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Abstract 

 

 Some concepts of multivariate aging for exchangeable random variables 

have been considered in Bassan and Spizzichino (1999) as special types of 

bivariate IFR, by comparing distributions of residual lifetimes of dependent 

components of different ages. Bassan et al. (2002) studied some properties of the 

IFR notion in the bivariate case. They introduced concepts of BDMRL aging and 

developed a treatment that parallels the one developed for BIFR. They analyzed a 

weak and a strong version, and discussed some of the differences between them. 

In the same spirit, we introduce and study a new family of life distribution. This 

class is bivariate increasing failure rate average (BIFRA) and its dual Bivariate 

decreasing failure rate average (BDFRA). We introduce concepts of BIFRA 

(BDFRA) aging and study the preservation properties of this class under 

reliability operations. Also, a shock model is introduced. 

Keywords:  Multivariate extension of IFRA, shock models, life distributions. 

1. Introduction 

Univariate concepts of aging like IFR (increasing failure rate), NBU (new better 

than used), DMRL (decreasing mean residual life) have played an important role 

in survival analysis, reliability theory, maintenance policies, operations research 

and many other areas of applied probability.  

The notion of aging, for engineering systems has been characterized by several 

classes of life distributions in reliability. Various classes of life distributions and 

their duals have been introduced to describe several types of improvement that a 

company aging. The main classes introduced in the literature are based on IFR,  
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IFRA, DMRL, NBU, NBUE, NBAFR, HNBUE, DCCS, NBUA, NBUC,NBUCA 

IFR(2), NBU(2), GHNBUE , NBU�� and NBUmgf concepts of aging, for 

definitions and some properties of these classes, see Bryson and Siddiqui (1990), 

Rolski (1975), Barlow and Proschan (1981), Loh (1984), Deshpende et al., 

(1986), Abouammoh et al.(1993), Ahmad et al. (2005), Hendi (1992), Cao and 

Wang (1991) and Klefsjo (1981), Li and Kochar (2001), Franco et al. (2001), and 

Li et al. (2001), among others. 

A complex system usually consists of several components, which are working 

under the same environment, and hence their lifetimes are, generally, dependent. 

In the literature several attempts have been made to extend the concepts of 

univariate aging to the multivariate case. The most well known classes of life 

distributions based on multivariate aging property are multivariate increasing 

failure rate (MIFR), multivariate increasing failure rate average (MIFRA), 

multivariate new better than used (MNBU), multivariate decreasing mean residual 

life (MDMRL), multivariate new better than used in expectation (MNBUE), 

multivariate harmonic new better than used in expectation (MHNBUE). Each of 

these classes has a corresponding dual class, see Bochanan and Singpurwalla 

(1977) and Basu, et al. (1983). 

This paper introduces a new family of bivariate life distributions. This class is the 

bivariate increasing failure rate on average (BIFRA) and its dual (BDFRA).  We 

study the preservation of BIFRA (BDFRA) under some reliability operations  

i) Formation of coherent system, 

ii) Convolution of life distributions , and 

iii) Mixing of distributions.  

A bivariate shock model is also considered. 

This paper is organized as follows. In Section 2, we introduce the definitions of 

the BIFRA (BDFRA) property. In Section 3, we study preservation properties of 

BIFRA (BDFRA) under different reliability operation. Mixtures are considered in 

Section 4. 

A bivariate shock model is discussed in Section 5. 

2. The Bivariate IFRA Property. 

In This section, we introduce some definitions of BIFRA (BDFRA) and other 

facts used throughout the paper. 
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2.1 Definition. A distance between two vectors u=(0,u) and v =(0,v) is defined by ���	, ��  ��	, ��  ��� � �� 

2.2 Definition. 

 A distribution ����, ��� has BIFRA (BDFRA) if 

i) 
�√����� 	� � ���, ������ !�! 	is increasing (decreasing) in t >0 for all fixed u >0, 

ii) 
�√����� 	� � ���, ������ !�! is increasing (decreasing) in u >0 for all fixed t>0, 

where ���, ��is the bivariate failure rate defined by 

���, �� 	 "#$�∆&	,∆'�→�!,!�			 )*� + , + � � ∆�, � + � + � �	∆�|, . �, / . �0	∆�	∆�  

															 "#$�∆&	,∆'�→�!,!�			 )*� + , + � � ∆�, � + � + � �	∆�0	∆�	∆�)*, . �, / . �0  

															 1�2��, �� 3�3�3� ���, ��  4��, ���2��, ��																																																																	 �1� 
Remark: It is obvious that BIFRA distribution F is characterized by 

�2 5�6�78���, �� ↓  on	*0,∞� ; *0,∞	�, while BDFRA distribution F is characterized 

by�2 5�6�78���, �� ↑ on	*0,∞� ; *0,∞	�. Hence F is BIFRA (BDFRA) if and only if  �2�=�, >�� . �+��2�?��@���, ��4A�	B""	0 C =, > C 1, � . 0, � . 0																						�2�  

2.3 Definition. 

 A structure function	φ���, ��, … , �F� is monotonic if φ is increasing in each 

argument. 

2.4 Definition.  

A function g(x, y) defined on DxD such that 

i) 
��&��'� G��, �� is increasing in x > 0 for fixed y > 0,                               (3a) 

ii) 
��&��'� G��, �� is increasing in y > 0 for fixed x > 0,                              (3b) 

is called bivariate star-shaped, where D = [0,∞).  

2.5 Definition. 
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Let ��and ��be bivariate distributions not necessarily confined to the positive 

axis. Then  

����, ���  H ����� I �, �� I ��J
KJ �����, ��,																																																								�4� 

is the convolution of ��and ��. 

3. Preservation of BIFRA (BDFRA) under reliability operations. 

We study the preservation of BIFRA (BDFRA) under the reliability operations  

i) Formation of coherent system. 

ii) Convolution of distributions. 

iii) Mixture of life distribution, see Barlow and Proschan (1981). 

 

3.1 Theorem. Let h (p) be the reliability function of a monotonic system. Then 

 h�Mα�	≥	Nα�M� for 0	≤	α	≤	1, where Mα	  	 �M�? , M�? , … , MF?�. 
Proof See Barlow and Proschan (1981, P. 85).  

3.2Theorem Suppose each of the independent components of a coherent system 

has a BIFRA life distribution. Then the system itself has a BIFRA life 

distribution. 

Proof  

Let ����, ���denote the system life distribution, while �P���, ���denotes the life 

distribution of the i th components, #  	1, 2, Q. �2�=��, >���  NR�2��=��, >���, �2��=��, >���, … , �2S�=��, >���T                             (5)   

Since �Pis BIFRA, then  

�2P�=��, >��� . �2P�?��@����, ���, #  	1, 2, Q. 
Since h is increasing in each argument, it follows that 

�2�=��, >��� . N U�2��?��@����, ���, … , �2F�?��@����, ���V                          
But by Theorem 2, we have 

N U�2��?��@����, ���, … , �2F�?��@����, ���V . N�?��@�*�2����, ���, … , �2F���, ���0 
Combining the last two inequalities, and using (5), we conclude that  
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 �2�=��, >��� . �2�?��@����, ���                          
Thus the system life distribution ����, ��� is BIFRA. 

Next we present some interesting examples of BIFRA distributions. 

 Example1. 

 A bivariate exponential distribution (BVE), see Barlow and Proschan (1981, p. 

129) has probability survival function as �2���, ���  WKRX5 5�X� ��X5�YZ[	� 5, ��T		\��, \�� . 0. 
We note that  1���� � ��� log�2���, ���  I 1���� � ��� R\��� � \��� � \��max	���, ���T 
is decreasing in	�� c 0 for fixed �� c 0  and is decreasing in �� c 0for fixed �� c 0. Thus the BVE is BDFRA. 

The following example shows that the BDFRA is not closed under formation of 

coherent structures. 

Example2.  

 Let ����, ��� be the life distribution of a parallel system of two non-independent 

components having respective life distribution. �2����  1 I WK�X5�X5�� 	,			�2����  1 I WK�X��X5��   �2���, ���  WK�X5�X5�� 5 � WK�X��X5�� � I WK�X5�X5�� 5K�X��X5�� �. 
It follows that �
d 5�� �� log�2���, ��� 
I �

d 5�� �� "AGRWK�X5�X5�� 5 � WK�X��X5�� � I WK�X5�X5�� 5K�X��X5�� �T.  
If this function is plotted, one can see that

�
d 5�� �� log�2���, ��� is not decreasing in 

�� on [0,∞), but is increasing in �� on [��∗,∞) for some	��∗, which can be determined 

from the graph. We then conclude that the BDFRA is not closed under formation 

of coherent system.  

3.3 Theorem. 

 If �2�and �2� are BIFRA, then their convolution is BIFRA. 

Proof. For the convolution of	�f�, �2� we have  
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�2�=��, >���  H H �2��=�� I �, >�� I ����2���, ��.J
KJ

J
KJ  

Replace u by αu and v by βv in the above integration to obtain 

�2�=��, >���  H H �2��=��� I ��, >��� I �����2��=�, >��.J
KJ

J
KJ 																													�6� 

But �2P��, ��, �#  1, 2� is BIFRA, which implies that 

�2P�=�, >�� . �2P�?�,			@���, ��		#  1,2,					0 C =, > C 1																																												�7� 
From (7) in (6), we have the following inequality 

�2�=��, >��� . H H �2��?�,			@���� I �, �� I ����2��?�,			@���, ��.J
KJ

J
KJ 									 

                    . �2�?�,			@����, ��� 
 

This completes the proof. 

Notice that, the convolution of BDFRA is not necessarily BDFRA. This is can be 

seen from the following. 

Example3.  Let	��, �� be BVE, thus  �2����, ���  WKRX5 5�X� ��X5�YZ[	� 5, ��T, �2����, ���  WKR@5 5�@� ��@5�YZ[	� 5, ��T, �� . 0, �� . 0. 
The convolution of�2�, �2� is given by  

�2���, ���  H H �2���� I �, �� I ����2���, ��, if	 5
!

 �
! �� C ��, 

�2���, ���  H H �2���� I �, �� I ����2���, ��, if	 5
!

 �
! �� C ��, 

�2���, ���  H H WKX5� 5K��K�X��X5��� �K���WK@5�K�@��@5��� 5
!

 �
!  

 >��>��>���	WKX5 5K�X��X5�� � H H WK�@5KX5��WK�@��@5�KX�KX5������� 5
!

 �
!  

 >��>��>����>��>��I\� I \����>� I \��	 ; 

kWKX5 5K�X��X5�� �R1 I WK�@5KX5� 5TR1 I WK�@��@5�KX�KX5�� �Tl																														�8� 
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\�  0.2,				\�  0.3,				\��  0.5 and >�  0.3, 			>�  0.4,							>��  0.3, then 

�2���, ���  21WK!.� 5K!.p �*1 I WK!.� 50*1 I WK!.� �0. 
Thus  �

d 5�� �� *log�21� I 0.2�� I 0.7�� � log�1 I WK!.� 5��1 I WK!.� ��0.           
Which when plotted shows that 1���� � ��� log�2���, ��� 
is increasing in ��. We conclude that the BDFRA is not closed under the 

convolution. 

3.4 Theorem. Let ����, ��� be BIFRA distribution, then its bivariate hazard 

(failure) function log����, ��� is a bivariate star-shaped. 

Proof The proof is a direct consequence of definitions 2.2 and 2.4. 

4. Mixture of distributions. 

An interesting fact in the literature and in applications of undimensional aging 

notions, see, e.g., the review by paper by Shaked and Spizzichino (2001) and 

references therein. For a recent contribution, see Finkelstein and Esalova (2001) 

where it is stated that the mixture of distributions with some property of positive 

aging do not necessarily maintain the same property. Then one can be generally 

interested in finding conditions on the mixtures under which one-dimensional or 

multivariate aging properties are preserved. 

We consider here conditionally dependent pairs of lifetimes. In this case, the joint 

law can be written as mixtures. It may be interesting to notice that bivariate 

dimensional aging properties may be preserved under mixtures, whereas the 

opposite may hold for one-dimensional properties. 

4.1 Definition.  

Given random variables q� and q�, we say that: 

a) q� and q� are positively quadrant dependence (PQD) if  )*q� + ��, q� + ��0 . )*q� + ��0)*q� + ��0, 
or  *q�|q� c ��0 .r q�, for	all	�� c 0                                      
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b) q�	is stochastically increasing in q� if )*q� c ��|q�  ��0  is increasing in q�for 

allq�. 

We write it as t��q�|q��. 
c) Let q�, q�	have joint probability density (or, in the discrete case, joint frequency 

function) 4���	���, then 4���	���	is totally positive of order 2�q)�� if 
u4���, ��� 4���, ���
4���, ��� 4���, ���u . 0, for all   �1	 C 	�2, �1	 C 	�2.	

d) q� is right tail increasing in q�,	vqw	�q�	|	q�� if )*q� c ��|q� c ��0 is increasing 

in ��for all ��.  

e) Random variables q  	 xq�, q�, qFy are associated if  zA�	*Γ�q�,∆�q�0		≥	0,	
for all pairs of increasing binary functionsΓ,∆. 

4.2Theorem.   

q)�	�q�, q��	⇒	{|�q�, q��	⇒	vq|�q�	|	q��	⇒	}�q�, q��	⇒	)~��q�, q��.			
Poof See Barlow and Proschan (1981, p.143). 

In the next theorem, we conjecture sufficient conditions under which the   

unconditional joint law of a pair of conditionally BIFRA random variables is 

BIFRA. 

 Let θ  be a random variable taking values in a set L, H is its distribution and, 

when existing, h is its density. Given θ, (T1, T2) are conditionally distributed 

random variables with a common conditional survival function�̅���, ��|��. The 

joint survival function is then given by 

�2���, ���  H �̅���, ��|�������.																																																																																	�9��  

4.3 Theorem. 

 Let (T1, T2 |θ ) be bivariate conditionally random variable with BIFRA, T1, T2 are 

conditionally PQD given thatθ, Ti  ↑   st inθ, i=1, 2.Then (T1, T2) is BIFRA. 
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5. Shock Model. 

Univariate shock models relate the continuous survival probability of a device 

subject to shocks occurring randomly in time to the (discrete) probability of 

surviving any specified number of shocks. 

Suppose that a device is subject to shocks occurring randomly in time according 

to the counting process {N (t), t ≥ 0}. Let the device have probability)2� of 

surviving k shocks, k = 0, 1, 2, where 1  )2! . )2� . ⋯  the probability �f��� that 

the device survives beyond t is given by 

�f���  ∑ )*����  �0)2� 																																																																																							�10�J��!                                      

Such shock models have been studied by Esary et al. (1973) when N(t) is a 

homogeneous Poisson process and by A-Hameed and Proschan (1973,1975) when 

N(t) is a  non-homogeneous Poisson process. In all these cases the authors prove 

that �f���  is IFR, IFRA, DMRL, NBU, or NBUE under suitable conditions on N 

(t) if )2�  has the corresponding discrete property. Klefsjo (1981) has considered 

(10) for the HNBUE class. Abouammoh et al. (1988) has studied some shock 

models for NBUFR and NBAFR classes. Abouammoh and Hendi (1991) 

considered shock models for NBURFR and NBARFR Abouammoh and Ahmed 

(1990) have proved similar results for the GHNBUE class under homogeneous 

and non-homogeneous Poisson shocks. 

The main object of this section is to establish different results of bivariate shock 

models for newly introduced classes in Bassan and Spizzichino (1999) and Bassan 

et al. (2002). 

First we consider a bivariate exponential distribution for the life lengths of two 

non-independent components. Suppose three independent sources of shocks are 

present in environment and also not necessarily fatal. Rather a shock from source 

1 causes the failure of component 1 with probability q1; it occurs at a random time 

U1, where )*�� c �0  W�M	�Iλ���. A shock from source 2 causes the failure of 

component 2 with probability q2; it occurs at a random time U2, where       )	*�� c 	�0  W�M	�Iλ���. Finally, a shock from source 3 causes the failure of: 

a) Both components, with probability q11,b) component 1 only, with probability 

(q10,c) component 2 only, with probability (q01, d) neither components, with 

probability q00; it occurs at a random time U12. Thus the life length T1 of  
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Component 1 satisfies q�  	$#Q	���, ����, while the life length q� of component 

2 satisfies q�  	$#Q	���, ���� . 
Then the joint survival probability for �q�, q�� is )*q� c ��, q� c ��0

 ��WKX5 5 �\������!
J

��!
�1 I ����� ��WKX� � �\������!

J
��!

�1 I ����� ; 

�� � WKX5 5 �\������$! �WKX5�� �K 5� �\����� I ����FQ! ��!� I ��!�F�J
��!

J
F�! �, 

when 0 ≤ t1 < t2. We obtain  �2���, ���  W�MxI*\�∗�� � \�∗ �� � \��∗ max	���, ��0y,																																															�11�            
Where \�∗  \��� � \����!, 			\�∗  \��� � \���!�, \��∗  \�����	 
5.1Theorem. The Nonfatal shock model in (11) has BDFRA 

Proof 
 The proof of this Theorem can be obtained using similar arguments to that used   

in example 1. 

If q1= q2= q11=1, the nonfatal shock model in (11) reached to the fatal shock 

 model, see Barlow and Proschan (1981). 
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