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ABSTRACT
The performances of three different high order absorbing
boundary conditions (ABCs) are investigated in the case of pro-
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ever, they require derivatives of order which are inadequate
for the second order wave equation. Also from a numerical poin
of view they are inadequate, since they require high-order shar

gressive and standing waves in a dispersive one-dimensional functions. For this reason, in [6] the ABCs were implementec

medium. Their accuracy is first analyzed with respect to the fre-

only up to the third order in a finite difference algorithm, and

guency of a single incident wave. Then they are submitted to a in [7] the order was increased up to seven.

wave train characterized by a wide frequency spectrum, resulting
from an impulsive force. The influence of both the order and the
parameters of the ABCs on the accuracy is analyzed in detail.

INTRODUCTION

To numerically detect the propagation of waves in un-
bounded domains by the finite element method (FEM), it is re-
quired to consider a computational finite domain, and to model
accurately the artificial boundaries, by introducing appropriate
boundary conditions capable of not reflecting traveling waves.

Two main methods were actually developed to not reflect
waves at the fictitious boundarigythe perfectly matched layer
(PML) method, first proposed by Berenger [4] for the absorption
of electromagnetic waves, aiipabsorbing boundary conditions
(ABCs), which are capable of perfectly filtering a number (equal
to the ABCs order) of incident waves with different wave veloc-
ities. The study of the accuracy of three high-order (i.e. capable
of filtering several different waves) ABCs is the subject of this
paper.

Absorbing conditions of low-order (up to the order 4) were
first rationally deduced by Engquist and Majda [5]. Later on
Higdon [6] proposed absorbing conditions of any ondeHow-

The unwanted high differentiation order was eliminated by
Givoliand Neta [1], which introduces absorbing boundary condi-
tions (GN-ABCs) with an equivalent set nfsecond order equa-
tions whose unknowns areauxiliary variables defined on the
artificial boundaries only. More accurate boundary conditions
alternative to GN-ABCs, were proposed by Hagstrom and War
burton [2] (HW-ABCs) and implemented within a finite element
algorithm in [8]. Both the GN-ABCs and the HW-ABCs are
designed to filtem progressive waves with different wave ve-
locities ¢, i = 1, ...,n, but they are not able to filter standing
waves. Hagstrom, Mar-Or and Givoli [3] added further terms
to the HW-ABCs for the absorption of evanescent (or standing
waves. These equations, here called HMG-ABCs, were applie
in [3] to the problem of wave propagation in a dispersive and
stratified medium.

In this paper we investigate the performances of the GN
ABCs, HW-ABCs and HMG-ABCs in the case of a dispersive
medium. In particular we consider the one dimensional (in
space) problem, which describes, for example, the propagatic
of waves in cables resting on elastic supports. The accuracy ¢
the ABCs is studied both with respect to the order and to the pe
rameters of the ABCs. We considgthe propagation of a single
wave with a fixed frequency, arig the propagation of a wave
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train with wide frequency spectrum, due to an impulsive force. Wave propagation
In both cases analytical solutions are available and are used to By considering a solution of the form(x,t) = Ve (k<@
check the accuracy of the numerical solutions. with k the wave number and the wave frequency, the equa-
Beside the analytical ABCs reflection coefficient, which tion (1) provides the dispersion relatitn= \/w? — sp/co. The
measures the ratio between the incident and the reflected wavegesulting solution is defined within two frequency intervals sep-
at the artificial boundaries, and thus measures the theoretical per-arated by the cut-off frequeney = /5.
formance of the considered ABC, we consider also numerical re- Sub-critical region 0 < w < /S, where the solution is
flection coefficients, which estimate the accuracy of the numeri- = =
cal solutions, taking into account not only the theoretical perfor- v=Ve % XHO ey <0, v=Ve % X e x> 0, 2
mances of the ABCs, but also the approximations due to the FEM
discretization and to the step-by-step time-integration technique. i-€- @ standing wave with decreasing amplitude going towart
By comparing the analytical and numerical coefficients it is pos- Foo; o ) ) )
sible to distinguish between the inaccuracy due to the ABCs and SUPer-critical region w > /So, characterized by the solution
the inacguracy due to the numerical ap_proximations. _ = . =
Merits and drawbacks of the considered ABCs are pointed Vv=Ve < ,ifx<0; v=Ve: @ ,if x>0, (3)

9Ut’ and some suggestions are proposed to implement the ABCs i.e. a progressive wave with a constant amplitude. Waves witl
in an optimal way.

finite amplitude travelling from infinity are ruled out by the radi-
ation condition (see [9]).

In the super-critical case, the propagation of progressive
waves due to a source at= 0, an impulsive force or displace-
ment, has the form of wave trains moving from= 0 toward
the left and the right. The group velocity = dw/dk, which
represents the slope of the dispersion branch (see Fig. 2), che

V—cV' +sv=0, 1) acterizes the motion of each wave train. Siggencreases as
both the frequency and the wave number increase, the head

. , o ) ] the train, which has velocitgg = cp, has infinite frequency and
where( ) and()’ mean derivatives with respect to tirnand po- infinite wave number, while, going from the train head to its rear,

sitionx, respectivelygo is the natural wave velocity argg is the the frequency and wave number reduce. Within the wave trai

dispersion coefficient. This equation governs the propagation of e crests move with wave velocity= w/k (see Fig. 2 for a

transverse waves in strings or cables on linearly elastic springs, geometric interpretation), which, contrarily tg, increases as

as well as torsional and axial waves in beams on elastic substratey, o frequency and the wave number decrease. As a result, cre:

(€.g., piles). From now on, in order to fix the terminology, we  mqye from the rear to the head of the wave train, reducing the

refer to the cable problem only. f is the cable mass density oty while increasing their frequency and wave number, ug

per unit lengthT is the cable traction force anglthe elasticity to approach the smaller velocity= ¢, at the train head.

modulus of the springs, thex = /T /p andso = n/p. Wave number, wave velocity and group velocity depend or
We suppose to have an infinite domaxg (—co, +0), to the frequency as follows (Fig. 2)

have null initial conditionsy(x,0) = v(x,0) = 0, and to assign

atx =0 Neumann or Dirichlet boundary conditiods/ (0,t) =

PROBLEM STATEMENT
We consider the one dimensional dispersive wave equation

V(0",t) —V/(0,t) = f(t) or v(0,t) = Vo(t), respectively (see | _ V@S Cow o _GV@-n &G
Fig. 1 for a geometric scheme). c w? — so’ o w c
(4)
As said in the introduction, to numerically solve problem (1) by
v means of the FEM, which is preferable when the excitation is ar
A , bitrary, the infinite domain must be replaced by the finite domair
v(0,2) or Av’(0,1) X € (Xa, Xg), Wherexa < 0 andxg > 0 are the artificial boundaries
Bkl oIl L where ABCs must be imposed. This will be discussed in the nex
XA Xp sections.
FIGURE 1. Geometrical scheme of the problem. GIVOLI-NETA ABSORBING BOUNDARY CONDITIONS

We consider first waves propagating towareb, and write
the absorbing conditions &t= Xa.
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FIGURE 2. The dispersion curve, drawn fog = sp = 1.

We suppose that the motion &t= xa is due to propa-
gating waves (super-critical regime), neglecting the oscillation

due to standing waves (sub-critical regime). Indeed, the ampli-
tude of standing waves decreases exponentially in space and, for

w << /%, at a certain distance & xa) it is negligible. For a
propagating wave with a single frequerwywve have

v(x,t) = vk, (5)

with k andc functions ofw, according to(4)1,. Equation (5)
satisfies

(6)

which, imposed ak = xa, filters the harmonic wave (5) (first-
order absorbing boundary condition). If a produchdfifferen-
a _ 19

tial operators of the forni5, — ¢ %) is considered, we get the

n-order Higdon condition [6]

10

n/o
Mo ga) -0

which filtersn harmonic waves with velocitgj, j = 1,...n. If

a wave with velocityc # ¢j, j = 1, ..., n crosses the boundary

X = Xa, then itis partially reflected. Thus a second reflected wave
adds to the incident one,

(7)

V(X,t) _ Vé'k(XJrCt) +\7ék(—x+ct) ) (8)

The ratio between the amplitudv_sandv represents the theo-
retic reflection coefficienRgy. It can be evaluated by substitut-

3

ing (8) in (7) and by performing some algebraic calculations [6]:

C—Cj

Ren = C+C;j

: (9)

<| <

=1

It is a product of terms smaller than 1, and thus it decreases as
increases, regardless the values of the selected velagities

The implementation of the equation (7) in a FEM is imprac-
ticable because of the high order of differentiatioh (An alter-
native computational scheme was proposed in [1] for the wawvi
equation. It does not involve high-order derivatives but it re-
quires the use ofh auxiliary variables defined on the artificial
boundary. It is now summarized and adapted to the dispersio
wave problem at hand.

Equation (7) is equivalent to the system

V- EV: ?y,
Cl]_
o=@ j=1.(n-1), (10)
o AL U (n—1)
O = O,
whereg;, j = 1...n, aren auxiliary variables. These equations

are modified as in [1] (see Appendix A) to eliminate the
derivatives, allowing the variables to be defined at the artificial
boundaryx = xa as functions of only. The resulting equations
are

2 1. . 2 %D v
Qg + o)t vz = (5~ LV+sv,

1 C2 cI
L (B o0y B -0 (D
cOC]_ Cii1 j CJZ j—1 -1 j+1 ’
j=2.(n=-1),
§0n=0,

The system (11) is numerically implemented in a FEM code by
means of an iterative scheme similar to that proposed in [1].

The velocitiescj, j = 1,...n, are parameters of the GN-
ABCs, and can be chosen freely to optimize the performance
of the ABCs with respect to the application at hand. The unique
limitation is that the numerical scheme converges only ifdhe
satisfy the inequalities [1]

1+i217

j=21..(n—1).
5 o j (n—1)

(12)

To get a boundary condition gat= xg capable of absorbing waves
propagating toware-co, the sign minus in the differential opera-
tors (7) must be replaced by a sign plus. ThuspHoeder bound-
ary condition which absorbs waves propagating toward is
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given by the system (10) with a plus instead of a minus in the left
hand side. The system (11) then becomes

. g
B+ ) - e = (3 - 1i-sov.
1

G C
1 1 .- 2 .
C%(C_ﬁa)(pj+(1_£)¢1—1+50§0j_1—0t2)fp1+1:07 (13)
i
j=2.(n=-1),
¢, =0.

HAGSTRON-WARBURTON ABSORBING BOUNDARY
CONDITIONS

Absorbing boundary conditions at= xa, for progressive
waves propagating towardeo, alternative to (10) were proposed
in [2] for the wave equation. They are given by

\/ - EV: l(-pjln
C1 C1 1
G- —ba=F+—. j=2.n 14
J |
qon:Oa

The spatial derivatives are eliminated by performing calculations
analogous to those of [2] (see Appendix A) and the following
equivalent set of equations is obtained

G 25 1 16 o S, %
9, =0, = — (N _1 o-Z20, =
(c1o§+c§c2+c1)"’1+c1(o§ Vo2t O P

2 23 . 2%
= (5 - 520+

2 cic C2
1 .¢ .. 1 ¢ 1, 3 .
— (5 —1D@j 1+ S +t)+ (5 +1| o+
Cj+1 ( CJZZ ) j—1 i1 (Cf ) C]_ (CJ2+]_ ) |
1 - S0 S, S S
(=2 ) - 24 2 o —Zo. 0,
Cj(cjz+1 )§01+1 CJ' lqoj 1 G Cj+l)(p] G (p]+1
j=2.(n=-1),
¢, =0

(15)

The reflection coefficient for the HW-ABCs was calculated in [2]

and [3], considering, respectively, the equations (14) and (15). It

has the expression

Raw

B |C1_C| (n,]_) Cj+1fC 2 (16)
 a+c JDI Cjr1t+c/

To get ABCs atx = xg, for progressive waves propagating
toward+, we consider the equations (14) and replace the sig|
minus of the second terms on the left hand sides with the sig
plus, and the sign plus of the second terms on the right han
sides with minus. By means of calculations analogous to thos
performed in the previous case we get a system equal to (15
apart from the right hand side of the first equation, which has

. . 262 | . 2
opposite sign-(& — cg_coz)V(XB’t) — 22v(xg,1).

HAGSTROM - MAR-OR - GIVOLI ABSORBING BOUND-
ARY CONDITIONS

Since in (2) the exponent of the real decaying term is pro-
portional to/sp — w?, standing waves are negligible at the ar-
tificial boundary only ifw << ,/S. The amplitude of standing
oscillation increases as approacheg/s, and in the cut-off limit
w = /S the oscillation becomegx,t) =Ve®, i.e. it has a con-
stant amplitude. This pathological case is usually catietple
oscillation since it does not depend xnWhenw is close to the
cut-off frequency, the standing wave is no more negligible at the
artificial boundary and further absorbing conditions capable o
filtering subcritical oscillations are needed.

We consider the absorbing conditions for standing oscilla-
tions proposed in [3], where the name “evanescent waves” i
used. It represents a setwfequations which adds to the first
n equations of (14) as followp(= n— 1),

\/_ EV: 1(-pjln
C1 C1 1
@1 C—j‘l’j—1: o +C_j¢ja j=2.p
1 . :
qa,pf @q’p - (p/p+l+ @q’[ﬂla a7

(P’ 1 kl(Pp+1 = (P/ +2 + kl(pp+27
(p£ h=2..(m-1)

+h— kh(Pp+h =@pihi1t kh(pp+h+la
Pprm= 0.

The first set ofp+ 1 equations absorb progressive waves of the
form v(x,t) = Vek+e  perfectly filtering those with wave ve-
locityc=c¢,i=1,...,p+ 1, while the second set af equations

Since the factors of the product are quadratic, we have that absorb standing oscillations of the fomrx,t) = Ve, per-

Ruw < Rgn, i.e., the HW-ABCs are theoretically more perfor-
mant than the GN-ABCs. This is further confirmed by the fact
that, contrarily to the GN-ABCs (11), the HW-ABCs (15) are
stable for every value of the parameters

fectly filtering those with wave numbé&r=k;, i =1,...,(m—1).

Following the calculations of [3] to rule out the spatial
derivatives from equations (17), calculations similar to those re
ported in Appendix A for the HW-ABCs, we arrive at the equa-
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(clcg C%CZ+C1)¢1+C(C% Voot 01— P

2 2. . 2%
7(C__2—CO)V -V

2 CIC2 C2
1 ¢ - 1 ¢ 1, ¢ )

—— (-1, 1+ |—(2 (52 +1)| @+
Cj+l(CJ2 ) j—1 (C% Ci (C12+1 ) j

c3 . S, S S
+ (= 10— — @1+ (= + ——)9 — —#j.1 =0,

o'@, VTGt G ) g e

j=2..p,

1 1. o1 1. 5 g
(o——3)pp+ V+(z—+3)01— 5P+ 5Pp1=0
](-%H (%1 P C;ZJ+1k C%H g g P g’

- - 1 0 0 2 S 2
C—g§0p+1 ~2%+2 Cort Y+ (C—% +KD)Pp 1 — (go —kD)®p.2=0,
o tpin— (ot ) Ppanet + o Ppeniat
C%kh p+h C% Kn = Knp1 p+h+1 C%kh+1 p+h+2

Co
h=1.(m-1),

1 1
+<(%ikh k) Bpun— ket 2 Bt

JF( - kh+l)§0p+h+2 = Oa

_
C3kn+1
q0p+m =0,

(18)
where(@y, ..., @p, U, P15 s Ppimia) are thep+m+1 un-
knowns. The variablgy was introduced to connect thie + 1)
with the (p+ 2) equations of (17) (see [3]).

The reflection coefficient is evaluated in the case of an in-

atx = Xa

Rume

erk—iw] MY k—k
cik+iw

I_l k—l—kj

2 n . : 2
V() e
] = Cik+iw
Now the product of the terms related to the standing waves i
smaller than 1, while the product of the terms related to the prop
agating waves has absolute value equal to 1.
The absorbing conditions &t= xg are equal to (18), except
for the right hand side of the first equation, which has opposite
sign.

NUMERICAL ESTIMATES OF THE ABSORBING
BOUNDARY CONDITIONS ACCURACY

The absorbing boundary conditions (11), (15) and (18) are
implemented in a self-made FEM code which adopts linear shap
functions and integrate in time by means of the Newmark metho
[10]. The ABCs accuracy is tested by performing two sets of
simulations. In the first we impose an harmonic oscillatiox-at
0 and analyze the influence of the order and of the coefficegnts
andk; on the accuracy of the boundary conditions for different
values of the frequency of the assigned oscillation.

In the second series of simulations we study the accuracy c
the absorbing condition with an impulse force applied at0.

cident progressive wave and in the case of a standing wave. InIn this case the absorbing conditions are subjected to a travellin
the first case we suppose that the cable motion has the expressioiwvave train with a wide spectrum of frequencies, which quickly

(8), a sum of two waves with velocity an outgoing wave and a
reflected incoming wave. If we assign to the varialgiea form
similar to (8), from (17) we get (see [3] for details)

lc1— | <m1>(ik+k,-)
Ci+¢C JI:L ikfkj

Rime =

2 n 2
Cj—¢C
,I:L(CJ+C) - 19

accumulate on the cut-off frequency, thus requiring the ABCs tc
absorb oscillations close to the simple oscillation.

Harmonic excitation
Let us assign the harmonic oscillation

v(0,t) =V sin(wt). (22)

where the product of the terms related to the progressive waves isgjnce the problem is symmetric with respect to the axis0, we
smaller than 1, and the product of the terms related to the stand- consider only the half patt-o, 0), and investigate the accuracy

ing waves has absolute value equal to 1.

of the absorbing conditions &g, for different values otw. The

In the second case we suppose that the cable oscillation hasreflection coefficient is the ratio between the amplitudes of the

the form

V(X,t) :Vé((x—x/_\)-Hwt +\7e—k(x—xA)+iwt’ (20)

which is the sum of two standing waves: the first one has ampli-
tudeV atx = x4 and it decreases going towardo; the second
one has amplitud¥ atx = xa and decreases going towafdo.

We assign to the auxiliary variablgs expressions analogous to

(20). ¢ From (17) we obtain the coefficient of accuracy evaluated

5

reflected wave/ and of the incident wav¥. For the numerical
evaluation ofV we consider separately the super-critical %

v/S) and sub-critical @ < /S) regimes.
Super-critical regime. If some trivial trigonometric calculations

are performed, the expression (8) can be written in the alternativ
form

V(X t) =V sin(kx+ wt) 4V sin(—kx+ wt) = psin(wt + 3 ),
(23)
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wherek = k(w) as in(4),, and

p =/ (V= V)2sirP(k) + (V +V)2cog (kx),

V —
9= arctan<v Y, tan(k )) .

(24)

The amplitudep oscillates in the intervalV —V,V +V), with
space periodicity\ /2= 11/k, A being the wave length.

The amplitudé/ is numerically evaluated as follows. In the
cable part(xa, Xa + A /2), we evaluate the amplitudgnaxt) =
max{V(x,t), X € (Xa, Xa+A)}. Since it oscillates in the interval
(V —=V.,V +V), an estimate of the reflected wave amplitude is
given by

maX (Vimax) — Mink (Vmax)

V= 5 (25)

For w < /1co/|Xa| + S0 we haveA /2 > |xa|. In this case we
evaluate/maxover the whole domaifxa, 0), but then the estima-
tion of V is not adequate.

Sub-critical regime. The amplitude\7 of the “reflected” wave
(see the expression (20)) is numerically estimated as

V = |Veem(xa) — V™|, (26)

whereVrey is the amplitude numerically obtained avd* is
the exact oscillation amplitude at.

Numerical results We assume&y = 5 = 1. The mesh
size isdx = 2.5-1072 and the time step is/100 of the wave
temporal perioddt = 277/(100w). The applied displacement
amplitude isv = 1.

The forcing frequencyw in (22) coincides with the fre-
quency of the incident wave at the artificial boundary. For super-
critical frequencies we sety = —10, and for sub-critical fre-
quenciexa = —5.

to the numerical approximation of both the spatial discretizatior
and the step-by-step time integration technique. The numeric:
inaccuracy increases asincreases, and the deviation from the
theoretical value is larger for increasing order of the ABCs.

For any ABCs order, the analytical valuesi®flecreases for
increasingw, and it goes to zero as goes to infinity (waves with
infinite frequency and velocity equal to 1 are perfectly filtered).
On the contrary, the numerical estimateRadoes not go below a
certain threshold.

The curves of Fig. 3 show that the setting=1,i=1, 2, ...,
is adequate for high frequencies. In the low super-critical fre-
guencies range it is more convenient to assign to the velocities
values larger thang. In Fig. 4(a) we compare the second order
HW-ABCs in the cases; = ¢, =1 andc; = 1, ¢, = 1.281. In
the second case the accuracy improves for frequency values clo
to w = 1.6, which corresponds to the wave veloaiy= 1.281
(equation(4),). The analytical value dRis null atw = 1.6, but
it get worst than the other case wherincreases.

A weak point of the considered ABCs is the large reflection
of incident waves with frequencies close to the cut-off frequency
Moreover, forw — /S there are numerical instabilities due to
the change of the solution behavior, and, as a result, the nume
cal solution is inaccurate. The choice®f>> ¢y is only a par-
tial remedy, as shown in Fig. 4(b), where the vatye= 2.4,
corresponding ta = 1.1, is assigned. Whil® goes to zero at
w=11,itincreases a® — 1". In Fig. 4(b), the gray area cor-
responds to frequencies such thatA (w)/2 > |xa|, where the
numerical value oR could be inadequate.

The addition in (18) of conditions for the absorption of
standing waves does not improve the ABCs accuracy in th
case of super-critical regime, as expected (it was verified in not
reported numerical tests). They are instead effective in the sut
critical regime, as shown in Fig. 5, where we consider con-
ditions (18) withp = 2 and different values ofn, and we set
ci=C=ky,=1,h=12..m

Figure 5 shows thati) R reduces for low values ab. In-
deedky = \/So/co = 1 corresponds to perfectly filtering waves
with frequencies which goes to @) the numericaR is signi-
ficatively larger than the theoretical one when the order of the
ABCs increases, because the numerical errors become apprec
ble; iii) R increases a& approaches the cut-off frequency, and,

We first analyze the performances of the 1-st, 2-nd, and 3-rd 4gain, the numerical estimate of the solution close to the simpl

order GN-ABCs (11) and HW-ABCs (15) at super-critical fre-

quencies. To test the effects of the ABCs order on the accuracy,

we fixc =1,i =1, ..., 3 (perfect absorption of waves with infi-
nite frequency) and change only the ordem Fig. 3, the numer-
ical (solid line) and analytical (dashed line) reflection coefficients
R are plotted as function of the frequenay We notice that, as

oscillation becomes inaccurate.

The choice ok, smaller than,/Sy/co partially reduces the
values ofR near the cut-off frequency as shown in Fig. 5(b),
wherek, = 0.436, corresponding t@ = 0.9, is used.

We draw some overall preliminary conclusions and prescrip:

expected, the HW-ABCs are more accurate than the GN-ABCs at 4j5 45

each order, both theoretically and numerically. Moreover, when
the frequencyv increases, the numeridadeviates from the cor-

responding analytical one, assuming larger values. This is due

6

1. Keeping fixed the ABCs order, the velocitigs the mesh
size and the time step, trltbeoretical ABCs accuracy re-
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duces agv approaches the cut-off frequency. Tingmerical 1071 Riw . HW-ABGs
accuracy superimposed to the theoretical accuracy reduces =[] high frequencies
/c=[1, 1.281]

asw increases.

2. Theremedies to increase the accuracy nearby the cut-off fre-
quency are) to increase the ABCs order, @j to assign
large values to someg. However, a drawback of this last
remedy is a reduction of the accuracy at high frequencies.

3. The ABCs for standing waves (equatidpst+ 1) — (p-+m)
in (18)) are ineffective in the super-critical regime. In the
sub-critical regime they behaves as the ABCs for progressive
waves (equations (p+1) in (18)): their accuracy reduces
as the cut-off frequency is approached, and, near the cut-off,
their absorption capacity increases if the order increases or
if values ofk;, close to 0 are chosen.

102 - c=[1,2.400]

.0 GN-ABCs | | - \
1071 ——— !
order : 10-4

PR 1 | 11 | | 12
107~ < ; (b)
10% - order 3<> e -
............. FIGURE 4. Second order HW-ABCs. Comparison between the re-
10 ; flection coefficients in the cases: (a) high frequendies (1.2, 3),
109 ‘ ‘ : ‘ ‘ j ‘ T {c1=1,¢c,=1} and{c; = 1, ¢ = 1.281}; (b) low super-critical fre-
e e 2(3) e qguenciesw € (1.005 1.2), {c1 = 1,c, =1} and{c1 = 1,¢cp = 2.4}.
» HW-ABCs Dashed line: analyticd® (formula (9)); solid line: numericaR.
Rm_; order 1 ;
10 :""“—\Q\
107 orde{E_\ ; ; 3 , Since the resulting motion is symmetric with respect o0, the

exact solution is evaluated only in the semi-infinite garto, 0),
assigning at the boundary the condition

V(0,t) = f(t)/2 (28)
L o S R B The motion induced by a unit impuls&0,t) = 5(t), with & the
(b) Dirac function, is (see [9] § 1.5.4)
FIGURE 3. Comparison between the reflection coefficients of the 0, if t < |x|/co,
GN-ABCs (11) and the HW-ABCs (15) for progressive wavgs= 1, Vs(X,t) = > xR . , (29)
i =1, 2,3. Dashed line: analytical values of the reflection coefficient Codo S(t C%> 12> [X|/Co.
((9) in Fig. (a), (16) in Fig. (b)); solid line: numerical values of the
reflection coefficient. whereJy(-) is the Bessel function of zero order. If the force (28)
is assigned, the solution can be evaluated by the convolution ir
tegral
Impulsive excitation tf(1)
We now impose a sin-shaped impulsive force at0 v(xt) = /0 > vs(x, (t—1))dt. (30)
AV(O.1) — f(t) — Fsin(wt), if t < 11/, 27 For the numerical solution, we consider the computational do
0.1 =11 = 0, if t > 1/ w. (27) main (xa, Xg) and we test the performances of the ABCxat
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Y c=[1, 1], k=[1, 0.141]
16° e e
10—4 ~,\ ",.
. e s 0
0.8 086 (b) 0.92 0.98
FIGURE 5. HMG-ABCs in the case of standing waves (equations

(18)). (a) comparison between condition of increasing orgee: 2
(cp=cp=1), m=1,2 3, 4 (respectively 0, 1, 2, 3-order of the ab-
sorbing conditions for standing wavesk; = 1. (b) comparison be-
tween HW-ABCs of ordeip = 2 andm = 3 but different coefficients:
cto=1 kipo=1andci =1 ky =1, kp =0.141.

Thus, we assign at = xg the HMG-ABCs (18) of order 60
(p = 50, m= 10), which, a posteriori, was verified to practi-

cally absorb all the waves. In such a way the simulations give

the results we would have if the semi-infinite dom&xa, +)
was considered.

The wave propagation in the pdawga, 0) has the form of a
wave train. The first waves which reach the boundeyyare
those with group velocities close tg, i.e. those with high fre-

quencies and wave numbers; waves with low frequencies and

wave numbers arrive at the artificial boundary later.

The error due to the ABCs is evaluated in the following way.
We record the amplitudeg-gm(t) andVex(t) of the numerical
and of the exact oscillations &at. The amplitudes are estimated

at the instants corresponding to a relative maximum or minimum
of the oscillation and then they are extended to the whole time in-
terval through linear interpolation. Then, we estimate the bound-

ary error as the ratio

_ Vex(t) = VEem(t)

E(t) = Vorl©) (31)

Since the velocity of the incident wave changes in time, the re
flection coefficients (9) and (16) cannot be evaluated numeri
cally as in the previous case. However they can be evaluate
analytically and compared with the error (31). In expression:s
(9) and (16) the velocitg is evaluated as a function of time as
c(t) = c3/cq(t) (see(4)s), with the group velocityg(t) = |xa/t.

Numerical results We perform simulations by setting
So=Cp=1,Xa = —40,xg = 40, the mesh sizéx=2-10"2 and
the time stepit = C dx/co, with the Courant numbeg = /2/2
(see [3] and references quoted therein for further details).

First we analyze the exact solution. Looking at Fig. 6 we
observe that the frequency of the waves approach the cut-off fre
quency,/S = 1 very quickly (see Fig. 6 (c) and (d)). The func-
tion w = w(t) is evaluated by combiningy(t) = [xa|/t with (4)3

to get
S0
(JJ:COt m, fort>|XA|/Co.
c3t2 — x&

This property is a consequence of the fact that the head of th
waves train (the first which arrivesxat xa) travels with velocity
Co, I.e. it has an infinite frequency. The waves behind the head ¢
the train (which arrive later), instead, have smaller frequencies
which approach the cut-off frequency far enough from the trair
tip.

Since soon after the arrival of the train tipat xa the wave
frequency rapidly approach the cut-off frequency, we need-n
xa ABCs capable of filtering low frequency waves, i.e. waves
close to the simple oscillation.

The accuracy of the GN-ABCs is analyzed and the errol
curves are plotted in Fig. 7 (a). First of all we point out the
unexpected closeness between the numerical error (31) and t
analytical reflection coefficient (9). The error quickly increases
since the frequency rapidly approaches 1 (see the eureveo(t)
of Fig. 7 (b)). The error curves confirm the indications of point 2
of the previous section, i.e., at low super-critical frequencies the
accuracy is improved if the order is increased or if lacgare
chosen. The same conclusions can be drawn if the HW-ABC
are implemented (Fig. 8(a)).

The frequency spectrum of Fig. 6 (d) indicates the presenc
of sub-critical frequencies and, thus, ABCs for standing wave:
are required. The curves of Fig. 8(b) show that if firat=f 1) or
second ordemi= 2) ABCs for standing waves are implemented,
then the error reduces, in particular for low frequencies. In Fig
8(b) the error decreases as the order increasesp Fob0 and
m= 10, it reduces to values of the order of Ppand it is totally
due to the numerical inaccuracy.

(32)
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FIGURE 6. Impulsive force ¢ = sp = 1). (a) Displacement at= 40.
(b) Time history of the oscillation of the poirg = —40; (c) curve of the
frequencies of the incident wavesxat (d) Frequency spectrum (FFT)
of the oscillation ak = —40.)

Conclusions and further developments
The accuracy of the GN-, HW- and HMG-ABCs, imple-
mented in a FEM code, was investigated. Numerical coefficients

E,R
0.7.—? c=[1,1
GN-ABCs /. .
0.6 =
/C—U, 1,1]
0.5 [
0.4 # C==[1, 35]
03 L
0.2 / /
| </
t
00 50 100 150 200 250 300 350 400
o 3 ; (@)
2! L
1
00 50 100 150 2(0t())) 250 300 350 400
FIGURE 7. Impulsive force ¢y = sp = 1). (a) ErrorE and reflection

coefficientR for the GN-ABCs (11), implemented for different values
of ¢;; (b) frequency of the incident wave as function of time.

drastically reduces at the cut-off frequency, when the simple os
cillation would be reproduced. This demands for further studie:
aimed to improve the numerical predictions in the neighborhoo
of the cut-off.

The second set of simulations, which consider an impulsive
force, have shown that the standing waves influence the motic
even at points distant from the impulsive source, when their fre
guencies are close to the cut-off frequency. It follows that the
absorbing conditions for standing waves (HMG-ABCs) become
crucial to increase the accuracy.

measuring the discrepancy between the numerical and the analyt-

ical solutions in the case of harmonic and impulsive excitations
were introduced. These coefficients consider both the error due
to the ABCs spurious reflection, as well as the numerical errors
due to the FEM discretization and to the step-by-step time inte-
gration.
By comparing numerical and analytical reflection coeffi-

cients it was possible to attribute the inaccuracy to the ABCs,
to the numerics, or both. It was found that the FEM inaccuracy
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Appendix A

i) From equations (10) to equations (11). To eliminate thex-derivative

in equations (10) we follow the procedure proposed in [1] for the non-
dispersive two-dimensional wave problem. First we notice that the vari-
ablesg; satisfy the equation (1). This can be easily proved by induction,
using the commutative property of linear differential operators. Then we

10

consider thg-th and(j + 1)-th equations of (10)
<P'j _

If (33)1 is derived with respect ta and combined with (10) fop;_,

. 1 .
(p,j—l_c_jq)j—lzwjv C—Hﬁl’j =Qj41 (33)

the equation%?q'o'j_1+c§q0’j = @ 1 +%0; 1 is obtained. Using the
relations (33) to eliminate the space derivative yields
1 1 c3
B+ ——)oj+ (

(34)
Cj Cj+1 J

)qoj 1~ %09j- 1+C%(pj+l =0,

which is thej-th equation of the system (11).

ii) From equations (14) to equations (15). We now follow the steps
proposed in [2] for the non-dlsperswe two-dimensional wave problem
By applying the operatof% & ‘,t) to both sides of equatio(il4);

and(% C+1 at)to equation(14); 1), we obtain, respectively,
C—JQDIJ g( 1+§01)+(P] 1— j/,
2 . S (35)
== (0, + 0,0+ ¢ — @1
Cj+1 Cf—rl

If we multiply (35)1 by 1/cj1, (35)2 by 1/¢j, and equal the left-hand
sides, we get

O 1+ ( ! L )@; + L Lot
j+1 j -1~ & P+
2, 1t CJCTH TR TR R
1 /
Cit1  Cj 9 C1+1(p, 1=0
(36)

In [2], Lemma 1, it was proved by induction that the functippsatisfy

the wave equation. The same result can be extended to the dispersi
wave equation (1), which is used to eliminate the spatial derivatives ir
(36). It turns out

1. .- 1 G 1, ;
D -1 1+ D+ + = +1)| o+
Cj+l (C% )qoj 1 (C% ) i (Cj+1 ) (P]
1.8 o, % )
+ (52 —1)p; RTIY TT R P |
j(012+1 951 Cj+1q)' L Cj+1)(p' Cj Pin

(37)
Let us now apply( & + & &) and (£ — £ &) to both sides of14);
and(14),, respectively We get

1 2.
SV R R (<p1+<02 +o1—¢5. (39)
C]_ C% C2
We multiply (38)1 by 2/cy, (38)2 by 1/(:1, and equal the left-hand sides
to obtain
1 2 . T, 1, 2\/,2__
—+ - ——@h=—V ———V, (39
(clc§+c{cz)¢l+cc§¢2 C:I_qa/ SRS " 39
which, using the equation (1), becomes
2 2
C 200 1. 1 ¢ S
(C1C2 2o o ety (02 )<p2+ 9L Cl‘Pz—
(40)
2 2(:O
=(—— - )V+ —v
C2 C%CZ Co
The equations (37) and (40) constitute the system (15).
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