
Simulation Domains for Networked Embedded Systems

Hugo V. Bitencourt, Adriano B. da Cunha,Diogenes C. da Silva
Federal University of Minas Gerais

Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
hugov@cpdee.ufmg.br, adborges@ufmg.br, diogenes@cpdee.ufmg.br

ABSTRACT
Networked embedded systems are a fast growing applica-
tion for embedded systems. Choices taken during the sys-
tem design can influence the network configuration and vice
versa. It poses new challenges in design and simulation do-
mains. It is very important at the early stages of the design
of networked embedded systems to simulate both embedded
systems and networked environment in which they operate.
Besides, due to limited available energy, simulate the en-
ergy consumption in networked embedded systems is also
almost imperative. In this paper, we propose a new view
for design and analysis of simulator for networked embed-
ded systems defining four domains to capture and describe
networked embedded systems with purpose of simulation.
It is also presented an elaborate comparison and analysis of
four simulators designed to networked embedded systems.

Categories and Subject Descriptors
I.6.1 [Simulation and Modeling]: Simulation Theory—
Model classification; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Design, Theory

Keywords
Embedded systems, network, environment, energy, simula-
tors, domains

1. INTRODUCTION
With the goal to instrument the physical world with per-
vasive networks that are able to sense, process and interact
with their surrounding environment, networked embedded
systems (NES) have been emerged. However, this poses a
set of challenges that should be address. First, the lifetime of
the application. Second, the limited available energy. Third,
a network formed by embedded systems need to cover larger
areas, but the communication is provided via short distance

radios, as a result, the communication is the most expensive
operation [10].

Choices taken into during the system design can influence
the network configuration and vice versa. It is very impor-
tant at the early stages of the design of NES to simulate not
only the embedded system, but also the communication net-
work and the surrounding environment in which it operates
[11]. Besides, due to limited available energy, simulate the
energy consumption in NES is also almost mandatory.

Simulators for NES should address the computing platform,
the communication network, the surrounding environment,
and energy available and necessary to make the NES oper-
ational. Figure 1 illustrates these different domains.

Networked 

Embedded Systems

Base Station

Wireless Communication 

Channels

Sensory Operation

Software

Hardware

Software

Hardware

Software

Hardware

Software

Hardware

Software

Hardware

Software

Hardware

Software

Hardware

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Protocol 

Stack

Protocol 

Stack

Energy Consumption and 

Energy Available

Figure 1: Different domains that simulators for NES
should address

In this paper, we propose a new view for design and analysis
of simulators for NES. We define four domains to capture
and describe NES with purpose of simulation. The proposed
domains are the following: embedded system, network, en-
vironment and energy. In order to show that the proposed
domains are useful and reasonable, we conduct an elaborate
comparison and analysis of four simulators designed for NES
in each proposed domain.

The rest of this paper is organized as follows. Section 2
presents the four proposed domains. Section 3 presents
an elaborate analysis and comparison of four simulators for
NES. Section 4 concludes this paper.

alex
Text Box
SForum 2012 - Student Forum on Microelectronics



2. PROPOSED DOMAINS
This paper proposes a new view for design and analysis of
simulators for NES: the computing platform, the commu-
nication network, the surrounding environment, and energy
available and necessary to make the networked embedded
system operational.

2.1 Embedded System Domain
The embedded system domain models the computing plat-
form and is divided into two separated dimensions: hard-
ware and software. Hardware can be modeled by the follow-
ing approaches: HA (Hardware Abstraction), PMS (Pro-
cess/Memory/Switch), ISS (Instruction Set Simulator), and
RTL (Register Transfer Level). Software can be modeled
by the approaches: APP (application) and OS (operating
system).

HA is the hardware abstraction level where modules and
subsystems are described as an executable code or simulat-
able code. At this level no specific hardware description is
used, and no mapping to existing actual hardware is en-
forced. PMS is a notation where the embedded system ar-
chitecture is described as a composition of modules like pro-
cessors, memories, buses, and peripherals [21]. At PMS level
a real hardware can be described and more details related
to real implementations can be used. ISS is the level equiv-
alent to an instruction set simulator of a processor. At this
level, the hardware behavior can be described as a sequence
of machine instructions. RTL is the description level of a
digital system composed by registers, functional units and
their interconnections. RTL is the lowest and more detailed
level of abstraction that is useful for networked embedded
systems designers.

APP is the description level of an application program to be
executed on the embedded system, generally using NesC, C,
C++, SystemC, or Java languages. This application pro-
gram can be executed either on the development environ-
ment or on the embedded system. SO is the description that
includes the application program and an operation system
or microkernel.

2.2 Network Domain
The network domain models the network communication. It
is usually modeled after the OSI model from ITU-T and is
commonly known as layered protocol stack. However, pro-
tocols for traditional wireless networks cannot be applied
directly to networked embedded systems without modifica-
tion, since they do not take into account energy, computa-
tion and storage constraints as primary concerns.

2.3 Environment Domain
The environment domain models the ambient where the net-
worked embedded systems are deployed and involves the
communication medium and the sensory operation.

Networked embedded systems communicate through a wire-
less communication channels. However, this communication
presents imperfections due to collisions, noise, fading, path
loss, interferences, obstacles and so on. Sensory operation
includes the sensed-data generation (i.e. sensing) and sens-
ing ability (i.e. how well an area of interest is being moni-
tored by the deployed network).

2.4 Energy Domain
Networked embedded systems are commonly battery-power-
ed. Each mote must manage and balance its energy re-
sources intelligently and autonomously since network life-
time depends on the amount of available energy. It is neces-
sary that simulators for networked embedded systems pro-
vide the energy consumption and the amount of available
energy for each mote and the whole network at any time [3].
The energy domain models how the embedded systems and
the network perceives the energy used for their operation.

3. SELECTED SIMULATORS
The simulators selected for this paper are the following:
TOSSIM 2.x, COOJA 2.5, IDEA1 and ATLeS-SN 2.0, com-
molly used for simulation of wireless sensor network (WSN).
TOOSIM [14] and COOJA [18] were developed to simulate
the behavior of an operating system for NES, TinyOS [23]
and Contiki [6], respectively. IDEA1 [5] and ATLeS-SN [12]
belong the new class of simulators for WSN written in Sys-
temC language.

Recently, researchers began to design simulators using the
SystemC language, since SystemC enables the simulation of
embedded systems with different functionality at different
abstraction levels, the communication network and the sur-
rounding environment. The use of a single tool for system
design could be an advantage for the design of NES [11]. Sys-
temC simulators can model sensor nodes at the RTL level
and can be integrated to an ISS. An ISS-SystemC integration
enables the simulation of the same application code used in
the real sensor node. SystemC language supports the hard-
ware and software co-simulation of sensor nodes closer to
the real implementation.

This work conducts an elaborate analysis aiming at evalu-
ating the potentiality of SytemC and operating system sim-
ulators for NES in each simulation domain. It also presents
the differences and similarities among simulators.

3.1 TOSSIM
TOSSIM models the sensor node using the OS and HA ap-
proaches. It maps directly to TinyOS code, and works by re-
placing hardware components by simulation wrappers using
a Hardware Abstraction Layer [19][25]. However, TOSSIM
only supports the MICAz motes [15].

TOSSIM simulates the behavior of the physical layer through
a radio object that is based on experimental results using the
TI CC2420 [2] radio. The MAC object simulates the data
link layer, and can control several properties important for
the CSMA protocol. Besides, TOSSIM supports routing
protocols available in TinyOS [25].

Designers can provide a set of data to TOSSIM which de-
scribes the propagation strengths, and can also specify noise
floor and receiver sensitivity. TOSSIM simulates the radio
frequency noise and interference using the Closest Pattern
Matching (CPM) algorithm [25]. However, this model is
not perfect, since it does not handle correlated interference
at sensor nodes that are close to one another.

TOSSIM has an extension called PowerTOSSIMz [19] that
calculates the energy consumption per-node and per-compon-



ent, and has a battery model that provides the amount of
available energy for each sensor node.

3.2 COOJA
COOJA models the sensor nodes using the APP, OS, HA
and ISS (i.e. using either MSPsim [8] or Avrora [24], since
both were integrated into COOJA) approaches. COOJA
can simulate Contiki applications in two ways, either by run-
ning the application as a compiled native code directly on
the host CPU, or by running compiled application code in
MSPSim. COOJA can also simulate a WSN without a spe-
cific sensor node or Contiki application focusing only on the
network behaviour. Using MSPsim, COOJA can also sim-
ulate TinyOS applications for MSP430 motes (e.g. Telosb
[20]) [9]. COOJA also uses the Avrora simulator to simulate
Contiki application of AVR-based motes (e.g. MICAz).

The set of protocols supported by COOJA is equivalent to
Contiki that has the following main features: TI CC2420
and TR1100 [26] radios; IEEE 802.15.4 standard [13]; uIPv4,
uIPv6 and RPL [17] routing protocol.

COOJA provides four radio propagation models: Unit Disk
Graph Medium (UDGM) Constant Loss; Unit Disk Graph
Medium (UDGM) Distance Loss; Directed Graph Radio
Medium (DGRM); Multi-path Ray-tracer Medium (MRM)
[22].

UDGM Constant Loss models the transmission range as an
ideal disk in which all the sensor nodes outside that disk do
not receive packets while the sensor nodes within that disk
receive all the packets. UDGM Distance Loss is an extension
of first radio propagation model in which interferences are
considered and the packets can be transmitted with SUC-
CESS RATIO TX probability and received with SUCCESS
RATIO RX probability. DGRM specifies the transmission
success ratio in an asymmetric per-link base and can define
propagation delays for the links. MRM uses ray tracing tech-
nique. The receiver power is calculated using Friis formula,
and obstacles are considered as attenuators. It also calcu-
lates refractions, reflections and diffractions. Furthermore,
others radio propagation models can be added [18].

In COOJA, developers can use either the duty command of
MSPsim or the energy profiling used in Contiki [7], but both
only print the duty cycle of components of a sensor node in
different activity states.

3.3 IDEA1
IDEA1 models the sensor node using the APP and PMS
approaches. IDEA1 has implemented some available off-
the-shell (COTS) processors and transceivers that are basic
components of some COTS motes as finite state machines
(FSM). IDEA1 simulates an application program written in
SystemC language [5].

IDEA1 has implemented three transceivers as FSMs: TI
CC2420 [2], TI CC1000 [1] and Microchip MRF24J40 [16].
There are two IEEE 802.15.4 media access algorithms im-
plemented: unslotted CSMA-CA and slotted CSMA-CA [5].

IDEA uses SCNSL that models propagation delay, interfer-
ences, collisions and path loss, takes into account the spatial

positions of sensor nodes and their on-going transmissions.
Sensors are simulated as a stimuli generator [5].

IDEA1 models the energy consumption using FSMs that
works as follows: during simulation, the state transition of
microcontroller and transceiver is recorded and each state is
associated with a given electric current consumption. Then,
based on this information, IDEA1 calculates the energy con-
sumption of each component [4].

3.4 ATLeS-SN
ATLeS-SN models the sensor node using the APP and PMS
approaches. Each sensor node is composed by an App com-
ponent to implement the sensor node functionality, a Sensor
component for modeling the sensing unit and a NetStack
component for designing the communication unit. ATLeS-
SN also simulates an application program written in Sys-
temC. However, ATLeS-SN does not have modeled COTS
processors and transceivers [12].

ATLeS-SN has a NetStack component that enables designers
to implement their own protocols such as MAC and routing
protocols [12]. However, at this moment, ATLeSN-SN does
not include standard protocols (e.g. IEEE 802.15.4).

ATLeS-SN provides a PhysChannel component that enables
the modeling of various radio propagation models, from the
simplest to the most complex. PhysChannel also simulates
collisions. The Sensor component enables designers to model
the sensors at various abstractions levels, from sensor that
only reads values from an input file to specific sensors that
incorporates the device driver code. However, up to now,
ATLeSN-SN does not include advanced radio propagation
models and advance sensed-data generation is not available
[12].

ATLeSN-SN calculates the energy consumption per-node,
per-component and per-state for each component of the sen-
sor nodes. However, ATLeSN-SN does not have implemented
COTS processors and transceivers.

3.5 Comparison and Results
TOSSIM and COOJA simulate the same application code
used in the real embedded system, as a result, designers do
not need to spend effort in rewriting the application code
already developed. In contrast, IDEA1 and ATLeS-SN do
not simulate the same application code used in the real em-
bedded system.

COOJA and SystemC simulators enable the simulation of
heterogeneous networks, composed by different sensor nodes
and applications. SystemC simulators also allow designers
to simulate a network composed by their own NES plat-
form with different functionality or description at different
abstraction levels. In contrast, TOSSIM do not allow simu-
lation of heterogeneous networks. SystemC simulators and
TOSSIM are scalable simulators while COOJA scalability is
poorer than other simulators.

COOJA has implemented different radio propagation mod-
els from the simplest to the most complex, as a result, de-
velopers can test the behavior of their TinyOS and Con-
tiki applications on different radio propagation models. In



contrast, SystemC simulators only provide a very simple ra-
dio propagation model and TOSSIM wireless channel model
presents imperfections.

TOSSIM is the only simulator that has implemented a bat-
tery model that provides the amount of energy available for
each mote. However, it only calculates the consumption and
available energy of a network composed by MICAz motes
and a single TinyOS application. Besides, TOSSIM loses
the fine-grained timing and interrupt properties of the code
that can be important when the application runs on the
hardware [24]. It is important to estimate the energy con-
sumption. SystemC enables the modeling of embedded sys-
tems at RTL level that is closes to the real implementation.
As a result, designers can test the energy consumption of the
networked embedded systems in an accurate way. COOJA
does not provide the consumption and available energy.

4. CONCLUSIONS
In this paper, four domains to capture and describe NES
with purpose of simulation were defined. The proposed do-
mains serves as the basis for the design of a new simulator
and in choosing the best simulator for a given application.
For a detailed design and simulation of NES, the simulators
should address the four proposed domains.

In order to show that the proposed domains are useful, we
conducted an evaluation of the potentiality of four simula-
tors in each domain. We also presented some conclusions
based in this analysis.

5. ACKNOWLEDGMENTS
This work was supported by grants from the following spon-
sor agencies: FAPEMIG grant TEC-PPM-00630-11, CNPq
and Capes master degree scholarship.

6. REFERENCES
[1] CC1000-datasheet. Single chip very low power rf

transceiver, June 2012.

[2] CC2420-datasheet. 2.4 ghz ieee 802.15.4 zigbee-ready
rf transceiver, June 2012.

[3] A. B. da Cunha. In Portuguese: Uma Abordagem para
a Modelagem da Consciência de Disponibilidade
Energética em Nós Sensores de Rede de Sensores Sem
Fio. PhD thesis, Universidade Federal de Minas
Gerais, 2010.

[4] W. Du, F. Mieyeville, and D. Navarro. Modeling
energy consumption of wireless sensor networks by
systemc. In ICSNC, 2010, pages 94 –98, aug. 2010.

[5] W. Du, D. Navarro, F. Mieyeville, and I. O’Connor.
Idea1: A validated system c-based simulator for
wireless sensor networks. In MASS, 2011, pages 825
–830, oct. 2011.

[6] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In LCN, 2004, pages 455–462,
Washington, DC, USA, 2004. IEEE Computer Society.

[7] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor
nodes. In EmNets, 2007, pages 28–32, New York, NY,
USA, 2007. ACM.

[8] J. Eriksson, A. Dunkels, F. Finne, F. Österlind, and
T. Voigt. MSPSim - an extensible simulator for
msp430-equipped sensor boards. In EWSN, 2007, jan.
2007.

[9] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes,
A. Dunkels, T. Voigt, R. Sauter, and P. J. Marrón.
Cooja/mspsim: interoperability testing for wireless
sensor networks. In SIMUTools, 2009, pages 27:1–27:7,
ICST, Brussels, Belgium, Belgium, 2009.

[10] J. Fonseca. Towards a Test Framework for Networked
Embedded Systems. PhD thesis, University of
Copenhagen, 2009.

[11] F. Fummi, D. Quaglia, and F. Stefanni. A
systemc-based framework for modeling and simulation
of networked embedded systems. In FDL, 2008, pages
49 –54, sept. 2008.

[12] J. Hiner, A. Shenoy, R. Lysecky, S. Lysecky, and A. G.
Ross. Transaction-level modeling for sensor networks
using systemc. In SUTC, 2010, pages 197 –204, june
2010.

[13] IEEE. Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (WPANs).
IEEE Std 802.15.4, 2006.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In SenSys, 2003, pages 126–137, New
York, NY, USA, 2003. ACM.

[15] MICAz. Micaz datasheet, June 2012.

[16] MRF24J40-datasheet. Ieee 802.15.4 2.4 ghz rf
transceiver, June 2012.

[17] R. F. K. J. Omprakash Gnawali, Philip Levis and
D. Moss. Ctp: Collection tree protocol, June 2012.

[18] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. In LCN, 2006, pages 641 –648, nov. 2006.

[19] E. Perla, A. O. Catháin, R. S. Carbajo, M. Huggard,
and C. Mc Goldrick. Powertossim z: realistic energy
modelling for wireless sensor network environments. In
PM2HW2N 2008, pages 35–42, New York, NY, USA,
2008. ACM.

[20] J. Polastre, R. Szewczyk, and D. Culler. Telos:
enabling ultra-low power wireless research. In IPSN,
2005, Piscataway, NJ, USA, 2005. IEEE Press.

[21] D. P. Siewiorek, G. Bell, and A. C. Newell. Computer
Structures: Principles and Examples. McGraw-Hill,
Inc., New York, NY, USA, 1982.

[22] M. Stehlik. Comparison of Simulators for Wireless
Sensor Networks. PhD thesis, Masaryk University,
2011.

[23] TinyOS. Tinyos documentation wiki, June 2012.

[24] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise
timing. In IPSN, 2005, Piscataway, NJ, USA, 2005.
IEEE Press.

[25] TOSSIM. Tinyos documentation wiki, June 2012.

[26] TR1100-datasheet. 916.50 mhz hybrid transceiver,
June 2012.




