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In this paper, the buckling load for a radially compressed annular platz surrounded on
its outer edge with an edge beam is determined. A uniform, ring-type load is applied to
the edge beam along its entire length, and the tnner edge of the annular plate is free from
tractions. In the solution to this problem, all possible buckled shapes are considered to
obtain the critical buckling load.

Use of an edge beam provides a practical way to vary

the fixily condition at the plate's outer edge.

Introduction

Tm; purpose of this paper is to determine the buck-
ling load for a radially compressed annular plate surrounded on its
outer edge with an edge beam. The mathematical analysis that
is performed applies to any edge beam whose center line describes
a plane curve (zero torsion) with constant curvature (a circular
curve), and whose cross-sectional geometry is such that the
cross section is symmetric about the horizontal centroidal axis
of the beam. The edge beam is subjected to a ring-type uniform
loading along its entire length, and the inner edge of the annular
plate is free from tractions.

In past research, such as in the work done by Olsson [1],2
Schubert [2], and Meissner [3], most annular plate buckling
problems have been analyzed with the assumption that the
buckling mode is radially symmetric [4]. These results, assuming
radial symmetry, provide values of the critical load which are
unrealistic in many cases. Yamaki [5] has shown that in the
buckling of an annular plate subjected to equal compressive
loadings at both edges, a radially symmetric mode often does not.
correspond to the lowest buckling load.

Approximate analyses of the asymmetric buckling of an annular
plate with the outer edge clamped, the inner edge free, and loaded
with a uniform radial compressive force applied at the outer
edge have been published by Rozsa [6] and Majumdar [7]. In
this paper, the exact solution to the subject problem is presented
for the general case of asymmetric buckling.
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The use of an edge beam provides a practical means of vary-
ing the fixity condition at the outer edge of the plate between
the extremes of simply supported and clamped boundary con-
ditions. The type of edge beam used is similar to the edge beam
employed by Amon and Widera (8], who further developed the
work done by Reismann {9]. These authors used solid circular
plates and considered only the radially symmetric buckling mode.
The results of this paper degenerate to the results found by
Reismann, as modified by Amon and Widera.

Physical Setup and Assumptions

The plate with its edge beam is shown in Fig. 1. The simple
support used under the edge beam constrains it Lo remain in its
original plane. The simple support is also used to indicate, in &
physical way, that the plate and edge beam are free to expand
inward and outward in the plane of the plate. It is assumed that.
the plate is integral with the edge beam at the outer edge of the
plate.

The external load applied to the structure, P, is a uniformly
distributed load per unit of beam length applied to the outer
side of the edge beam, as shown in Fig. 1. The annular plate has
a thickness, ¢, an inner radius, b, and an outer radius, . The
other material properties pertinent to this analysis are Ap, the
edge beam cross-sectional arca; Ky, the modulus of elasticity of
the beam; I, the moment of inertia of the beam cross section
about its horizontal centroidal axis; I, the moment of inertis of
the beam cross section about its vertical centroidal axis; E, the
modulus of elastieity of the plate material; o, the Poisson’s ratio
for the plate material. The inner edge of this annular plate is
traction-free.

Throughout this analysis, the following assumptions have been
made:

1 The plate and edge beam material are constructed from iso-
tropic elastic solids.
of Use: it /iwve aamb io/aba WS mpsaine tfittitness.

3 There are no body forces present.

4 The plate deflections are small in comparison to the thick-
ness of the plate so that classical plate theory as discussed by
Timoshenko [10] applies.
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General Solution

The theory involved in solving a plate buckling problem is well
known [4, 10]. The initial step in finding a plate buckling solu-
tion is to solve the plane-stress problem, yielding the in-plane
stress and displacement fields. Plate bending theory is then em-
ployed to solve for the transverse deflection of the plate. Once
the general solution for the transverse deflections is obtained, the
appropriate boundary conditions are applied to this general
solution. These define an eigenvalue problem, and the buckling
loads are found for the various modes of buckling that are gener~
ated by the P loading.

The plane-stress portion of the plate stability problem is repre-
sented by the expression

Vig = 0 (1)

where ¢ denotes the scalar variable Airy stress function and V4
is 1the biharmonic operator.

The Airy stress function, ¢, is related to the stresses in the
plate by the following equations:
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where oy, ggs, and o, are the radial, tangential, and shearing ——e\\V7 /7777771 V77777771 \ la——
stresses, respectively. *
The general solution to equation (1) was developed by Michell
[11, 12]. Tt is necessary to eliminate those terms in the Michell A 77777%77777-
solution which produce multivalued stresses and/or displace- IB E
ments. The stress and displacement fields obtained are, in IB i SIDE
view of the symmetry of the plane-stress problem, functions of E20 I
B

the variable 7 only.
The plane-stress boundary conditions along the inside hole of Fig. 1 Plate-edge beam configuration
the plate are

o(b, 0) = 0 and a0, ) = 0 (5)

Since the plate is integrally attached to the edge beam at + = a
as shown in Fig. 1, the radial displacement of the plate is equal in

magnitude to the radial displacement of the edge beam, and the aof
tangential plate displacement is equal in magnitude to the tangen- r
tial displacement of the edge beam. To obtain general expres- 60t
sions for the edge beam radial and tangential displacements, the o |
theory of curved beams as developed by Rakowski and Solecki = 4OL
[13] was employed. 20
In what follows, only an edge beam of rectangular cross section [
is illustrated and discussed, however, the theory and the applica- a0k
tions that are used could be modified to include any edge beam
possessing the previously discussed property of cross-sectional 60
symmetry. o [
Using equations (5) and equating edge beam-plate displace- o 40
ments as previously described, leads to the following stress field: .
Oy = Ao7'_2 + 2B0, Tgp = '—Ao7'—2 + 2Bo and Trg = 0 (6) o
where Ao and B, are given by 60:
2
Ag = EOE ( 1 ) (7) i__ 40F
to\efl — o) + (/a2 + o)} + 1 — (b/a) I
20
Ao F
Bo = 2b? ®) % %z o0& = o8
b/a
and « is defined as Fig. 2(d) Dimensionless buckling coefficient (b;b) versus b/o
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where (9)

I
A=A+ 3

and E is the modulus of elasticity of the plate.

The in-plane forces per unit length are found by multiplying
the stresses given by equation (6) by the constant plate thickness,
{. These forces are then employed in the well-known partial
differential plate equation containing in-plane forces [10], which
must be solved in order to obtain the transverse deflection of the
plate, w(r, 8). The resulting differential equation may be written
as

4
2 4 299 L 1+ 284/D0L ~ B/ o

—bﬁ r ord

where p is an indexing parameter, J,(by) is Bessel’s function of
the first kind of order v and of argument by, Y ,(bir) is Bessel’s
function of the second kind, Weber's form, of order » and of argu-
ment by, and the functions J,*(bi) and ¥ ,+(by7) are similar Bessel
functions of order yp* where

pvi==1 4 (bd)?
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The four plate-bending boundary conditions that must be

and (p¥)2==4 4 (bbd)? (13)

(14)
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[1/7.3 4 B g 1+ (b/r )2)] satisfied by w(r, 8) are
w(a, ) = 0 (17)
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and (11) 1 d%(r, )] 2 o%w(r, 0)]
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Equation (10) may be transformed by means of finite Fourier - [(1 — o (E dulr, 20) t Fulr, 0))] =0 (19)
transformations, Theresulting transformed ordinary differential r r ordf r
equations were solved using the method of Frobenius [14, 15]. dw(r, 6)
The very lengthy calculations finally yield the solution of equa- 6* + o =0 (20)
tion (10) in the form: r=a
w(r, ) = Coo + Cou f T (bur)dr + Co,e f Y, (br)dr + Cos f [—J,(blr) f Y. (bir)dr 4 Y,(bir) f J,(b,r)dr] dr
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Fig. 2(b) Di ionless buckling coefficients (bb) versus b/a
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Fig. 3 Dimensionless buckling coefficient (K) versus bfa for clamped
edge case

where Mr and Vg represent, respectively, the radial moment per
unit length and the Kirchhoff shearing force per unitlength in the
plate. The fourth boundary condition is due to the radial slope
continuity condition between the plate and edge beam at » = aq,
where §* is the radial edge beam slope that is found from solving
the appropriate ordinary differential equation developed in
curved heam theory {13].

Upon finding 8%, it is substituted, together with w(r, 8) as given
by-equation (12), into equations (17)~(20), leading to, for each n,
a4 X 4 determinant that must be set equal to zero s0 as to yicld
nontrivial solutions for the Py load. The values of these deter-
minants are functions of b,d, b, various material properties
and the parameter n.

The components of the determinants formed can be found in
reference [16]. The value of n specifies the mode of plate buck-
ling and for each corresponding secular equation there are an in-
finite number of eigenvalues. It is of interest to find the lowest
value of Py necessary to buckle the plate.

It was found mathematically that the series appearing in the
components of the determinants [16], and in the deflection fune-
tion, equation (12), are all absolutely convergent.

Computer methods were used to evaluate the infinite series
which are utilized throughout this analysis and to evaluate the
roots, bib, of the secular equations formed, where

(bxb)2 =

282%
D @

Once b has been determined, it follows from equations (11),
(8), and (7) that

P, < l:ahb)z{a[(l —0)4 /a4 o) +1— (b/a)?}] D/a?
(b/a)

(22)

The minimum Pevalue found for a specific plate, admitting all
n~values, is the critical buckling load.

Results and Concluding Remarks

The results of this investigation are represented in a series of
graphs shown in Figs. 2(a, b) and 3 for a Poisson’s ratio of 1/3,
In Figs. 2(a, ), the dimensionless variable b is plotted against
the ratio b/a for n varying from 0-5. For a given problem, the
appropriate value of b is needed for use in equation (22). The
critical buckling load corresponds to that mode (1) associated
with the lowest bib-value. The other variable appearing in
Figs. 2(a, b) is the dimensionless stiffness parameter of the edge
beam, defined as

. Gplr  Eglg
Da Da

K=n (23)

where Gp is the shearing modulus of elasticity of the edge beam,
and I7is the torsional constant of the edge beam cross section.
That an edge beam presents a practical means of increasing the
stability of an annular plate may best be shown by an example.
Consider an annular plate with the following properties: ¢ = 20
in. (50.8 em), b = 14in. (35.6 em), t = 0.45in. (1.14 em), Ky =
E, 0 = 1/3, edge beam width = 1in. (2.54 ¢m), edge beam height
= 6in. (15.2 ecm), It follows that [z = 18 in.* (748 cm?), I =
1/2 in.* (20.8 cm*), Ap’ = 6in.2 (38.6 cm?), b/a = 0.7, a = 2/3,
Ir = 1.79in.4 (74.5 cm*), and

K = 4n? + 105

With this value of x, we must now check the six graphs presented
in Figs. 2(a, b) to determine the critical (lowest) value of bib.
For this example, the lowest value of bib is 6.30 and is associated
with the n = 4 mode. Equation (22) then yields a critical
buckling load of Ps = 112 D/a® The corresponding critical
buckling load for the same plate with no edge beamn and clamped
along its outside boundary can be found to be only Py = 425
D/a? also associated with mode n = 4. This illustrates the
contribution of the edge beam in resisting the applied loading.
Tt is interesting to note that to assume that this plate and its
edge beam will buckle in the symmetric mode leads to an in-
correct “critical” buckling load of Py = 182 D /a2

Two special cases that are of particular interest in this discus-
sion are the cases of a plate with no edge beam and of a plate with
an edge beam that provides the effect of clamping the plate's
outer edge. The plate with no edge beam represents the case of
a simply supported plate on its outer edge. For this case Ap
=1Ip=1In=FEg=0Gs =a = 0,and k = 0, and the critical
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roots, bib, are found from TFigs. 2(a, b) along the curves x = 0.
A check of Figs. 2 will show that the axisymmetric mode (n = 0)
controls for the simply supported case for all values of b/a. To
properly represent the clamped support case, a special type of
edge beam is used. The effect described by the KgzAp’-value
for the edge beam is a stiffness contribution which provides a
direct resistance to the ring load applied to the beam’s outer
edge. Thus, to provide an edge beam that is “equivalent’” to
the clamped support case, the EgAd g’-value is taken to be zero so
that P is not resisted by the beam’s EpAp’ stiffness. At the
same lime a zero slope is required at the plate’s outer edge.
The edge beam, thervefore, must possess a very large value of
Eyls, thus providing the inertial restraint at the outer edge to
keep the radial slope equal to zero. Tt follows therefore from
equations (9) and (23) that « = O and k = « corresponds Lo an
edge beam equivalent to the clamped case.

Because the clamped outside edge case represents an interesting
practical problem, the results for this boundary condition are
shown separately in Fig. 3 (they could be obtained from Figs.
2(a, b)). In Fig. 3, the buckling parameter K which is defined
as the bracketed portion of equation (22), is plotted versus b/a.
Note that the axisymmetric mode controls for 0 < b/a < 0.50.
As b/a continues to increase, however, higher modes control.  In
the limit, the results (not shown) correspond to the buckling
load of an axially loaded long and narrow rectangular plate with
onelong side clamped and the other free (4].
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