
BRIEF NOTES 

Optimum Linear Taper ing in 
the Design of Columns 

B. Dinkoff,1 M. Levine,1 and R. Luus2 

Optimum linear tapering of a simply supported solid column enables 
a saving of 10.4 percent of material, as compared to a nontapered 
column. 

I n t r o d u c t i o n 
We consider the problem of determining the shape of the strongest 

elastic axially loaded column with simply supported ends. The opti­
mum theoretical shape was obtained by Keller [1] using variational 
methods and by Taylor [2] using a potential energy approach. 

The optimum shape enables a reduction of 13.4 percent in material 
requirement, but such a column has zero cross-sectional area at the 
ends. To avoid such a problem, a minimum cross-sectional area con­
straint was incorporated by Liu [3], Frauenthal [4], and by Foley and 
Citron [5]. The problem of infinite stress does not arise if the column 
is clamped as was shown by Tadjbakhsh and Keller [6] and more re­
cently by Olhoff and Rasmussen [7]. Also, if interior supports are used, 
Olhoff and Taylor [8] showed that the optimal column has finite 
cross-sectional area throughout. 

The aim of this Note is to simplify the formulation and solution of 
the simply supported column optimization problem by imposing a 
linear tapering constraint. We shall show that such suboptimal design 
gives material savings close to the optimum and the problem of infi­
nite stresses does not arise. 

D e s i g n of L i n e a r l y T a p e r e d Co lumns 
Consider a simply supported solid column tapered linearly from 

the center. Since the weight of the column is neglected, the largest 
cross-sectional area occurs at the middle of the column to provide the 
highest moment of inertia for resisting buckling. Given the applied 
axial load P, the length of the column L, the Young's modulus E, and 
the shape of the cross section, the problem is to determine the opti­
mum linear tapering of the column so that the total volume of material 
is minimized and so that the column can withstand the applied load 
without buckling. 

If we let xo be the axial distance from an arbitrary reference point 
to one end of the column, and b be the distance to the middle, the total 
volume of the column is 

V= 2co f [W(x)]2dx 
Jxo 

(1) 

where w is the dimensionless area of the cross section chosen. For 
circular cross section co = 7r/4, for a square cross section w = 1, and for 
an equilaterial triangle, co = \f3lA. W(x) is the cross-sectional di­
mension, or width, of the column. Since linear tapering constraint is 
imposed, the width as a function of the axial distance x is 

W(x) = ax, x'o :£ x < b (2) 

Let us denote the dimension of the column at its middle by Wi, so that 
integration of equation (1) yields 

V=uL W1
2--LW1a + — L2a2 

2 12 
(3) 

The nonbuckling constraint can be formulated by considering the 
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axial deflection y of the slender column on the verge of buckling as 
given by 

d2y 
EI(x)-/- + Py = Q 

dx1 (4) 

and the boundary conditions 

y = 0 at x = XQ 

dy 

dx 
0 at x = b 

where the moment of inertia is given by 

I(x) = &W(x)Y 

(5) 

(6) 

The dimensionless moment of inertia £ is introduced to enable dif­
ferent cross-sectional shapes to be used, once the results are obtained 
for the general case. For circular cross section £ = TT/64, for square 
cross section £ = Vi2» and for an equilateral triangle, £ = v^/96. 

Substitution of equations (2) and (6) into equation (4) yields 

(7) 

where 

If we let 

equation (9) can 

d2y 
x4—-+a2y = 0 

dx2 

*2 = ^ -
E £ a 4 

x = 1/0 

be converted into the Bessel equation 

d2y 2dv 
—-H h a'-y = 0 
dd2 ddd 

With the further substitution 

z = y6 

(8) 

(9) 

(10) 

(11) 

equation (10) becomes a linear differential equation with constant 
coefficients 

d2z 

dd2 - + a2z = 0 (12) 

which is readily solved with the boundary conditions of equation (5) 
to give 

tan a a 

b x0. 
0 

tan 
k 

Wia aWi 

where 

This is equivalent to 

k 
<t>(a,Wi) •• 

k = 

k 

IP 

££ 

a\W\ a 

- + 7r — tan" 

(13) 

(14) 

(15) 

(16) 

which is more convenient than equation (14) since t a n - 1 function is 
bounded. The term is included to insure the correct region for the 
periodic t a n - 1 function in the range of realistic values for a and W\. 
Equation (16) provides the necessary constraint for a and W\ at the 
verge of buckling of the column. 
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Table 1 The optimal dimensions of a linearly tapered column for a variety of given parameters 

P, kN 

10 

35 

50 

75 

90 

120 

GIVEN 

L, ra 

2.5 

3 

4 

5 

5 

7 

PARAMETERS 

E, GPa 

10 

25 

30 

120 

70 

40 

U) 

1.0 

1.0 

7574 

J3/4 

IT/4 

Tt/4 

K 

1 * 
12 

1 
12 

/T ** 
96 

96 

64" 

n 
64 

a 

0.02092 

0.02078 

0.02755 

0.01928 

0.01798 

0.01878 

OPTIMAL 

W , m 
0 

0.03606 

0.04297 

0.07598 

0.06647 

0.06198 

0.09064 

DIMENSIONS 

W j , m 

0.06221 

0.07413 

0.1311 

0.1147 

0.1069 

0.1564 

V, m 3 

0.006178 

0.01053 

0.01900 

0.01818 

0.02868 

0.08585 

ah 
w, 

0.8408 

0.8408 

0.8408 

0.8408 

0.8408 

0.8408 

V 
V 
n 

0.8965 

0.8965 

0.8965 

0.8965 

0.8965 

0.8965 

* corresponds to square cross-section 

** corresponds to equi la teral triangular cross-section 

*** corresponds to circular cross-section 

Minimization of Volume Subject to Buckling 
Constraint 

Minimization of the volume, V, given by equation (3) subject to the 
buckling constraint specified by (16) is equivalent to the minimization 
of the augmented performance index 

J = V+U(a, Wy (17) 

where the buckling constraint in equation (16) is appended by the 
Lagrange multiplier X. The necessary conditions for minimum of J 
are the stationary conditions 

da ~ 

dJ 

0 

:0 

(18) 

We are thus led to find the variables a, Wi, and X such that equations 
(16) and (18) are satisfied. This set of nonlinear equations can be 
solved numerically in a straightforward manner by Newton's method 
where the initial values are chosen at random as suggested by Luus 
and Jaakola [9]. The minimization was performed for various different 
values of P, L, E, and shape of cross section. In each case convergence 
was very rapid, yielding 0.001 percent accuracy within 10 itera­
tions. 

For the various combinations of P, L. E, and cross section used, two 
relationships were established from the optimization runs, some of 
which are reported in Table 1, namely, 

aL_ 
- = 0.8408 

and 

V„ 
= 0.8965 

(19) 

(20) 

where Vn is the minimum volume of material required in the equiv­
alent nontapered solid column to withstand the load without buck­
ling, 

v»-^vf^ (21) 

From equation (20) it is seen that the percent saving of material 
through optimum linear tapering is 10.4 percent as compared to the 

corresponding nontapered column. It is interesting to note that the 
material saving for an optimally tapered column is independent of 
P, L, E, and cross-section shape. 

Since 

ah 
— = Wi - Wo 
2 

(22) 

it follows from equation (19) that with optimum linear tapering 

W0 

Wt 

•• 0 . 5 7 9 6 (23) 

Thus the cross-sectional dimension at the ends of the column is about 
one-half the corresponding distance in the middle of the column, and 
infinite stress concentrations do not occur. The optimum distance at 
the center is 

W1 = 1.1849 
t/lPL* 

V £TT2/3 
(24) 

so the shape of the optimal linearly tapered column is immediately 
obtained. The column is easy to construct and a 10.4 percent material 
saving can be realized. This saving is reasonably close to the 13.4 
percent saving determined for the optimum theoretical column 
shape. 

Discussion and Conclusions 
The optimal linearly tapered column is compared to the theoretical 

optimum column shape and other suboptimal designs in Fig. 1. The 
design based on Frauenthal's formulation leads to a material saving 
of 11.8 percent. For direct comparison, the maximum stress was 
specified to be the same as that encountered at the ends of the opti­
mally linearly tapered column and the method of Luus and Jaakola 
[10] was used for optimization. It is noted that at 0.0675 L from either 
end a pronounced change in the shape of the column occurs. 

It is interesting to note that with optimal linear tapering the ratio 
WVWi is constant for all P, L, E, and cross-section type. 
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T ) = I 0 7 4 6 W -T-= 1-0714W 

ijfc 
REFERENCE 

UNIFORM COLUMN 
0 % SAVING 

THEORETICAL 
OPTIMUM 

1 3 4 % SAVING 

MAXIMUM 
STRESS CONSTRAINED 

11-8% SAVING . 

OPTIMUM 
LINEAR TAPERING 

10-4 % SAVING 

Fig. 1 Comparison of theoretical optimum column shape to various subop-
timai designs. 
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Resonance Method for 
Identifying Fluids Filling 
Cavities in Elastic Solids 

G. Gaunaurd1 and H. Uberall1-2 

In troduct ion 
When compressional waves traveling through elastic (possibly 

sound-absorbing) solids are incident on a fluid-filled spherical cavity 
in the medium, a compressional and a shear wave are scattered from 
it. We have studied [1] the backscattering amplitudes of the returned 
waves in the light of a new theory of viscoelastic wave-scattering. The 
initial success of this theory rests on the fact that the partial-wave 
contributions making up the obstacle's cross section can be split into 
two interfering parts. This decomposition already provides much 
physical insight into the scattering mechanism taking place around 
the cavity. These contributions are the smooth ("potential") back­
grounds associated with echoes from an evacuated cavity, and the 
interacting discrete resonances of the filler. The scattering amplitudes 
of the returned compressional and shear waves were shown, respec­
tively, to have the same resonances. This observation simply means 
that since the resonances are a (characterizing) property of the filler, 
they are equally communicated by the obstacle to both types of 
scattered waves, but with different strengths. Further success of this 
theory is based on the frequency and mode-order interpretation of 
the isolated resonances in terms of creeping waves circumnavigating 
the cavity [2]. This provides additional physical interpretation of the 
scattering process in terms of related observable surface-wave phe­
nomena, as well as insight into properties of the S-matrix and its as-
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sociated ("Regge") poles. In the foregoing, the modal resonances (i.e., 
fundamental / = 1, and overtones I = 2, 3 , . . . , for each mode n) are 
found by subtracting suitable background from the composite modal 
contributions, and then displaying the so modified respective scat­
tering amplitudes versus either wavesize ka, or mode order n. The 
resulting resonance "lines" have widths and the concept of line width 
is as useful here as its analogue was originally in optical spectroscopy. 
Once the modal resonances have been (computationally) isolated we 
will show how one can quickly find from their location, widths, and 
spacings, the complete material characterization of the filler as if we 
were looking at its signature. This is the central idea of the present 
paper. We will specifically show that the locations and spacings of all 
the resonances of any given mode determines the filler/matrix wa-
vespeed ratio, while the widths Yni of any of the I resonances of any 
mode and their spacing, will furnish the filler/matrix density ratio. 
If the matrix properties are known, the aforementioned ratio deter­
mination fixes the filler properties and vice versa. The filler is assumed 
fluid for simplicity and in order for our earlier work [1, 2] to apply 
directly without modifications. The fluid-filler is completely identified 
once its density and sound speed are determined by our simple as­
ymptotic process. 

Theory 
(a) Determination of the Filler/Matrix Sound Speed Ratio. 

We found [1, equation 16] that the complex eigenfrequencies of the 
filler-fluid were given by the zeros of a 3 X 3 determinant denoted Dn 

and whose complex elements dy- were all given before [1]. The real 
resonance frequencies are the real parts of these eigenfrequencies. 
The physical situation of a fluid-filled cavity in a metal, allows us to 
reduce the eigenfrequency condition Dn = 0 to the simpler form rfi3 

= 0. The McMahon [3] expansion for the roots of this equation is 

(kfa) 
n 1 

+ 1 7T -
2 2/ 

(In + l ) 2 + 7 II » 1 

i, n 1 
8TT / + 

2 2, 

n, fixed/ 
(1) 

where kj = cu/cf, Cf = sound speed in the filler-fluid and o> = circular 
frequency of the incident compressional wave. In terms of kdd=x (kd 
= co/cd), Cd = dilatational speed in the elastic matrix, and a = cavity 
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