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Abstract Spontaneous electrical activity is a common feature
of sensory systems during early development. This sensory-
independent neuronal activity has been implicated in promot-
ing their survival and maturation, as well as growth and
refinement of their projections to yield circuits that can rapidly
extract information about the external world. Periodic bursts
of action potentials occur in auditory neurons of mammals
before hearing onset. This activity is induced by inner hair
cells (IHCs) within the developing cochlea, which establish
functional connections with spiral ganglion neurons (SGNs)
several weeks before they are capable of detecting external
sounds. During this pre-hearing period, IHCs fire periodic
bursts of Ca2+ action potentials that excite SGNs, triggering
brief but intense periods of activity that pass through auditory
centers of the brain. Although spontaneous activity requires
input from IHCs, there is ongoing debate about whether IHCs
are intrinsically active and their firing periodically interrupted
by external inhibitory input (IHC-inhibition model), or are
intrinsically silent and their firing periodically promoted by
an external excitatory stimulus (IHC-excitation model). There
is accumulating evidence that inner supporting cells in
Kölliker’s organ spontaneously release ATP during this time,
which can induce bursts of Ca2+ spikes in IHCs that recapit-
ulate many features of auditory neuron activity observed
in vivo. Nevertheless, the role of supporting cells in this
process remains to be established in vivo. A greater under-
standing of the molecular mechanisms responsible for

generating IHC activity in the developing cochlea will help
reveal how these events contribute to the maturation of na-
scent auditory circuits.
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Introduction

A major goal for developmental neuroscience is to elucidate
how neurons assemble into a network to carry out its specific
functions. While substantial progress has been made in un-
derstanding the genetic programs and guidance molecules
required for proper connections, much less is known about
another fundamental feature of developing neural circuits —
the role of intrinsically generated or “spontaneous” activity.
Action potentials that are not initiated by input from the
external environment have been observed in the developing
nervous system of many species and in many distinct regions
of the nervous system (Blankenship and Feller 2010), includ-
ing the retina (Galli and Maffei 1988; Meister et al. 1991),
spinal cord (Landmesser and O′Donovan 1984), hippocampus
(Ben-Ari et al. 1989; Garaschuk et al. 1998), cerebellum (Watt
et al. 2009), and cochlea (Kros et al. 1998; Tritsch et al. 2007).
The pervasiveness of this spontaneous activity suggests that it
plays an important role in the maturation of neural circuits.
Indeed, it has been implicated in regulating the proliferation,
differentiation, and migration of neurons (Wong and Ghosh
2002; Moody and Bosma 2005; Spitzer 2006), and is thought
to influence their structural maturation (Cohen-Cory 2002),
axonal arborization, and ultimately their integration into neu-
ronal circuits (Katz and Shatz 1996; Friauf and Lohmann
1999; Zhang and Poo 2001; Moody and Bosma 2005;
Huberman et al. 2008; Blankenship and Feller 2010; Kirkby
et al. 2013).
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In the auditory system, spontaneous electrical activity that
is present before the onset of hearing (defined as the age when
auditory neurons reliably respond to airborne acoustic stimu-
lation) has also been implicated in shaping the organization of
nascent circuits. Most studies have been performed in either
chicken (in ovo) or neonatal altricial animals, such as rodents
and cats, which are born deaf and remain unresponsive to
airborne sound until approximately the end of the 2nd post-
natal week. In rodents, the inability to sense ambient sound is
not due to the inability of hair cells to transform mechanical
stimulation into electrical signals (Lelli et al. 2009) or the lack
of functional connections between central cochlear neurons
(Hoffpauir et al. 2009). Rather, deafness results from the
combination of physical occlusion of the external ear canal,
poor ossicular transduction in the middle ear, underdeveloped
mechanics in the organ of Corti, immature ionic composition
in the endolymph, and absence of the endocochlear potential
(Bosher and Warren 1971; Anniko and Wroblewski 1986;
Woolf and Ryan 1988; Rybak et al. 1992; Geal-Dor et al.
1993; Abe et al. 2007). The time of hearing onset for some
common experimental animals is embryonic day 16 (E16) in
chicken (Jones et al. 2006), postnatal day (P) 10–12 in mouse
(Mikaelian and Ruben 1965; Ehret 1983), P11–13 in rat (Uziel
et al. 1981; Ehret 1983; Geal-Dor et al. 1993), P10 in cat
(Walsh and McGee 1987), and P12 in gerbil (Woolf and Ryan
1984), with the day of birth defined as P0.

The properties of sound-independent activity present dur-
ing auditory system development are distinct from those
which occur after hearing onset. Previous studies have dem-
onstrated that the majority of auditory nerve fibers (ANFs) in
hearing cats and rodents are continuously active in the absence
of acoustic stimulation. The spontaneous discharge rate of
individual ANFs can vary from only a few Hz to more than
100 Hz (Kiang 1965; Liberman 1978; Walsh and McGee
1987; Taberner and Liberman 2005); the pattern of spiking
over time is relatively continuous for a given fiber, which
displays regular discharges without discernible periods of
silence (Walsh and McGee 1987; Jones et al. 2007). Similar
patterns of activity have also been recorded from brainstem
auditory nuclei (Kopp-Scheinpflug et al. 2008; Sonntag et al.
2009; Crins et al. 2011), and in other species (guinea pig:
Manley and Robertson 1976; Manley et al. 1991; chicken:
Jones and Jones 2000). This regular firing behavior is distinct
from the patterns of activity present in the developing auditory
system. Before hearing onset, a larger proportion of ANFs and
brainstem auditory neurons are silent and do not exhibit
spontaneous discharges, a phenomenon that decreases with
age (Romand and Marty 1975; Shnerson and Willott 1979;
Romand 1984; Walsh and McGee 1987). Although the aver-
age discharge rate of active cells is only several Hz (Shnerson
andWillott 1979; Brugge and O′Connor 1984; Romand 1984;
Walsh and McGee 1987; Kotak and Sanes 1995; Jones et al.
2007; Sonntag et al. 2009; Crins et al. 2011), auditory neuron

activity is concentrated into brief bursts that are followed by
long periods of silence (Romand and Marty 1975; Shnerson
and Willott 1979; Romand 1984; Walsh and McGee 1987;
Kotak and Sanes 1995; Sonntag et al. 2009; Tritsch et al.
2010a; Crins et al. 2011). Similar firing behavior has been
observed in the cochlear ganglion and in higher-order neurons
in the embryonic chicken (Lippe 1994; Jones et al. 2001), in
the auditory midbrain of pre-hearing horseshoe bats
(Rubsamen and Schafer 1990), and in the cochlear nucleus
from pouch young wallaby (Gummer and Mark 1994), sug-
gesting that the mechanisms responsible for initiating this
activity may be highly conserved.

In this review, we attempt to outline current knowledge
about the generation, developmental changes, and function of
spontaneous activity that occurs in the auditory system before
hearing onset. For simplicity, we will focus on rodents and
restrict our discussion of functional consequences to the audi-
tory brainstem, where most experimental results have been
obtained.

Spontaneous activity in the auditory system originates
within the cochlea

Although spontaneous activity has been recorded within dif-
ferent central auditory nuclei, it is believed that this activity is
initiated from the developing cochlea. Bursting activity in
auditory brainstem neurons of embryonic chick was eliminat-
ed following removal of the cochlea or by application of
tetrodotoxin (TTX) to the oval window to block firing of
ANFs (Lippe 1994), and similar bursts of action potentials
have been recorded directly from spiral ganglion neurons
(SGNs) in vivo (Jones et al. 2001; 2007). Furthermore, it has
been shown that the spontaneous action potentials recorded
in vitro from SGNs exhibit a stereotyped pattern consisting of
repeating mini-bursts, which is also seen in the spontaneous
discharge of neurons in the medial nucleus of the trapezoid
body (MNTB) and the central nucleus of inferior colliculus
(IC) in vivo (Tritsch et al. 2010a). Although it is possible that
this activity is intrinsically generated by SGNs, the spontane-
ous action potentials exhibited by SGNs are dependent on
Ca2+-mediated transmitter release from inner hair cells (IHCs)
(Robertson and Paki 2002; Tritsch and Bergles 2010), sug-
gesting that this distinct firing behavior reflects events hap-
pening within the developing organ of Corti before the onset
of hearing.

IHCs in the pre-hearing cochlea are capable of firing Ca2+-
based action potentials (termed “Ca2+ spikes”) (Kros et al.
1998), which have much slower kinetics than conventional
Na+-based action potentials. These spikes are mediated pri-
marily by L-type Ca2+ channels containing the Cav1.3 subunit
(Platzer et al. 2000; Brandt et al. 2003), but the kinetics of
these events are also modified by other ion channels (Marcotti
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et al. 2003a, 2003b, 2004; Kennedy 2012). Each Ca2+ spike
allows a large bolus of Ca2+ to enter the cell, which is suffi-
cient to trigger Ca2+-mediated glutamate release from imma-
ture ribbon synapses (Beutner and Moser 2001; Glowatzki
and Fuchs 2002; Johnson et al. 2005). This synaptic activity
induces SGNs to fire action potentials that are carried to the
auditory brainstem via the eighth nerve. IHCs exhibit small
Ca2+ currents and exocytotic membrane capacitance changes
in response to current injection as early as E16.5 (Marcotti
et al. 2003a; Johnson et al. 2005), and by E17.5 depolarization
elicits broad Ca2+ spikes in IHCs (Marcotti et al. 2003a). Thus,
despite the immaturity of ribbon synapses and the lower Ca2+

efficiency of exocytosis (Sobkowicz et al. 1982; Beutner and
Moser 2001; Johnson et al. 2005), IHCs are capable of releas-
ing neurotransmitter several weeks before hearing onset.

Although the precise timing of synapse formation be-
tween SGNs and IHCs has not been clearly defined, the
peripheral neurites of developing SGNs extend into the
sensory epithelium even before hair-cell differentiation,
with nascent contacts between these cells formed as early
as E18 in both rat (Pujol et al. 1998) and mouse (Huang
et al. 2007). Glutamate receptors are expressed by SGNs
before birth (Luo et al. 1995; Puyal et al. 2002), and
morphologically-defined synapses are present at P0, in
which intracellular ribbon-like structures in IHCs are ap-
posed to electron-dense regions of SGN dendritic mem-
branes (Sobkowicz et al. 1982). Consistent with the pres-
ence of these synaptic structures, depolarization-evoked
glutamate exocytosis from IHCs can trigger action poten-
tials in SGNs at P0 (Tritsch and Bergles 2010). This
activity is unlikely to be restricted to the cochlea, as the
central projections of SGNs grow into the hindbrain quite
early (Appler and Goodrich 2011) and reach the cochlear
nucleus by E15.5 (Koundakjian et al. 2007). Within the
brainstem, functional synapses between auditory relay neu-
rons are also present at birth (Friauf and Kandler 1990;
Kandler and Friauf 1995b; Hoffpauir et al. 2006, 2009;
Rodriguez-Contreras et al. 2008). Together, these anatom-
ical and functional studies indicate that the transduction
pathway from IHCs to developing circuits of the brain
is established well before hearing onset, providing a substrate
that spontaneous activity can act upon to influence its devel-
opmental trajectory.

Despite the capacity of IHCs to generate Ca2+ spikes and
release glutamate before hearing onset, it is still under debate
whether the spontaneous activity exhibited by IHCs arises
from cell intrinsic processes or is induced (or modified) by
an external stimulus. Previous studies indicate that IHCs in
the pre-hearing cochlea of rodents continuously fire Ca2+

spikes in vitro without apparent external stimulation (Kros
et al. 1998; Marcotti et al. 2003a, 2003b, 2004; Brandt
et al. 2007). To reconcile this pattern of activity with the
discontinuous, bursting pattern recorded from auditory

neurons in vivo, it has been proposed that phasic inhibi-
tory cholinergic input from medial olivocochlear (MOC)
efferents periodically interrupts the tonic firing of IHCs
(Kros 2007) (Fig. 1). Indeed, cholinergic efferent discharge
can hyperpolarize IHCs and disrupt the initiation of Ca2+

spikes (Glowatzki and Fuchs 2000); if these efferents fire
prolonged, high-frequency bursts in vivo, they could sup-
press the generation of Ca2+ spikes (Goutman et al. 2005).
In support of this model, inhibition of acetylcholine recep-
tors in acutely isolated cochleae changed the firing pattern
of IHCs from bursting to sustained activity (Johnson et al.
2011), suggesting that cholinergic efferents can sustain
high rates of release even when removed from their cell
bodies in the brainstem. The involvement of these cholin-
ergic efferents could explain the discrepancy between in
vitro and in vivo activity patterns, if the extent of release
from these axons varies after cochlea isolation. This model
satisfies the cochlear origin of spontaneous activity, and
provides an explanation for the abrupt decline in burst
firing at hearing onset, which coincides with the cessation
of both MOC efferent innervation of IHCs (Katz et al.
2004; Roux et al. 2011) and Ca2+ spike generation by
IHCs (Kros et al. 1998). Nevertheless, several observations
suggest that cholinergic input is not essential for generat-
ing bursts of activity in IHCs and auditory neurons during
this period.

At present, there is a lack of consensus about whether IHCs
fire continuously in vitro at this age. While some studies have
shown that IHCs sustain tonic firing, as noted above (Kros
et al. 1998; Marcotti et al. 2003a, 2003b, 2004; Brandt et al.
2007), others reported that IHCs fire bursts of Ca2+ spikes in
the apex (Tritsch and Bergles 2010; Johnson et al. 2011), or all
along the length of the cochlea (Sendin et al. 2014).Moreover,
it has been shown that IHCs and SGNs exhibit burst activity in
cochlear explants that have been maintained in vitro for sev-
eral days (Tritsch et al. 2010a), despite the absence of cholin-
ergic axons. Furthermore, to accommodate the long periods of
silence between bursts observed in vivo, the cholinergic mod-
el requires that MOC neurons fire sustained discharges for up
to several seconds; unfortunately, there have been no in vivo
recordings from these neurons to determine if they exhibit
such activity during this developmental stage. Finally, this
model predicts that removal of MOC cholinergic input would
result in a conversion of auditory neuron activity from burst-
ing to continuous firing. However, a recent study showed that
MNTB neurons in vivo continue to fire in discrete bursts in
mice that lack the α9 acetylcholine receptor subunit, which is
required for MOC-mediated inhibition of IHCs (Vetter et al.
1999; Clause et al. 2014). Together, these results indicate that
inhibitory input from MOC efferents is not essential to
induce burst firing in auditory neurons, and suggest that
there may be other extrinsic mechanisms to trigger
periodic excitation of IHCs.
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An alternative model proposes that IHCs are excited by the
periodic release of adenosine triphosphate (ATP) from neigh-
boring supporting cells. Previous studies have shown that a
group of pseudostratified inner supporting cells (ISCs) that
together form Kölliker’s organ (greater epithelial ridge),
which lies medial to IHCs, exhibit spontaneous inward cur-
rents in the pre-hearing cochlea that are mediated by ATP.
Similar events can be elicited by exogenous ATP or UTP, an
agonist of P2Y receptors, and inhibited by purinergic receptor
antagonists (suramin, PPADS). Strikingly, these cells shrink
or crenate when stimulated with ATP or UTP, an effect that is
triggered by a rise in intracellular Ca2+ (Tritsch et al. 2010b).
Although the significance of these crenations is not known, it
provides a mean to pinpoint the source of ATP— since all of
the cells crenate when exposed to ATP, the site of crenation
indicates where ATP was released. These studies indicate that
the supporting cells themselves release ATP, which induces
crenation by activation of P2 autoreceptors. Recordings from
IHCs revealed that they exhibited similar slow inward cur-
rents, many of which were of sufficient magnitude and dura-
tion to induce bursts of Ca2+ spikes, and simultaneous record-
ings from IHCs and ISCs, while crenations were imaged,
revealed that these three phenomena were coincident and
required activation of purinergic receptors (Tritsch et al.

2007). Moreover, recordings from SGNs in isolated cochleae
revealed that this IHC activity was sufficient to induce bursts
of action potentials, providing a plausible mechanism to ex-
plain the periodic activity of auditory neurons observed
in vivo. Indeed, subsequent studies revealed that SGNs exhibit
a stereotyped firing pattern during this prehearing period, in
which each burst is comprised of a series of mini-bursts, a
reflection of the ability of each IHC Ca2+ spike to induce
repetitive firing of SGNs (Tritsch et al. 2010a). This stereo-
typed firing pattern within bursts is also exhibited by neurons
in the cochlear nucleus and the MNTB (Tritsch et al. 2010a;
Clause et al. 2014), providing further support for the cochlear
origin of this activity. Together, these experiments indicate
that ATP is spontaneously released from ISCs in the pre-
hearing cochlea, which activates purinergic receptors on
IHCs (and ISCs), ultimately leading to bursts of action poten-
tials in SGNs and auditory neurons of the brain (Fig. 1).
Random variations in the location and amount of ATP re-
leased from ISCs provide an explanation for observed varia-
tions in the duration and frequency of action potential bursts in
auditory neurons. This model also provides an explanation for
the decline in phasic spontaneous activity around hearing
onset, as Kölliker’s organ progressively regresses after birth,
ultimately forming the inner sulcus around the time of hearing

Fig. 1 Two models to explain
how spontaneous bursts of
activity could be induced in IHCs
before hearing onset. The “IHC-
inhibition” model (at left)
proposes that IHCs are
depolarized and therefore tend to
fire Ca2+ spikes continuously.
Periodic inhibition of IHCs by an
external modulator such as
acetylcholine (ACh) or adenosine
triphosphate (ATP) would inter-
rupt this firing, transforming con-
tinuous activity into burst firing.
The “IHC-excitation” model (at
right) proposes that IHCs are
hyperpolarized and thus predom-
inantly silent in the absence of an
external stimulation. When ATP
(* or another excitatory modula-
tor) is spontaneously released
from ISCs, IHCs are slowly
depolarized, triggering a brief
train of Ca2+ spikes. In both sce-
narios, the bursts of IHC Ca2+

spikes induce glutamate release
and bursts of action potentials in
SGNs that are subsequently car-
ried to the auditory brainstem via
the eighth nerve
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onset (Hinojosa 1977; Kelley 2007); ISCs and IHCs remain
responsive to ATP after hearing onset (Tritsch and Bergles
2010), suggesting that a key event in the cessation of sponta-
neous activity is the decline in ATP release from ISCs. In this
model, burst firing does not require sustained firing of MOC
efferents, consistent with the preservation of bursting activity
in MNTB neurons in α9 knockout animals (Clause et al.
2014), although this cholinergic input could provide feedback
inhibition to influence burst firing (e.g., the duration and
magnitude of bursts, as well as the number of IHCs that are
activated). ATP appears to be released focally along the length
of the cochlea, and is degraded by ectonucleotidases, which
are expressed in the pre-hearing cochlea (O′Keeffe et al.
2010). As a result, each ATP release event is accompanied
by the activation of discrete groups of IHCs proximal to the
site of ATP release; such synchronous activity among IHCs,
and thus SGNs, could help establish tonotopic wiring in the
auditory pathway through Hebbian-like plasticity mechanisms
(Tritsch et al. 2007).

Despite this evidence that supporting cell dependent exci-
tation of IHCs is a primary driver for spontaneous activity in
the developing auditory system, there are a number of unre-
solved issues, as well as experimental observations that appear
to contradict this model. For example, it has been shown that
exogenous ATP can have excitatory (Tritsch et al. 2007),
inhibitory (Sendin et al. 2014), or dual effects (Johnson et al.
2011) on IHC firing, depending on the concentration and
method of application used. In addition, one study reported
that purinergic receptor inhibition increases the firing rate of
IHCs (Johnson et al. 2011). Moreover, the activity of IHCs
recorded in whole mount preparations from the early postnatal
cochlea varies from infrequent Ca2+ spikes and bursting be-
havior (Brandt et al. 2007; Tritsch and Bergles 2010) to steady
firing (Marcotti et al. 2003a; Sendin et al. 2014).

Although the reasons for these different observations have
not yet been determined, it is possible that they reflect differ-
ences in experimental conditions between different laborato-
ries. The organ of Corti is contained in a specialized environ-
ment in vivo, with one side exposed to endolymph containing
a high K+ concentration (157 mM) and the other side
surrounded by perilymph (6.0 mM K+ in perilymph of scala
vestibule and 4.2 mM K+ in scala tympani) (Wangemann and
Schacht 1996). Unfortunately, it is not possible to mimic such
a polarized environment in vitro. Moreover, the distinct ionic
compositions of endolymph and perilymph are not fully
established until the end of first postnatal week (Bosher and
Warren 1971; Anniko and Wroblewski 1986), a time when
there are many physiological changes occurring in the organ
of Corti. Although many laboratories perform experiments in
6 mM extracellular K+; it is unclear whether this K+ concen-
tration mimics the in vivo ionic environment. In addition, the
kinetics of Ca2+ spikes are affected by temperature and the
degree of intracellular Ca2+ buffering (Johnson et al. 2011).

While these conditions can be reasonably replicated by differ-
ent laboratories, it is more difficult to control for differences in
the state of the tissue after isolation. IHCs exhibit high resting
Ca2+ levels following tissue isolation (Wang and Bergles,
unpublished results) and reduced responsiveness to ATP.
Although resting IHC Ca2+ levels are lowered in preparations
cultured for as little as one day (Wang and Bergles, unpub-
lished results), exposure to culture media and isolation from
the CNS may induce other changes that cause it to diverge
from the in vivo state. Finally, MOC efferent axons are isolat-
ed from their cell bodies upon cochlear isolation, which pre-
vents an analysis of their physiological activity patterns and
extent of feedback from central auditory neurons. Thus, al-
though acutely isolated cochleae and cochlear slices preserve
complex intercellular relationships and offer greater experi-
mental access, they have significant limitations that prevent
ready extrapolation to in vivo conditions, necessitating con-
firmation of key findings in the intact nervous system.

Developmental changes in spontaneous activity

As described above, anatomical and physiological studies
indicate that the transduction pathway from IHCs to the brain
is established in early postnatal life in rodents; however, there
have been only a few in vivo studies to assess the develop-
mental time course of spontaneous activity in the cochlea or
auditory centers of the brain. Juxtacellular recordings from rat
MNTB neurons revealed that they fire isolated spikes at P0,
but the proportion of burst-firing neurons rapidly increases
with age, and constitutes over 91 % of all units by P4 (Tritsch
et al. 2010a). The principal neurons of MNTB are readily
excited by glutamatergic inputs at P0-P1 as a result of their
high input resistance (Rusu and Borst 2011), suggesting that
the lack of burst-firing at P0 is not because principal neurons
cannot respond to synaptic inputs, but because there is little
peripheral input at this age. Another in vivo study in rat also
showed that MNTB neurons exhibit bursting activity at P4,
which transitions to continuous firing after the middle of the
2nd postnatal week, reaching the adult pattern after hearing
onset (Crins et al. 2011). Similar observations have been
reported in mice, where MNTB neurons shift rapidly from
bursting activity at P8–P10 to a regular, non-bursting dis-
charge pattern at P11–12, just before the onset of hearing
(Sonntag et al. 2009). These results indicate that spontaneous
activity in pre-hearing rodents emerges postnatally, with a
distinct bursting pattern emerging before P4 that is maintained
until hearing onset.

A more extensive in vitro assessment of developmental
changes in the spontaneous firing of IHCs has been performed
primarily using cochlear tissue isolated from rodents.
Nevertheless, there remains a lack of consensus about the
changes in IHC activity patterns before hearing onset. Some
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studies have reported that IHCs spontaneously fire Ca2+

spikes only during the early postnatal period in mouse
(E17.5 to P6: Marcotti et al. 2003a; until P7: Brandt et al.
2007), but spontaneous IHC Ca2+ spikes have also been
observed in P7-8 mice (Seal et al. 2008). In contrast, sponta-
neous generation of Ca2+ spikes has been documented in the
rat cochlea from P3 until hearing onset (Brandt et al. 2007;
Tritsch and Bergles 2010), while other studies showed that
current injection is necessary to elicit Ca2+ spikes in IHCs of
P7-P11 rats (Glowatzki and Fuchs 2000; Goutman et al.
2005). It has also been reported that IHCs in the apical and
basal regions of cochlea exhibit different activities, with apical
IHCs firing Ca2+ spikes in bursts and basal IHCs firing con-
tinuously (P2–P5) (Johnson et al. 2011). In contrast, a recent
study found that both apical and basal IHCs exhibited burst-
firing behavior (P1–P9) (Sendin et al. 2014).

The stereotyped firing behavior produced in SGNs by IHC
Ca2+ spikes provides a template with which to evaluate in vivo
activity patterns in auditory centers of the brain. These data
suggest that from the end of the 1st postnatal week until
hearing onset, IHCs fire brief trains of Ca2+ spikes that lead
to bursts of action potentials in SGNs, which then propagate
through neurons in various auditory centers of the brain. The
patterns of activity that precede (developmentally) this burst
firing has been more difficult to establish — in vivo record-
ings from the MNTB in anesthetized rats showed limited
activity (Tritsch et al. 2010a), consistent with some in vitro
studies (Brandt et al. 2007; Tritsch and Bergles 2010), but
counter to other reports of robust spontaneous firing of IHCs
at this early developmental stage (Marcotti et al. 2003a;
Brandt et al. 2007; Johnson et al. 2011; Sendin et al. 2014).
In-vivo recordings from central auditory neurons in pre-
hearing rodents have consistently failed to detect high rates
of continuous firing such as that reported by these latter
studies, suggesting that such activity may be confined to the
cochlea at this age or that cochlear isolation in some cases
enhances the excitability of IHCs.

Functional roles of spontaneous activity in the auditory
system

Spontaneous activity in the developing nervous system is
thought to play an important role in the maturation of neural
circuits (Feller 1999; O’Donovan 1999); however, the partic-
ular contributions of this activity to different aspects of circuit
refinement, and the mechanisms through which it influences
these changes, are not well-understood. The most intensively
studied example of developmental spontaneous activity in-
volves coordinated activity of retinal ganglion cells (retinal
waves) that occurs before eye opening and its involvement in
retinotopic refinement in the lateral geniculate nucleus (LGN)
(Huberman et al. 2008). Cholinergic retinal waves are initially

induced by the spontaneous release of acetylcholine from a
subset of starburst amacrine cells (Feller et al. 1996). Mice
lacking the β2-subunit of the neuronal nicotinic acetylcholine
receptor (nAChR) do not exhibit cholinergic retinal waves
(Bansal et al. 2000; Muir-Robinson et al. 2002), while retinal
waves at other developmental stages are unaffected.
Application of the high-affinity cholinergic agonist
epibatidine also blocks cholinergic waves by desensitizing
nAChRs (Penn et al. 1998), and elimination of spontaneous
activity after intraocular injection of epibatidine has been
demonstrated in vivo (Ackman et al. 2012). Using both trans-
genic mouse models and pharmacological manipulations, it
has been shown that axons of retinal ganglion cells project to
correct retinotopic positions in the superior colliculus and
lateral geniculate nuclei when retinal waves have been
blocked or reduced, but form abnormally diffuse arborizations
(Grubb et al. 2003; McLaughlin et al. 2003; Pfeiffenberger
et al. 2006). Thus, sensory-independent activity within the
developing retina is necessary for establishing proper
retinotopic maps (Kirkby et al. 2013).

Although some nascent synaptic connections between au-
ditory nuclei are established embryonically (Hoffpauir et al.
2009), the auditory brainstem circuit experiences remarkable
structural and functional modifications during the first two
postnatal weeks, during which auditory neurons obtain their
adult morphology (Sanes et al. 1992; Sanes and Takacs 1993)
and electrical properties (Sanes 1993; Kandler and Friauf
1995a; Youssoufian et al. 2005; Lu et al. 2007). During this
time, synapses undergo morphological changes (Hoffpauir
et al. 2006; Youssoufian et al. 2008; Ford et al. 2009), they
are strengthened or eliminated (Sanes 1993; Kotak and Sanes
1995; Taschenberger and von Gersdorff 2000; Brenowitz and
Trussell 2001; Iwasaki and Takahashi 2001; Kim and Kandler
2003; Awatramani et al. 2005; Youssoufian et al. 2005;
Hoffpauir et al. 2006; Lu et al. 2007), and undergo spatial
refinement to achieve precise tonotopic connections (Sanes
et al. 1992; Sanes and Takacs 1993; Gabriele et al. 2000a;
Leake et al. 2002; Kim and Kandler 2003). Throughout this
time of synaptic refinement, spontaneous bursts of activity
propagate through auditory brainstem circuits, raising the
possibility that correlated activity among inputs could help
achieve tonotopic segregation (Friauf and Lohmann 1999;
Rubel and Fri tzsch 2002; Kandler et al . 2009).
Unfortunately, little is known about the roles of this activity,
in part because of our limited understanding of the cellular and
molecular mechanisms that initiate this activity in the cochlea
— knowledge that is required to perform targeted disruption
of activity patterns in vivo, similarly to what has been
achieved in the visual system. Previous studies addressed the
role of spontaneous activity by neonatally deafening animals
through cochlear ablation, by injecting ototoxic drugs, or by
using transgenic or naturally-occurring animal models of
deafness. Unfortunately, these approaches do more than
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simply block burst firing in the cochlea. For example, cochlear
ablation and delivery of ototoxic drugs induce degeneration of
afferent fibers, depriving neurons in cochlear nuclei of not
only electrical input but also crucial trophic support. Also, the
level of spontaneous activity during the pre-hearing period has
not been examined in vivo in many deafness models, which
may not be completely absent (Youssoufian et al. 2008).
Furthermore, many studies have delayed their analysis of the
consequences of deafferentation until after hearing on-
set, making it difficult to discriminate changes resulting
from the lack of spontaneous activity from those that
occur from the loss of sound-evoked activity. Moreover,
the mutations that cause deafness in these models may
also affect cells in the brainstem (Schug et al. 2006;
Noh et al. 2010; Hirtz et al. 2011), and the consequences of
deafness can vary between mutations and mouse strains
(Kandler et al. 2009). Despite these limitations, these
pioneering studies have revealed some possible functions of
pre-hearing spontaneous activity.

The most consistent observation is that depriving SGNs of
excitatory input, through either cochlear removal, IHC degen-
eration, or through use of genetic models that exhibit impaired
Ca2+-dependent glutamate release from IHCs, leads to apo-
ptotic degeneration of SGNs and neurons in the ventral co-
chlear nuclei (Hashisaki and Rubel 1989; Mostafapour et al.
2000; Glueckert et al. 2003; Harris and Rubel 2006; Seal et al.
2008; Hirtz et al. 2011). In the CNS, more severe neuronal
loss was observed when cochlear input was eliminated during
the pre-hearing period, while no degeneration was observed
when the cochlea was ablated after the onset of hearing
(Hashisaki and Rubel 1989; Tierney et al. 1997; Mostafapour
et al. 2000), suggesting that there is a critical period of devel-
opment, prior to sensory experience, when afferent activity
from IHCs supports neuronal survival.

Spontaneous activity that occurs during this time may
also influence the physiological properties of central audi-
tory neurons. Cochlear removal before hearing onset impairs
the developmental decrease of intracellular Cl− in auditory
neurons, possibly through changes in the expression of K+-
Cl− co-transporter KCC2 (Shibata et al. 2004). This aberrant
Cl− homeostasis prevents the shift of GABA/glycinergic
responses from depolarizing to hyperpolarizing, and disrupts
inhibition of neurons in lateral superior olive (LSO) and IC
(Kotak and Sanes 1996; Vale and Sanes 2000, 2002; Vale
et al. 2003). Moreover, principal neurons of the MNTB in
congenitally deaf dn/dn mouse show enhanced excitability
and non-synchronized firing in response to synaptic inputs
(Leao et al. 2004a, 2005, 2006a), and lose their gradient in
expression of ion channels along the tonotopic axis (Leao
et al. 2006b). The firing properties and channel expression
of LSO neurons also are altered in congenitally deaf mouse
lines (Couchman et al. 2011; Hirtz et al. 2011), providing
further indication that lack of peripheral excitatory drive

disrupts the physiological maturation of central auditory
neurons.

Spontaneous activity during development has also been
shown to promote the functional elimination of synapses in
brainstem auditory neurons, as well as their maturation. In
particular, synaptic strength is enhanced at synapses between
auditory nerves and bushy cells, the endbulbs of Held, in the
congenitally deaf dn/dn mouse (Oleskevich and Walmsley
2002; Oleskevich et al. 2004; McKay and Oleskevich 2007).
Moreover, the fenestration of calyceal synapses between
bushy cells and MNTB principal cells (the calyx of Held) is
disrupted in neonatal deafened gerbils and dn/dn mice
(Youssoufian et al. 2008; Ford et al. 2009), but effects on
synaptic strength have not been consistently observed
(Oleskevich et al. 2004; Youssoufian et al. 2005; Erazo-
Fischer et al. 2007). Abnormalities have also been document-
ed in other synapses within the anteroventral cochlear nucleus,
MNTB and LSO (Leao et al. 2004b; Lu et al. 2007; Cao et al.
2008; Clause et al. 2014), indicating that removal of afferent
input results in widespread changes in the innervation of
auditory neurons.

There is accumulating evidence that spontaneous activity
during the pre-hearing period also helps to establish appropri-
ate connections in the auditory pathway. Cochlear ablation in
neonatal gerbils leads to ectopic projections from the cochlear
nucleus to superior olive and IC (Moore and Kitzes 1985;
Kitzes et al. 1995; Russell and Moore 1995). De-afferentation
in older animals did not cause abnormal projections, indicat-
ing that this effect is similarly specific for pre-hearing spon-
taneous activity (Russell and Moore 1995). Moreover, the
formation and maintenance of the tonotopically arranged af-
ferent innervation patterns from the dorsal nucleus of lateral
lemniscus to the IC is disrupted after deafening rats at an early
postnatal age (Gabriele et al. 2000b; Franklin et al. 2006,
2008). In addition to these gross disruptions in neuronal
projections, several studies have focused on the role of
spontaneous activity in the formation and refinement of
precise tonotopic maps in the auditory brainstem.
Unexpectedly, the tonotopic organizations of brainstem au-
ditory pathways in several congenitally deaf mouse lines
appear normal (jerker: Cao et al. 2008; dn/dn: Youssoufian
et al. 2008; Vglut3−/−: Noh et al. 2010). However, in neo-
natally deafened gerbil (Sanes and Takacs 1993) and cat
(Leake et al. 2006), the axons of brainstem auditory neurons
have more branches and broader arbors, resulting in less
precise tonotopic organization. Afferent deprivation also
causes degeneration of auditory neurons, so it is possible
that these aberrant or broader projections might result from
axonal sprouting secondary to neuronal loss, rather than the
absence of spontaneous activity. Most recently, mice lacking
cholinergic inhibition of IHCs exhibited axonal pruning and
tonotopic refinement deficits (Clause et al. 2014); these
animals exhibited different burst firing patterns, raising the
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possibility that the precise temporal structure of activity
within bursts, or the timing and duration of bursts, influence
the segregation of inputs in auditory nuclei according to their
ultimate frequency response.

While most studies have focused on the central auditory
pathway, spontaneous activity might also participate in the de-
velopment of cochlea itself. In particular, it has been shown that
the frequency and duration of Ca2+ spikes in IHCs is important
for the maturation of Ca2+ efficiency of vesicle fusion at ribbon
synapses (Johnson et al. 2013). And while this review has
focused on spontaneous electrical activity, there may be many
other forms of spontaneous activity, for example, driven by
growth factor release, that affect the maturation of different cell
types in the cochlea, which has downstream consequences for
development of auditory circuits in the brain.

Conclusions

The auditory system establishes initial connections during
early development, and is capable of conveying signals from
the periphery to central neurons several weeks before normal
hearing thresholds are established. During this postnatal, pre-
hearing period in rodents, IHCs undergo periodic depolariza-
tions, triggering bursts of Ca2+ spikes that reliably induce
glutamate release onto SGNs. These events induce highly
stereotyped bursts of action potentials in SGNs that are trans-
mitted to auditory circuits of the brain, where it may promote
neuronal survival, induce their physiological maturation, and
refine their connections to establish tonotopically segregated
pathways. However, in spite of extensive in vivo and in vitro
studies over the past several decades, the roles of spontaneous
activity in auditory development remain largely speculative.
This lack of understanding is mainly due to our limited
knowledge about the molecular mechanisms that initiate this
activity in the cochlea and the lack of genetic tools to specif-
ically manipulate this activity in vivo. The cochlear explant
preparation has proven to be a powerful in vitro system to
reveal the potential molecular targets involved in generating
spontaneous activity, but a consensus about the precise se-
quence of events responsible for IHC activation during the
pre-hearing period has not yet emerged. Two models have
been proposed to explain the periodic excitation of IHCs
necessary to trigger burst activity in SGNs— one that requires
periodic inhibition of spontaneously active IHCs, and another
which requires periodic excitation of otherwise silent IHCs.
Genetic manipulation of distinct pathways accompanied by in
vivo assessment of auditory neuron activity patterns will be
required to establish which model is correct. Previous studies
have revealed that removing activity entirely during this peri-
od leads to degeneration of afferent fibers, loss of trophic
support, and apoptotic death of peripheral and central auditory
neurons. Thus, an ideal manipulation to assess the role of

spontaneous activity in the development of brain auditory
circuits should selectively disrupt spontaneous activity, but
preserve sound-evoked activity after hearing onset. A greater
understanding of the mechanisms responsible for generating
this activity and its effects on nervous system development
may have broad implications for the development of other
sensory systems, provide new strategies to restore auditory
function after acoustic trauma, and facilitate integration of
cochlear implants in hearing impaired patients.
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