

(k−4)
n−2 − δ2s

(k−4)
n−3 ) +O(h2),

y(k)(τn) =
1

h4
(3δ2s

(k−4)
n−2 − 2δ2s

(k−4)
n−3 ) +O(h2),

y(k)(xn) =
1

2h4
(7δ2s

(k−4)
n−2 − 5δ2s

(k−4)
n−3 ) +O(h2),

y(k)(x1) =
1

2h4
(5δ2s

(k−4)
3 − 3δ2s

(k−4)
4 ) +O(h2),

y(k)(xn−1) =
1

2h4
(5δ2s

(k−4)
n−2 − 3δ2s

(k−4)
n−3 ) +O(h2).
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5. Convergence Analysis of the Quartic Spline Collocation Method

There are two optimal quartic spline collocation methods, the one-step and the
two-step collocation methods. Here we describe the two-step collocation method.
The two-step collocation method is defined by the following steps:

Step 1:
Determine ν ⊂ s4∆ such that it satisfies

[Lν − r]τi = 0, 1 ⩽ i ⩽ n, (30)

[Bν − g]x0,xn
= 0, (31)

[Lν − r]x1,xn−1
= 0. (32)

Step 2:
Determine u∆ ⊂ s4∆ such that it satisfies

[Lu∆ − r̄]τi = 0, 1 ⩽ i ⩽ n, (33)

[Bu∆ − ḡ]x0,xn
= 0, (34)

[Lu∆ − r̄]x1,xn−1
= 0. (35)

where

r̄i = ri +
7

1920
δ2ν

(2)
i − 7

5760
piδ

2ν
(1)
i , 1 ⩽ i ⩽ n,

r̄1 = r1 +
7

1920
(3δ2ν

(2)
3 − 2δ2ν

(2)
4 )− 7

5760
p1(3δ

2ν
(1)
3 − 2δ2ν

(1)
4 ),

r̄2 = r2 +
7

1920
(2δ2ν

(2)
3 − δ2ν

(2)
4 )− 7

5760
p2(2δ

2ν
(1)
3 − δ2ν

(1)
4 ),

r̄n−1 = rn−1 +
7

1920
(2δ2ν

(2)
n−2 − δ2ν

(2)
n−3)−

7

5760
pn−1(2δ

2ν
(1)
n−2 − δ2ν

(1)
n−3),

r̄n = rn +
7

1920
(3δ2ν

(2)
n−2 − 2δ2ν

(2)
n−3)−

7

5760
pn(3δ

2ν
(1)
n−2 − 2δ2ν

(1)
n−3),

r̄(x1) = r(x1)−
1

480
(5δ2ν

(2)
3 − 3δ2ν

(2)
4 ) +

1

1440
p(x1)(5δ

2ν
(1)
3 − 3δ2ν

(1)
4 ),

r̄(xn−1) = r(xn−1)−
1

480
(5δ2s

(2)
n−2 − 3δ2s

(2)
n−3) +

1

1440
p(xn−1)(5δ

2ν
(1)
n−2 − 3δ2ν

(1)
n−3),

ḡ(x0) = g(x0) = α,

ḡ(xn) = g(xn) = β.
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Green’s function approach:
We will proceed to the convergence analysis of the purposed method via Green’s
function. If we assume that the boundary value problem y′′ = 0 , By = 0 has a
unique solution, then it implies that there is a Green’s function G(x, t) for this
problem [20]. Let y′′ = φ and ŝ′′ = ψ are the exact and spline solutions of the given
problem which satisfy the boundary conditions, we assume ν ′′ = η. Then y(x) and
ŝ(x) can be obtained in the following forms:

y(x) =

∫ b

a
G(x, t)φ(t)dt,

y′(x) =

∫ b

a
Gx(x, t)φ(t)dt,

ŝ(x) =

∫ b

a
G(x, t)ψ(t)dt,

ŝ′(x) =

∫ b

a
Gx(x, t)ψ(t)dt,

ν(x) =

∫ b

a
G(x, t)η(t)dt,

ν ′(x) =

∫ b

a
Gx(x, t)η(t)dt.

We introduce the operator k, k : C[a, b] → C[a, b] that is defined by

kφ(x) = p(x)

∫ b

a
Gx(x, t)φ(t)dt+ q(x)

∫ b

a
G(x, t)φ(t)dt.

We also introduce the linear projection p∆ that maps C[a, b] to s′′∆ by piecewise
quartic interpolation at the midpoints {τi}n1 and grid points x0, xn, i.e , at points
{τi}n+1

0 since τ0 = x0 and τn+1 = xn.

Convergence analysis of the two-step method:
We present the convergence analysis and error bounds for the two step method by
using a Green’s function approach. With the notations introduced, we can rewrite
eqs. (30)-(32) and (33)-(35) respectively as

p∆(η + kη) = p∆r, (36)

p∆(ψ + kψ) = p∆r̄. (37)

Since p∆η = η and p∆ψ = ψ, we can simplify eqs. (36),(37) as
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(I + p∆)η = p∆r, (38)

(I + p∆)ψ = p∆r̄. (39)

The equation (1) can be rewritten as

φ+ kφ = r.

By the definition of p∆, ∥p∆φ − φ∥∞ converges to zero as h approaches zero
for continuous function φ. By the complete continuity of k, this implies that
∥p∆k − k∥∞ converges to zero as h converges to zero. Therefore by Neumann’s
theorem, we conclude that the operators (I + p∆k)

−1 exist and are uniformly
bounded for sufficient small h.

Theorem 3: we assume the functions p(x), q(x) and r(x) are given in equa-
tion (1),(2) has a unique solution in C4[a, b], also the test problem y′′ = 0 with
boundaries vanish at the a and b (that is By = 0) has a unique solution, then the

collocation approximation u∆ ∈ s
(4)
∆ defined in eqs. (33)-(35) exists and the global

error satisfies:

∥(y − u∆)
(k)∥∞ = O(h5−k), k = 0, 1, 2.

Proof:
From the existence and uniformly bounded of (I + p∆k)

−1, the solvability of the
relations (38),(39) follows, hence the unique existence of u∆ follows.

Recall the quartic spline interplant S of y in eqs. (18),(19). If ν ∈ s
(4)
∆ defined in

eqs. (30)-(32) so we have the relation for k = 0, 1, 2 and 2 ⩽ i ⩽ n− 1

δ2S
(k)
i = δ2ν

(k)
i +O(h6)

Therefore,for u∆ defined in eqs. (33)-(35) we have:

L(S − u∆)(τi) = O(h6), 1 ⩽ i ⩽ n, (40)

L(S − u∆)(xi) = O(h6), i = 0, n, (41)
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B(S − u∆) = O(h6). (42)

Note that there exists a linear function w such that Bw = B(S − u∆) = O(h6)
because of assumption. It can be further shown that ∥w∥∞ = O(h6) and ∥w′∥∞ =
O(h6). Then we can rewrite eqs. (40)-(42) as

(I + p∆k)(S
′′ − w′′ − u′′∆) = O(h6),

From the uniformly bounded of (I + p∆k)
−1, we obtain

∥S′′ − w′′ − u′′∆∥∞ = O(h6). (43)

Since the unique solvability of (S−w−u∆)′′ = (S−u∆)′′ = 0, B(S−w−u∆) = 0
is ensured by assumption, we can obtain by using the Green’s function:

(S − w − u∆)
′(x) =

∫ b

a
Gx(x, t)(S

′′ − w′′ − u′′∆)(t)dt,

(S − w − u∆)(x) =

∫ b

a
G(x, t)(S′′ − w′′ − u′′∆)(t)dt.

These imply that

∥S − w − u∆∥∞ = O(h6), (44)

∥S′ − w′ − u′∆∥∞ = O(h6), (45)

From eqs. (43)-(45) and the definition of w, we utilize the triangle inequality to
obtain

∥S(k) − u
(k)
∆ ∥∞ ⩽ ∥S(k) − w(k) − u

(k)
∆ ∥∞ + ∥w(k)∥∞ = O(h6).

This completes the proof.
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6. Numerical Illustrations

we consider two examples of second order two-point boundary value problems
from [8].

Example 1

y′′(x)− y′(x) = −e(x−1) − 1,

y(0) = y(1) = 0,

With the exact solution y(x) = x(1− e(x−1)).

Example 2

y′′(x)− y′(x) = e(1−x)(x
3

2 (1− x)
3

2 (60− 20x)− 15x
1

2 (1− x)
1

2 (1− 2x+ 2x2)),

y(0) = y(1) = 0,

With the exact solution y(x) = 4x
5

2 (1− x)
5

2 .
To verify the applicability of our purposed method and to show the accurate
nature of our approach. These two test problems have been solved with different
steps size h = 0.1, 0.01. The computed results are compared with exact results
and absolute errors in the solution are tabulated in tables 1, 2.
we compared our results of example (1) with finite difference solutions in [8],
B-spline interpolation in [6] and Cubic spline method in [17], in order to we
compared our results of example (2) with finite difference solutions in [8] and
Cubic spline method in [17].

Table 1. Comparison of the maximum absolute error in the solution of Example1

h our method finite difference[8] B-spline interpolation[6] Cubic spline[17]

0.1 2.6672× 10−7 8.24e− 3 2.9e− 4 1.88e− 3

0.01 2.67275× 10−11 8.31e− 3 2.89e− 6 1.87e− 4
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Table 2. Comparison of the maximum absolute error in the solution of Example2

h our method finite difference[8] Cubic spline[17]

0.1 1.46214× 10−3 3.50e− 1 2.81e− 1

0.01 3.90394× 10−6 2.45e− 1 1.25e− 1

7. Conclusion

In this work we formulate quartic B-spline for collocation of two-point boundary
value problem. Convergence analysis of the presented method is discussed, the
method applied to two test examples, the absolute errors in the solution obtained
by our method are compared with the method in [2],[10],[11]. We find that our
results are considerable accurate.
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