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An important problem exists in the interpretation of mod-
ern medical research data: Biological understanding and
previous research play little formal role in the interpreta-
tion of quantitative results. This phenomenon is manifest
in the discussion sections of research articles and ulti-
mately can affect the reliability of conclusions. The stan-
dard statistical approach has created this situation by pro-
moting the illusion that conclusions can be produced with
certain “error rates,” without consideration of informa-
tion from outside the experiment. This statistical ap-
proach, the key components of which are P values and
hypothesis tests, is widely perceived as a mathematically
coherent approach to inference. There is little apprecia-
tion in the medical community that the methodology is an
amalgam of incompatible elements, whose utility for sci-
entific inference has been the subject of intense debate
among statisticians for almost 70 years. This article intro-
duces some of the key elements of that debate and traces
the appeal and adverse impact of this methodology to the
P value fallacy, the mistaken idea that a single number can
capture both the long-run outcomes of an experiment and
the evidential meaning of a single result. This argument is
made as a prelude to the suggestion that another measure
of evidence should be used—the Bayes factor, which prop-
erly separates issues of long-run behavior from evidential
strength and allows the integration of background knowl-
edge with statistical findings.
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The past decade has seen the rise of evidence-
based medicine, a movement that has focused

attention on the importance of using clinical studies
for empirical demonstration of the efficacy of med-
ical interventions. Increasingly, physicians are being
called on to assess such studies to help them make
clinical decisions and understand the rationale be-
hind recommended practices. This type of assess-
ment requires an understanding of research methods
that until recently was not expected of physicians.

These research methods include statistical tech-
niques used to assist in drawing conclusions. How-
ever, the methods of statistical inference in current
use are not “evidence-based” and thus have contrib-
uted to a widespread misperception. The mispercep-
tion is that absent any consideration of biological
plausibility and prior evidence, statistical methods
can provide a number that by itself reflects a prob-
ability of reaching erroneous conclusions. This be-
lief has damaged the quality of scientific reasoning
and discourse, primarily by making it difficult to
understand how the strength of the evidence in a
particular study can be related to and combined
with the strength of other evidence (from other
laboratory or clinical studies, scientific reasoning, or
clinical experience). This results in many knowledge
claims that do not stand the test of time (1, 2).

A pair of articles in this issue examines this prob-
lem in some depth and proposes a partial solution.
In this article, I explore the historical and logical
foundations of the dominant school of medical sta-
tistics, sometimes referred to as frequentist statistics,
which might be described as error-based. I explicate
the logical fallacy at the heart of this system and the
reason that it maintains such a tenacious hold on
the minds of investigators, policymakers, and jour-
nal editors. In the second article (3), I present an
evidence-based approach derived from Bayesian sta-
tistical methods, an alternative perspective that has
been one of the most active areas of biostatistical
development during the past 20 years. Bayesian
methods have started to make inroads into medical
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journals; Annals, for example, has included a section
on Bayesian data interpretation in its Information
for Authors section since 1 July 1997.

The perspective on Bayesian methods offered
here will differ somewhat from that in previous pre-
sentations in other medical journals. It will focus
not on the controversial use of these methods in
measuring “belief” but rather on how they measure
the weight of quantitative evidence. We will see how
reporting an index called the Bayes factor (which in
its simplest form is also called a likelihood ratio)
instead of the P value can facilitate the integration
of statistical summaries and biological knowledge
and lead to a better understanding of the role of
scientific judgment in the interpretation of medical
research.

An Example of the Problem

A recent randomized, controlled trial of hydro-
cortisone treatment for the chronic fatigue syn-
drome showed a treatment effect that neared the
threshold for statistical significance, P 5 0.06 (4).
The discussion section began, “. . . hydrocortisone
treatment was associated with an improvement in
symptoms . . . This is the first such study . . . to dem-
onstrate improvement with a drug treatment of [the
chronic fatigue syndrome]” (4).

What is remarkable about this paper is how un-
remarkable it is. It is typical of many medical re-
search reports in that a conclusion based on the
findings is stated at the beginning of the discussion.

Later in the discussion, such issues as biological
mechanism, effect magnitude, and supporting stud-
ies are presented. But a conclusion is stated before
the actual discussion, as though it is derived directly
from the results, a mere linguistic transformation of
P 5 0.06. This is a natural consequence of a statis-
tical method that has almost eliminated our ability
to distinguish between statistical results and scien-
tific conclusions. We will see how this is a natural
outgrowth of the “P value fallacy.”

Philosophical Preliminaries

To begin our exploration of the P value fallacy,
we must consider the basic elements of reasoning.
The process that we use to link underlying knowl-
edge to the observed world is called inferential rea-
soning, of which there are two logical types: deduc-
tive inference and inductive inference. In deductive
inference, we start with a given hypothesis (a state-
ment about how nature works) and predict what we
should see if that hypothesis were true. Deduction is
objective in the sense that the predictions about
what we will see are always true if the hypotheses
are true. Its problem is that we cannot use it to
expand our knowledge beyond what is in the hy-
potheses.

Inductive inference goes in the reverse direction:
On the basis of what we see, we evaluate what
hypothesis is most tenable. The concept of evidence
is inductive; it is a measure that reflects back from
observations to an underlying truth. The advantage
of inductive reasoning is that our conclusions about
unobserved states of nature are broader than the
observations on which they are based; that is, we
use this reasoning to generate new hypotheses and
to learn new things. Its drawback is that we cannot
be sure that what we conclude about nature is ac-
tually true, a conundrum known as the problem of
induction (5–7).

From their clinical experience, physicians are
acutely aware of the subtle but critical difference
between these two perspectives. Enumerating the
frequency of symptoms (observations) given the
known presence of a disease (hypothesis) is a
deductive process and can be done by a medical
student with a good medical textbook (Figure 1,
top). Much harder is the inductive art of differential
diagnosis: specifying the likelihood of different dis-
eases on the basis of a patient’s signs, symptoms,
and laboratory results. The deductions are more
certain and “objective” but less useful than the in-
ductions.

The identical issue arises in statistics. Under the
assumption that two treatments are the same (that
is, the hypothesis of no difference in efficacy is
true), it is easy to calculate deductively the fre-

Figure 1. The parallels between the processes of induction and
deduction in medical inference (top) and statistical inference (bot-
tom). D 5 treatment difference.
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quency of all possible outcomes that we could ob-
serve in a study (Figure 1, bottom). But once we
observe a particular outcome, as in the result of a
clinical trial, it is not easy to answer the more
important inductive question, “How likely is it that
the treatments are equivalent?”

In this century, philosophers have grappled with
the problem of induction and have tried to solve or
evade it in several ways. Karl Popper (8) proposed
a philosophy of scientific practice that eliminated
formal induction completely and used only the de-
ductive elements of science: the prediction and fal-
sification components. Rudolf Carnap tried an op-
posite strategy—to make the inductive component
as logically secure as the deductive part (9, 10).
Both were unsuccessful in producing workable mod-
els for how science could be conducted, and their
failures showed that there is no methodologic solu-
tion to the problem of fallible scientific knowledge.

Determining which underlying truth is most likely
on the basis of the data is a problem in inverse
probability, or inductive inference, that was solved
quantitatively more than 200 years ago by the Rev-
erend Thomas Bayes. He withheld his discovery,
now known as Bayes theorem; it was not divulged
until 1762, 20 years after his death (11). Figure 2
shows Bayes theorem in words.

As a mathematical equation, Bayes theorem is
not controversial; it serves as the foundation for
analyzing games of chance and medical screening
tests. However, as a model for how we should think
scientifically, it is criticized because it requires assign-
ing a prior probability to the truth of an idea, a
number whose objective scientific meaning is un-
clear (7, 10, 12). It is speculated that this may be
why Reverend Bayes chose the more dire of the
“publish or perish” options. It is also the reason
why this approach has been tarred with the “sub-
jective” label and has not generally been used by
medical researchers.

Conventional (Frequentist)
Statistical Inference

Because of the subjectivity of the prior probabil-
ities used in Bayes theorem, scientists in the 1920s
and 1930s tried to develop alternative approaches to

statistical inference that used only deductive proba-
bilities, calculated with mathematical formulas that
described (under certain assumptions) the frequency
of all possible experimental outcomes if an experi-
ment were repeated many times (10). Methods based
on this “frequentist” view of probability included an
index to measure the strength of evidence called the
P value, proposed by R.A. Fisher in the 1920s (13),
and a method for choosing between hypotheses,
called a hypothesis test, developed in the early 1930s
by the mathematical statisticians Jerzy Neyman and
Egon Pearson (14). These two methods were incom-
patible but have become so intertwined that they are
mistakenly regarded as part of a single, coherent ap-
proach to statistical inference (6, 15, 16).

The P Value

The P value is defined as the probability, under
the assumption of no effect or no difference (the
null hypothesis), of obtaining a result equal to or
more extreme than what was actually observed (Fig-
ure 3). Fisher proposed it as an informal index to
be used as a measure of discrepancy between the
data and the null hypothesis. It was not part of a
formal inferential method. Fisher suggested that it
be used as part of the fluid, non-quantifiable pro-
cess of drawing conclusions from observations, a
process that included combining the P value in
some unspecified way with background information
(17).

It is worth noting one widely prevalent and par-
ticularly unfortunate misinterpretation of the P
value (18–21). Most researchers and readers think
that a P value of 0.05 means that the null hypothesis
has a probability of only 5%. In my experience
teaching many academic physicians, when physi-Figure 2. Bayes theorem, in words.

Figure 3. The bell-shaped curve represents the probability of every
possible outcome under the null hypothesis. Both a (the type I error
rate) and the P value are “tail areas” under this curve. The tail area for a is
set before the experiment, and a result can fall anywhere within it. The P
value tail area is known only after a result is observed, and, by definition, the
result will always lie on the border of that area.
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cians are presented with a single-sentence summary
of a study that produced a surprising result with
P 5 0.05, the overwhelming majority will confidently
state that there is a 95% or greater chance that the
null hypothesis is incorrect. This is an understand-
able but categorically wrong interpretation because
the P value is calculated on the assumption that the
null hypothesis is true. It cannot, therefore, be a
direct measure of the probability that the null hy-
pothesis is false. This logical error reinforces the
mistaken notion that the data alone can tell us the
probability that a hypothesis is true. Innumerable
authors have tried to correct this misunderstanding
(18, 20). Diamond and Forrester (19) reanalyzed
several large clinical trials, and Brophy and Joseph
(22) revisited the GUSTO (Global Use of Strep-
tokinase and tPA for Occluded Coronary Arteries)
trial to show that the final probability of no effect,
which can be calculated only with Bayesian meth-
ods, can differ greatly from the P value. However,
serious as that issue is, this article will focus on the
subtler and more vexing problems created by using
the P value as it was originally intended: as a mea-
sure of inductive evidence.

When it was proposed, some scientists and stat-
isticians attacked the logical basis and practical util-
ity of Fisher’s P value (23, 24). Perhaps the most
powerful criticism was that it was a measure of
evidence that did not take into account the size of
the observed effect. A small effect in a study with
large sample size can have the same P value as a
large effect in a small study. This criticism is the
foundation for today’s emphasis on confidence in-
tervals rather than P values (25–28). Ironically, the
P value was effectively immortalized by a method
designed to supplant it: the hypothesis testing ap-
proach of Neyman and Pearson.

Hypothesis Tests

Neyman and Pearson saw Fisher’s P value as an
incomplete answer to the problem of developing an
inferential method without Bayes theorem. In their
hypothesis test, one poses two hypotheses about na-
ture: a null hypothesis (usually a statement that
there is a null effect) and an alternative hypothesis,
which is usually the opposite of the null hypothesis
(for example, that there is a nonzero effect). The
outcome of a hypothesis test was to be a behavior,
not an inference: to reject one hypothesis and ac-
cept the other, solely on the basis of the data. This
puts the researcher at risk for two types of errors—
behaving as though two therapies differ when they
are actually the same (also known as a false-positive
result, a type I error, or an a error [Figure 3]) or
concluding that they are the same when in fact they
differ (also known as a false-negative result, a type II
error, or a b error).

This approach has the appeal that if we assume
an underlying truth, the chances of these errors can
be calculated with mathematical formulas, deduc-
tively and therefore “objectively.” Elements of judg-
ment were intended to be used in the hypothesis test:
for example, the choice of false-negative and false-
positive error rates on the basis of the relative seri-
ousness of the two types of error (12, 14, 29). Today,
these judgments have unfortunately disappeared.

The hypothesis test represented a dramatic change
from previous methods in that it was a procedure
that essentially dictated the actions of the re-
searcher. Mathematically and conceptually, it was
an enormous step forward, but as a model for sci-
entific practice, it was problematic. In particular, it
did not include a measure of evidence; no number
reflected back from the data to the underlying hy-
potheses. The reason for this omission was that any
inductive element would inevitably lead back to
Bayes theorem, which Neyman and Pearson were
trying to avoid. Therefore, they proposed another
goal of science: not to reason inductively in single
experiments but to use deductive methods to limit
the number of mistakes made over many different
experiments. In their words (14),

no test based upon a theory of probability can by itself
provide any valuable evidence of the truth or false-
hood of a hypothesis.

But we may look at the purpose of tests from another
viewpoint. Without hoping to know whether each sep-
arate hypothesis is true or false, we may search for
rules to govern our behaviour with regard to them, in
following which we insure that, in the long run of
experience, we shall not often be wrong.

It is hard to overstate the importance of this
passage. In it, Neyman and Pearson outline the
price that must be paid to enjoy the purported
benefits of objectivity: We must abandon our ability
to measure evidence, or judge truth, in an individual
experiment. In practice, this meant reporting only
whether or not the results were statistically signifi-
cant and acting in accordance with that verdict.
Many might regard this as profoundly nonscientific,
yet this procedure is often held up as a paradigm of
the scientific method.

Hypothesis tests are equivalent to a system of
justice that is not concerned with which individual
defendant is found guilty or innocent (that is,
“whether each separate hypothesis is true or false”)
but tries instead to control the overall number of
incorrect verdicts (that is, “in the long run of expe-
rience, we shall not often be wrong”). Controlling
mistakes in the long run is a laudable goal, but just
as our sense of justice demands that individual per-
sons be correctly judged, scientific intuition says that
we should try to draw the proper conclusions from
individual studies.
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The hypothesis test approach offered scientists a
Faustian bargain—a seemingly automatic way to
limit the number of mistaken conclusions in the
long run, but only by abandoning the ability to
measure evidence and assess truth from a single
experiment. It is doubtful that hypothesis tests
would have achieved their current degree of accep-
tance if something had not been added that let
scientists mistakenly think they could avoid that
trade-off. That something turned out to be Fisher’s
“P value,” much to the dismay of Fisher, Neyman,
Pearson, and many experts on statistical inference
who followed.

The P Value “Solution”

How did the P value seem to solve an insoluble
problem? It did so in part by appearing to be a
measure of evidence in a single experiment that did
not violate the long-run logic of the hypothesis test.
Figure 3 shows how similar the P value and the a
value (the false-positive error rate) appear. Both are
tail-area probabilities under the null hypothesis. The
tail area corresponding to the false-positive error
rate (a) of the hypothesis test is fixed before the
experiment begins (almost always at 0.05), whereas
the P value tail area starts from a point determined
by the data. Their superficial similarity makes it
easy to conclude that the P value is a special kind of
false-positive error rate, specific to the data in hand.
In addition, using Fisher’s logic that the P value
measured how severely the null hypothesis was con-
tradicted by the data (that is, it could serve as a
measure of evidence against the null hypothesis), we
have an index that does double duty. It seems to be
a Neyman–Pearson data-specific, false-positive error
rate and a Fisher measure of evidence against the
null hypothesis (6, 15, 17).

A typical passage from a standard biostatistics
text, in which the type I error rate is called a
“significance level,” shows how easily the connection
between the P value and the false-positive error rate
is made (30):

The statement “P , 0.01” indicates that the discrep-
ancy between the sample mean and the null hypothesis
mean is significant even if such a conservative signifi-
cance level as 1 percent is adopted. The statement
“P 5 0.006” indicates that the result is significant at
any level up to 0.6 percent.

The plausibility of this dual evidence/error-rate
interpretation is bolstered by our intuition that the
more evidence our conclusions are based on, the
less likely we are to be in error. This intuition is
correct, but the question is whether we can use a
single number, a probability, to represent both the
strength of the evidence against the null hypothesis

and the frequency of false-positive error under the
null hypothesis. If so, then Neyman and Pearson
must have erred when they said that we could not
both control long-term error rates and judge
whether conclusions from individual experiments
were true. But they were not wrong; it is not logi-
cally possible.

The P Value Fallacy

The idea that the P value can play both of these
roles is based on a fallacy: that an event can be
viewed simultaneously both from a long-run and a
short-run perspective. In the long-run perspective,
which is error-based and deductive, we group the
observed result together with other outcomes that
might have occurred in hypothetical repetitions of
the experiment. In the “short run” perspective,
which is evidential and inductive, we try to eval-
uate the meaning of the observed result from a
single experiment. If we could combine these per-
spectives, it would mean that inductive ends
(drawing scientific conclusions) could be served
with purely deductive methods (objective proba-
bility calculations).

These views are not reconcilable because a given
result (the short run) can legitimately be included in
many different long runs. A classic statistical puzzle
demonstrating this involves two treatments, A and
B, whose effects are contrasted in each of six pa-
tients. Treatment A is better in the first five patients
and treatment B is superior in the sixth patient.
Adopting Royall’s formulation (6), let us imagine
that this experiment were conducted by two inves-
tigators, each of whom, unbeknownst to the other,
had a different plan for the experiment. An inves-
tigator who originally planned to study six patients
would calculate a P value of 0.11, whereas one who
planned to stop as soon as treatment B was pre-
ferred (up to a maximum of six patients) would
calculate a P value of 0.03 (Appendix). We have the
same patients, the same treatments, and the same
outcomes but two very different P values (which
might produce different conclusions), which differ
only because the experimenters have different
mental pictures of what the results could be if the
experiment were repeated. A confidence interval
would show this same behavior.

This puzzling and disturbing result comes from
the attempt to describe long-run behavior and short-
run meaning by using the same number. Figure 4
illustrates all of the outcomes that could have oc-
curred under the two investigators’ plans for the
experiment: that is, in the course of the long run of
each design. The long runs of the two designs differ
greatly and in fact have only two possible results in
common: the observed one and the six treatment A
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preferences. When we group the observed result
with results from the different long runs, we get two
different P values (Appendix).

Another way to explain the P value fallacy is that
a result cannot at the same time be an anonymous
(interchangeable) member of a group of results (the
long-run view) and an identifiable (unique) member
(the short-run view) (6, 15, 31). In my second article
in this issue, we will see that if we stick to the
short-run perspective when measuring evidence,
identical data produce identical evidence regardless
of the experimenters’ intentions.

Almost every situation in which it is difficult to
calculate the “correct” P value is grounded in this
fundamental problem. The multiple comparisons de-
bate is whether a comparison should be considered
part of a group of all comparisons made (that is, as
an anonymous member) or separately (as an iden-
tifiable member) (32–35). The controversy over how
to cite a P value when a study is stopped because of
a large treatment effect is about whether we con-
sider the result alone or as part of all results that
might have arisen from such monitoring (36–39). In
a trial of extracorporeal membrane oxygenation in
infants, a multitude of P values were derived from
the same data (40). This problem also has implica-
tions for the design of experiments. Because fre-
quentist inference requires the “long run” to be
unambiguous, frequentist designs need to be rigid
(for example, requiring fixed sample sizes and pre-
specified stopping rules), features that many regard
as requirements of science rather than as artifacts of
a particular inferential philosophy.

The P value, in trying to serve two roles, serves
neither one well. This is seen by examining the
statement that “a result with P 5 0.05 is in a
group of outcomes that has a 5% chance of oc-

curring under the null hypothesis.” Although that
is literally the case, we know that the result is not
just in that group (that is, anonymous); we know
where it is, and we know that it is the most
probable member (that is, it is identifiable). It is
in that group in the same way that a student who
ranks 10 out of 100 is in the top 10% of the class,
or one who ranks 20th is in the top 20% (15).
Although literally true, these statements are decep-
tive because they suggest that a student could be
anywhere in a top fraction when we know he or she
is at the lowest level of that top group. This same
property is part of what makes the P value an
inappropriate measure of evidence against the null
hypothesis. As will be explored in some depth in the
second article, the evidential strength of a result
with a P value of 0.05 is actually much weaker than
the number 0.05 suggests.

If the P value fallacy were limited to the realm of
statistics, it would be a mere technical footnote,
hardly worth an extended exposition. But like a
single gene whose abnormality can disrupt the func-
tioning of a complex organism, the P value fallacy
allowed the creation of a method that amplified the
fallacy into a conceptual error that has profoundly
influenced how we think about the process of sci-
ence and the nature of scientific truth.

Creation of a Combined Method

The structure of the P value and the subtlety of
the fallacy that it embodied enabled the combina-
tion of the hypothesis test and P value approaches.
This combination method is characterized by setting
the type I error rate (almost always 5%) and power
(almost always $80%) before the experiment, then
calculating a P value and rejecting the null hypoth-
esis if the P value is less than the preset type I error
rate.

The combined method appears, completely de-
ductively, to associate a probability (the P value)
with the null hypothesis within the context of a
method that controls the chances of errors. The key
word here is probability, because a probability has
an absoluteness that overwhelms caveats that it is
not a probability of truth or that it should not be
used mechanically. Such features as biological plau-
sibility, the cogency of the theory being tested, and
the strength of previous results all become mere
side issues of unclear relevance. None of these
change the probability, and the probability does not
need them for interpretation. Thus, we have an
objective inference calculus that manufactures con-
clusions seemingly without paying Neyman and
Pearson’s price (that is, that it not be used to draw
conclusions from individual studies) and without

Figure 4. Possible outcomes of two hypothetical trials in six pa-
tients (Appendix). The only possible overlapping results are the observed
data and the result in which treatment A was preferred in all patients.
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Fisher’s flexibility (that is, that background knowl-
edge be incorporated).

In didactic articles in the biomedical literature,
the fusion of the two approaches is so complete that
sometimes no combination is recognized at all; the
P value is identified as equivalent to the chance of
a false-positive error. In a tutorial on statistics for
surgeons, under the unwittingly revealing subhead-
ing of “Errors in statistical inference,” we are told
that “Type I error is incurred if Ho [the null hy-
pothesis] is falsely rejected, and the probability of
this corresponds to the familiar P-value” (41).

The originators of these approaches—Fisher,
Neyman, and Pearson—were acutely aware of the
implications of their methods for science, and while
they each fought for their own approaches in a
debate characterized by rhetorical vehemence and
sometimes personal attacks (15, 16), neither side
condoned the combined method. However, the two
approaches somehow were blended into a received
method whose internal inconsistencies and concep-
tual limitations continue to be widely ignored. Many
sources on statistical theory make the distinctions
outlined here (42–45), but in applied texts and
medical journals, the combined method is typically
presented anonymously as an abstract mathematical
truth, rarely with a hint of any controversy. Of note,
because the combined method is not a coherent
body of ideas, it has been adapted in different forms
in diverse applied disciplines, such as psychology,
physics, economics, and genetic epidemiology (16).

A natural question is, What drove this method to
be so widely promoted and accepted within medi-
cine and other disciplines? Although the scholarship
addressing that question is not yet complete, recent
books by Marks (46), Porter (47), Matthews (48),
and Gigerenzer and colleagues (16) have identified
roles for both scientific and sociologic forces. It is a
complex story, but the basic theme is that therapeu-
tic reformers in academic medicine and in govern-
ment, along with medical researchers and journal
editors, found it enormously useful to have a quan-
titative methodology that ostensibly generated con-
clusions independent of the persons performing the
experiment. It was believed that because the methods
were “objective,” they necessarily produced reliable,
“scientific” conclusions that could serve as the bases
for therapeutic decisions and government policy.

This method thus facilitated a subtle change in
the balance of medical authority from those with
knowledge of the biological basis of medicine to-
ward those with knowledge of quantitative methods,
or toward the quantitative results alone, as though
the numbers somehow spoke for themselves. This is
manifest today in the rise of the evidence-based
medicine paradigm, which occasionally raises hack-
les by suggesting that information about biological

mechanisms does not merit the label “evidence”
when medical interventions are evaluated (49–51).

Implications for Interpretation of
Medical Research

This combined method has resulted in an auto-
maticity in interpreting medical research results that
clinicians, statisticians, and methodology-oriented
researchers have decried over the years (18, 52–68).
As A.W.F. Edwards, a statistician, geneticist, and
protégé of R.A. Fisher, trenchantly observed,

What used to be called judgment is now called preju-
dice, and what used to be called prejudice is now
called a null hypothesis . . . it is dangerous nonsense
(dressed up as the ‘scientific method’) and will cause
much trouble before it is widely appreciated as such
(69).

Another statistician worried about the “unintention-
al brand of tyranny” that statistical procedures ex-
ercise over other ways of thinking (70).

The consequence of this “tyranny” is weakened
discussion sections in research articles, with back-
ground information and previous empirical evidence
integrated awkwardly, if at all, with the statistical
results. A recent study of randomized, controlled
trials reported in major medical journals showed
that very few referred to the body of previous evi-
dence from such trials in the same field (71). This is
the natural result of a methodology that suggests
that each study alone generates conclusions with
certain error rates instead of adding evidence to
that provided by other sources and other studies.

The example presented at the start of this article
was not chosen because it was unusually flawed but
because it was a typical example of how this prob-
lem manifests in the medical literature. The state-
ment that there was a relation between hydrocorti-
sone treatment and improvement of the chronic
fatigue syndrome was a knowledge claim, an induc-
tive inference. To make such a claim, a bridge must
be constructed between “P 5 0.06” and “treatment
was associated with improvement in symptoms.”
That bridge consists of everything that the authors
put into the latter part of their discussion: the mag-
nitude of the change (small), the failure to change
other end points, the absence of supporting studies,
and the weak support for the proposed biological
mechanism. Ideally, all of this other information
should have been combined with the modest statis-
tical evidence for the main end point to generate a
conclusion about the likely presence or absence of a
true hydrocortisone effect. The authors did recom-
mend against the use of the treatment, primarily
because the risk for adrenal suppression could out-
weigh the small beneficial effect, but the claim for
the benefit of hydrocortisone remained.
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Another interesting feature of that presentation
was that the magnitude of the P value seemed to
play almost no role. The initial conclusion was
phrased no differently than if the P value had been
less than 0.001. This omission is the legacy of the
hypothesis test component of the combined method
of inference. The authors (and journal) are to be
lauded for not hewing rigidly to hypothesis test
logic, which would dismiss the P value of 0.06 as
nonsignificant, but if one does not use the hypoth-
esis test framework, conclusions must incorporate
the graded nature of the evidence. Unfortunately,
even Fisher could offer little guidance on how the
size of a P value should affect a conclusion, and
neither has anyone else. In contrast, we will see in
the second article how Bayes factors offer a natural
way to incorporate different grades of evidence into
the formation of conclusions.

In practice, what is most often done to make the
leap from evidence to inference is that different
verbal labels are assigned to P values, a practice
whose incoherence is most apparent when the “sig-
nificance” verdict is not consistent with external ev-
idence or the author’s beliefs. If a P value of 0.12 is
found for an a priori unsuspected difference, an
author often says that the groups are “equivalent”
or that there was “no difference.” But the same P
value found for an expected difference results in the
use of words such as “trend” or “suggestion,” a
claim that the study was “not significant because of
small sample size,” or an intensive search for alter-
native explanations. On the other hand, an unex-
pected result with a P value of 0.01 may be declared
a statistical fluke arising from data dredging or
perhaps uncontrolled confounding. Perhaps worst is
the practice that is most common: accepting at face
value the significance verdict as a binary indicator of
whether or not a relation is real. What drives all of
these practices is a perceived need to make it ap-
pear that conclusions are being drawn directly from
the data, without any external influence, because
direct inference from data to hypothesis is thought
to result in mistaken conclusions only rarely and is
therefore regarded as “scientific.” This idea is rein-
forced by a methodology that puts numbers—a
stamp of legitimacy—on that misguided approach.

Many methodologic disputes in medical research,
such as those around multiple comparisons, whether
a hypothesis was thought of before or after seeing
the data, whether an endpoint is primary or second-
ary, or how to handle multiple looks at accumulating
data, are actually substantive scientific disagreements
that have been converted into pseudostatistical de-
bates. The technical language and substance of
these debates often exclude the investigators who
may have the deepest insight into the biological
issues. A vivid example is found in a recent series of

articles reporting on a U.S. Food and Drug Admin-
istration committee debate on the approval of
carvedilol, a cardiovascular drug, in which the dis-
cussion focused on whether (and which) statistical
“rules” had been broken (72–74). Assessing and
debating the cogency of disparate real-world sources
of laboratory and clinical evidence are the heart of
science, and conclusions can be drawn only when
that assessment is combined with statistical results.
The combination of hypothesis testing and P values
offers no way to accomplish this critical task.

Proposed Solutions

Various remedies to the problems discussed thus
far have been proposed (18, 52–67). Most involve
more use of confidence intervals and various allot-
ments of common sense. Confidence intervals, de-
rived from the same frequentist mathematics as hy-
pothesis tests, represent the range of effects that are
“compatible with the data.” Their chief asset is that,
ideally, they push us away from the automaticity of
P values and hypothesis tests by promoting a con-
sideration of the size of the observed effect. They
are cited more often in medical research reports
today than in the past, but their impact on the
interpretation of research is less clear. Often, they
are used simply as surrogates for the hypothesis test
(75); researchers simply see whether they include
the null effect rather than consider the clinical im-
plications of the full range of likely effect size. The
few efforts to eliminate P values from journals in
favor of confidence intervals have not generally
been successful, indicating that researchers’ need
for a measure of evidence remains strong and that
they often feel lost without one (76, 77). But con-
fidence intervals are far from a panacea; they em-
body, albeit in subtler form, many of the same
problems that afflict current methods (78), the most
important being that they offer no mechanism to
unite external evidence with that provided by an
experiment. Thus, although confidence intervals are
a step in the right direction, they are not a solution
to the most serious problem created by frequentist
methods. Other recommended solutions have in-
cluded likelihood or Bayesian methods (6, 19, 20,
79–84). The second article will explore the use of
Bayes factor—the Bayesian measure of evidence—
and show how this approach can change not only
the numbers we report but, more important, how
we think about them.

A Final Note

Some of the strongest arguments in support of
standard statistical methods is that they are a great
improvement over the chaos that preceded them
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and that they have proved enormously useful in
practice. Both of these are true, in part because
statisticians, armed with an understanding of the
limitations of traditional methods, interpret quanti-
tative results, especially P values, very differently
from how most nonstatisticians do (67, 85, 86). But
in a world where medical researchers have access to
increasingly sophisticated statistical software, the
statistical complexity of published research is in-
creasing (87–89), and more clinical care is being
driven by the empirical evidence base, a deeper
understanding of statistics has become too impor-
tant to leave only to statisticians.

Appendix: Calculation of P Value in a Trial
Involving Six Patients

Null hypothesis: Probability that treatment A is bet-
ter 5 1/2

The n 5 6 design: The probability of the observed re-
sult (one treatment B success and five treatment A suc-
cesses) is 6 3 (1/2) 3 (1/2)5. The factor “6” appears
because the success of treatment B could have occurred
in any of the six patients. The more extreme result would
be the one in which treatment A was superior in all six
patients, with a probability (under the null hypothesis) of
(1/2)6. The one-sided P value is the sum of those two
probabilities:

“Stop at first treatment B preference” design: The possi-
ble results of such an experiment would be either a single
instance of preference for treatment B or successively
more preferences for treatment A, followed by a case of
preference for treatment B, up to a total of six instances.
With the same data as before, the probability of the
observed result of 5 treatment A preferences 2 1 treat-
ment B preference would be (1/2)5 3 (1/2) (without the
factor of “6” because the preference for treatment B must
always fall at the end) and the more extreme result would
be six preferences for treatment As, as in the other de-
sign. The one-sided P value is:

Requests for Reprints: Steven Goodman, MD, PhD, Johns Hop-
kins University, 550 North Broadway, Suite 409, Baltimore, MD
21205; e-mail, sgoodman@jhu.edu.
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