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ABSTRACT 
The multi-pulse Shilnikov orbits and chaotic dynamics for 

a parametrically excited, simply supported rectangular buckled 
thin plate are studied by using the extended Melnikov method. 
Based on von Karman type equation and the Galerkin’s 
approach, two-degree-of- freedom nonlinear system is obtained 
for the rectangular thin plate. The extended Melnikov method 
is directly applied to the non-autonomous governing equations 
of the thin plate. The results obtained here show that the multi-
pulse chaotic motions can occur in the thin plate. 

 
KEYWORDS: multi-pulse; non-autonomous; buckled thin 

plate; Melnikov method 

 
INTRODUCTION 

With the use of thin plate in shuttles and large space 
stations, researches on nonlinear dynamics, bifurcation and 
chaos of thin plate has received considerable interests in the 
past decade. Abe et al. [1] used the method of multiple scales to 
analyze the two-mode responses of simply supported thin 
rectangular laminated plates subjected to harmonic excitation. 
The global bifurcations and Shilnikov type chaotic dynamics 
were investigated by Zhang et al. [2] and Zhang [3] for both 
parametrically and externally excited and parametrically 
excited simply supported rectangular thin plates. Awrejcewicz 
et al. [4] used the Bubnov-Galerkin with high-order 
approximations and finite difference methods to investigate the 
complex vibrations and bifurcations of a thin plate-strip excited 
transversally and axially. The dynamics of nonlinear polar 
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rthotropic circular plates with simply supported boundary 
ondition are investigated by Akour and Nayfeh [5], which 
onsidered Kirchhoff strain displacement relations for thin 
lates plus next higher-order nonlinear terms. 

Although there are so many challenges and difficulties, 
ertain progress has been achieved in developing analytical 
ols to study global bifurcations and chaotic dynamics for 

igh-dimensional nonlinear systems and giving systematic 
pplications to engineering problems in the past two decades. 
ased on studies given by Wiggins [6], Kovacic and Wiggins 
] developed a new global perturbation method which may be 

sed to detect the Shilnikov type single-pulse homoclinic and 
eteroclinic orbits for four-dimensional autonomous ordinary 
ifferential equations. Based on studies in literature [6] and [7], 
aper and Kovacic [8] employed a modified Melnikov method 
 study the existence of several types of multi-bump 

omoclinic orbits to resonance bands for completely integral 
amiltonian systems with perturbations. Camassa et al. [9] 

xtended the Melnikov method to investigate multi-pulse 
mping of homoclinic and heteroclinic orbits in a class of 

erturbed Hamiltonian systems. Because of abstruseness in 
nderstanding and difficulties in proof and derivation, the 
ethod given in references [8,9] has seldom been used in 

ngineering application. Zhang and Yao [10-12] studied Multi-
ulse orbits in beam system and belt system by using energy-
hase method developed by Haller and Wiggins [13].  

In this paper, the multi-pulse Shilnikov type orbits and 
haotic dynamics are analyzed for a parametrically excited 
imply supported rectangular thin plate. The global 
erturbation analysis is directly applied to the non-autonomous 
1 Copyright © 2007 by ASME 
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ordinary differential equations of motion for the thin plate by 
the method in reference [9] for the first time. The case of 
buckling for the rectangular thin plate is considered. The global 
dynamic analysis and numerical simulations indicate that the 
multi-pulse chaotic motion can occur in the rectangular thin 
plate. 

FORMULATION 
We begin with a brief outline of the theory developed 

in literature [8] and [9] that will be used in our analysis. The 
general systems under consideration have the following 
form 

),,,,(),( εµγε+= IxgIxHJDx x
x& ,    (1a) 

),,,,( εµγε= IxgI I& ,               (1b) 

),,,,(),( εµγε+Ω=γ γ IxgIx& ,        (1c) 

where 12),,( SIx ××∈γ RR , 10 <<ε< , pR∈µ denotes 
parameters of the system,  all functions are sufficiently 
differentiable on the domains of interest and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
01
10

J , 

Let 0=ε , the unperturbed system is given as  

),( IxHJDx x=& ,         (2a) 

0=I& ,                (2b) 

),( IxΩ=γ& .            (2c) 
Function H  is Hamiltonian of the unperturbed system (2). 
It is noticed that system (2) is an uncoupled two-degree-of-
freedom nonlinear system, the variable I  remains constant 
since 0=I& . There are two assumptions on equation (2): 
Assumption 1. For every I  with 21 III << , equation (2a) 
possesses a hyperbolic equilibrium point )(0 Ixx =  which 
varies continuously with I , and connected to itself by a 
homoclinic orbit ),( Itxh . 
Assumption 2. For some 0II =  with 201 III << , there 
exist conditions that 0)),(( 000 =Ω IIx  and 

0)(
)),((

0
0 ≠

Ω
I

dI
IIxd

. 

Assumption 1 indicates that in the four dimensional phase 
space, the set 

{ }π≤γ≤≤≤=γ= 20,),(),,( 210 IIIIxxIxM ,   (3) 
is a two dimensional, normal hyperbolic invariant manifold. 
The manifold M  has three-dimensional stable and unstable 
manifolds which are represented as )(MW s  and )(MW u , 
respectively. Moreover, the existence of homoclinic orbit of 
equation (2a) implies that )(MW s  and )(MW u  intersect 
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non-transversally along a three- dimensional homoclinic 
manifold denoted by Γ :  

⎭
⎬
⎫

⎩
⎨
⎧ γ+=γ<<=γ=Γ ∫

t h
I

h dsIItxHDIIIItxxIx
0

021 ),),((,,),(),,(  (4) 

Because γ  may represent the phase of the oscillations, with 
assumption 2 when 0II = , which is called as a resonant I 
value, the phase shift γ∆  of the oscillations is defined as 

),(),( 00 II −∞γ−+∞γ=γ∆ .         (5) 

=I constant on the manifold M under assumption 2 denotes a 

circle of the singular fixed points, the phase shift γ∆ gives the 

shift in phase between the two endpoints of the heteroclinic 

trajectory along the circle of fixed points. 

Now we analyze the dynamics on the perturbed system 

(1). In particular, the normal hyperbolic invariant manifold M  

along with its stable and unstable manifolds will persist in the 

perturbed system under arbitrary, sufficient small differentiable 

perturbations. It is noticed that hyperbolic singular 

points )(0 Ixx =  may persist under small perturbations, in 

particular, ε→ MM . Therefore, we obtain 

{ }π<γ≤≤≤=γ== ε 20,,)(),,( 210 IIIIxxIxMM . (6) 

For what is to follow, some definitions are needed. First, 
the Melnikov function is given by the integral 

dttpgtpnIM hh∫
∞

∞−
µ=µγ )0,,)(()),((),,( 00 ,   (7) 

where 

)0,),)((),(,),(( 0 IIxHDIxHDIxHD IIx −=n ,  (8) 

))0,,,,(,)0,,,,(,)0,,,,(( µγµγµγ= γ IxgIxgIxg Ixg , (9) 

  )),(,,),(()( 0γ+γ= ItIItxtp hhh ,      (10) 
The vector n  is the normal to the homoclinic manifold Γ . 
Second, the k pulse Melnikov function kM , L,2,1=k , 
is defined as 

),)(,(),,( 0

1

0
0000 µγ∆+γ=µγ ∑

−

=

IjIMIM
k

j
k ,   (11) 

where the amount of asymptotic phase changes is as follows: 

ττΩ=γ∆ ∫
∞+

∞−
dIIxI h ),),(()( 000 .        (12) 

Theorem For some integer k , 0γ=γ , µ=µ let the 
following conditions be satisfied: 
1. The k pulse Melnikov function has a simple zero point 
in 0γ , that is, 
2 Copyright © 2007 by ASME 

ms of Use: http://www.asme.org/about-asme/terms-of-use



Dow
0),,( 00 =µγIM k , 0),,( 00 ≠µγγ IMD k .    (13) 
2. 0),,( 00 ≠µγIM i  1,1,,1 >−= kki K . 

Then for all 0II → , µ→µ  the stable manifold and 
unstable manifold of perturbed system (1) intersect 
transversely. 

EQUATIONS OF MOTION OF THE THIN PLATE 
We consider the simply supported at the four edge 

rectangular thin plate which the edge lengths are a  and b  
and thickness is h , respectively. The thin plate is subjected to 
in-plane excitation which can be expressed in form 

tppp Ω−= cos10 . We establish a Cartesian coordinate 
system shown in Figure 1 such that coordinate Oxy  is located 
in the middle surface of thin plate.  

 
Figure 1. The model of a rectangular thin plate and the 

coordinate system 
It is assumed that u, v and w represent the displacements of 

a point in the middle plane of the thin plate in the x , y and 
z directions, respectively. From van Karman type equations for 
the thin plate, we obtain the governing equations of motion for 
the rectangular thin plate as follows 
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Where ρ  is the density of thin plate, ( )2

3

112 ν−
=

hED  is 

the bending rigidity, E  is Young’s modulus, ν  is the 
Possion’s ratio, φ  is the stress function, and µ  is the 
damping coefficient. 

We assume that the boundary conditions of the simply 
supported at the four edge rectangular thin plate can be written 
as 

at 0=x  and ax = , 02

2
=

∂

∂
=

x
ww , 

at 0=y  and by = , 02

2
=

∂
∂

=
y
ww .      (16) 

O 

tppp Ω−= cos10
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The boundary conditions satisfied by the stress function 

φ  may be expressed in the following form 

∫ δ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝
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∂

φ∂
=

a
xxd

x
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xyE
u

0

2

2

2

2

2

2
11 ,   (17) 

and 

∫ =
∂

φ∂b
pyd

y
h

0 2

2
, at 0=x  and ax = ,      (18) 
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∂
φ∂

ν−
∂
φ∂

= ∫
b

xd
y
w

yxE
v ,   (19) 

and 

∫ =
∂
φ∂a

xd
x0 2

2
0 , at 0=y  and by = ,     (20) 

where xδ  is the corresponding displacement in x direction at 
the boundary. 
    We mainly consider the nonlinear oscillations of the 
rectangular thin plate in the first two modes. Thus, we write the 
w in the following form 

( ) ( ) ( )
b
y

a
x

tu
b

y
a
x

tutyxw
ππ

+
ππ

= sin
3

sin
3

sinsin,, 21 ,  (21) 

where ( ) ( )2,1ii =tu  are the amplitudes of two modes, 

respectively.  

Substituting equation (21) into equation (15), considering 

the boundary conditions (17)-(19) and integrating, we obtain 

the stress function as follows 

( )
a

xt
b

yt
a

xttyx π
φ+

π
φ+

π
φ=φ

6cos)(2cos)(2cos)(,, 600220  

b
y

a
xt

b
yt ππ

φ+
π

φ+
2cos2cos)(6cos)( 2206  

b
y

a
xt

b
y

a
xt ππ

φ+
ππ

φ+
2cos4cos)(4cos2cos)( 4224  

2
44 2

14cos4cos)( py
a

y
a

xt −
ππ

φ+ ,        (22) 

where  2
1220 32

9)( uhEt
λ

=φ , 2
2

2

02 32
9)( uhEt λ

=φ ,  

2
2260 288

)( uhEt
λ

=φ , 2
1

2

06 288
)( uhEt λ
=φ ,  
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( ) 2122

2

22
1

)( uuhEt
+λ

λ
−=φ , 

( ) 2122

2

24
416

25)( uuhEt
+λ

λ
=φ , 

( ) 2122

2

42
1416

25)( uuhEt
+λ

λ
=φ , 

( ) 2122

2

44
116

)( uuhEt
+λ

λ
−=φ , 

               
a
b

=λ .               (23) 

    In order to obtain the dimensionless equations, we 

introduce the transformations of the variables and parameters 

( ) )2,1i(i2

2/1

i == u
h

abx , p
D

bp 2

2

π
= ,  

Ω⎟
⎠
⎞

⎜
⎝
⎛ ρ

π
=Ω

2/1

2 D
hab , t

h
D

ba
t

2/12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

π
= , 

  ( )
µ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ρ
ν−

π
=µ

2/12

22
112

Eh
ab ,         (24) 

   For simplicity, we drop overbars in the following analysis. 

By means of the Galerkin’s method, substituting equations (21) 

and (22) into equation (14) and integrating, we obtain the 

governing equations of motion for the dimensionless as follows 

0cos2 2
212

3
11111111 =α+α+Ω+−µ+ xxxtfxxgxx &&& ,  (25a) 

0cos2 2
2
12

3
21222222 =β+β+Ω+−µ+ xxxtfxxgxx &&& , (25b) 

where     2

422

1 16
81)1(12
λ
+λ−

=α
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hv ,  

⎟
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⎝
⎛

λ
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22

1
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( ) ⎟
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⎝
⎛ ω−=

2*
0 kkk phg  and 

⎩
⎨
⎧

=
=

=
29,
1,1

k k
k

h , 

( ) 2

222*
1

*
1

)9(
λ
λ+

=ω=p , ( ) 2

222*
2

*
2

)19(
λ
+λ

=ω=p , 

12
1 phf kk = , 2,1=k ,           (26) 

where ( )2,1=kgk  are two linear natural frequencies of the 

thin plate, ( )2,1* =kpk  are the critical forces corresponding 
to two buckling modes at which thin plate loses the stability, 

*
kω  ( )2,1=k  are the natural frequencies of the two buckling 

modes, and ( )2,1=kfk  are the amplitudes of parametric 
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excitation. It is known that the buckling load is *
0 kc pp = , in 

this paper, we restrict our attention to the case where the 
applied static load is larger than the buckling load, namely, 

kc hpp 00 > . 

MULTI-PULSE ORBITS OF THE THIN PLATE 
It is found from the aforementioned analysis that 

equations (25a) and (25b) are the governing equations of 
nonlinear oscillations of the rectangular thin plate for the first 
and the second modes, respectively. From the point view of 
engineering application, it is known that the motion of the 
second mode is faster than one of the first one. Therefore, we 
introduce the following coordinate transformation on equation 
(25): 

21 xu =µ , 22 xu &=µ , 11 xv = , 12 xv &=µ , tΩ=φ .  (27a) 
  εµ→µ , kk ff ε→ , 2,1=k .      (27b) 

   Then, the following equations can be obtained: 
21 uu =& ,                   (28a) 

φε−εµ−α−β−= cos2~
2121

2
12

3
11122 fuuuvuugu& , (28b) 

21 vv εµ=& ,                 (28c) 

φε−εµ−α−α−= cos
~

2~~
1121

2
12

3
11112 fvvvuvvgv& ,  (28d) 

Ω=φ&                    (28e) 

where 11
~

µβ=β , 
µ

= 1
1

~ g
g , 

µ
α

=α 1
1

~ , 
µ

= 1
1

~ f
f . 

Let 0=ε  in equation (28), the unperturbed system has 
the following form 

21 uu =& ,                             (29a) 

1
2
12

3
11122

~
uvuugu α−β−=& ,              (29b) 

01 =v& ,                             (29c) 

1
2
12

3
11112

~~ vuvvgv α−α−=& ,              (29d) 

The Hamiltonian of unperturbed system (29) is obtained 
as 

4
11

2
11

2
1

2
12

4
11

2
12

2
2

~
4
1~

2
1

2
1~

4
1

2
1

2
1 vvgvuuuguH α+−α+β+−=  (30) 

Now we want to find the hyperbolic fixed points of the 
equation (29a) and (29b) at which assumption 2 holds: 

02 =u ,                      (31a) 

0~
1

2
12

3
1112 =α−β− uvuug ,        (31b) 

0~~
1

2
12

3
1111 =α−α− vuvvg .        (31c) 

The equation (19) can be solved as 

)0,0(),( 0
2

0
1 =uu , where 

1

10
1 ~

~

α
±=

g
v ,     (32a) 
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)0,(),(
1

2
21 β

±=
g

uu , where 01 =v .     (32b) 

The singular fixed point of equation (29a) and (29b) 
)0,0(),( 0

2
0
1 =uu  is a saddle, and fixed points 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

β
±= 0,~),(

1

2
21

g
uu are centers, therefore equation (29a) 

and (29b) can exhibit the homoclinic bifurcations, and the 
homoclinic orbits which connect the saddle point 

)0,0(),( 0
2

0
1 =uu  are obtained as 

tgh
g

u h
2

1

2
1 sec~

2
β

±= ,              (33a) 

tgtgh
g

u h
22

1

2
2 tanhsec~

2
β

±= ,      (33b) 

From the results obtained in paper [14], in four-
dimensional phase space the set defined by 

{ }HvIvuuvvuuM <∈=== ||,,0),,,( 21212121 , (34) 
is a two-dimensional partial invariant manifold, it is known 

that  partial invariant manifold M is normally hyperbolic. 
The manifold M  has three-dimensional stable and unstable 
manifolds which are represented as )(MW s  and )(MW u , 
respectively. The existence of the homoclinic orbits of system 
(17) connected to singular point )0,0(),( 0

2
0
1 =uu  indicates 

that )(MW s  and )(MW u  intersect along a three-
dimensional homoclinic manifold denoted by Γ , which can be 
written as 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
α

±=∈=Γ ∫ ∞−

t hh
v

hh vdsguuHDvIvuuvvuu 0
2

1

1
2121212121 ),,(,,,),,,(

1

.    (35) 
From equation (12), we can compute that 

1

21

1

22
1

1

1
22 ~

~
~

4
~
~

αβ

α
±=

α
α±=∆ ∫

∞+

∞−

gg
dtu

g
v .      (36) 

It is obvious that the unperturbed system (29) is a four 
dimensional equations, whereas the perturbed system (28) is a 
five dimensional system. When viewed in the full five-
dimensional phase space 14 S×R , the partial normally 
hyperbolic invariant manifold M  of formula (34) can be 
written as the following form 

{ }021212121 ,||,,0),,,,()( φ+Ω=φ<∈==φ= tHvIvuuvvuutM
        (37) 

Based on the analysis in reference [15], we know that 
)(tM  along with its stable and unstable manifolds are 

invariant under small, sufficiently differentiable perturbations, 
moreover )(tM ε , ))(( tMW s

ε and ))(( tMW u
ε  are rC ε -

close to )(tM , ))(( tMW s  and ))(( tMW u . 
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Now we begin our analysis of the perturbed system. 
Consider the following cross-section of the phase space 

}|),,{( 0
0 φ=φφ=Σφ vu .           (38) 

The geometrical explanation of the cross-section 0φΣ  is 
shown as figure 2 

0=φ

0φφ =

πφ 2=

φ

v

u

0
0)( ptM =∩∑ φ

0

0))(( ptM Γ=∩Γ ∑ φ

∑ 0φ

)(tM  
Figure 2. The geometrical structure of the cross section 0φΣ  

We introduce the scale transformation near the resonant 
region as 1

0
11 vvv ε+= , tε=τ , and Taylor expand the 

equation (28c) and (28d) in ε , to obtain the following 
equations, for simplicity, we drop over-bar 

21 vv =& ,                   (39a) 

tfvvvvvvgv Ωε−µε−αε−α−= cos23)3( 1
0
12

2
11

0
111

20
112& (39b) 

When 0=ε , unperturbed system of equation (39) can be 
written as 

21 vv µ=& ,                        (40a) 

11
20

112 )3~( vvgv α−=& ,              (40b) 

The fixed point )0,0(),( 21 =vv is a center of equation 
(40), and is a saddle point of equation (39), from which we can 
conclude that homoclinic orbits of the system (39) are 
Shilnikov type orbits. 

We are now at the point where we can compute the 
Melnikov function. According to equation (7), the Melnikov 
function of the first pulse can be computed as 

∫
+∞

∞−
µα−φ++Ω−µ−= dtuvvttuufuM ]))(cos(2[ 2

1
0
12200212

2
2  

0
2

1

21

1

2

2
00
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2
2
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2
~
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~
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csc)sin(~
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4

vgg
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ht
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β
πΩ

±
β

µ
−=  (41) 

The k-pulse Melnikov function can be computed according 
to equation (11) 

2
00

21

2
2

1

2

2
csc)sin(~

2
~3

4

g
htk

g
f

k
g

M k
πΩ

φ+Ω
β

πΩ
±

β

µ
−=  

    
1

21

1

20
2

1
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1

2
~

~
~

2
)1(~

~
~

4
αβ

µα
−+

αβ

µα
+
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kkkv

gg
.  (42) 

If k-pulse Melnikov function kM  has simple points, that 
is: 
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and 
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Then, equation (43) can be written as following: 
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We may choose proper parameters in equation (45), such 
that the value of the following formula (46) 
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is a nonnegative integer. Thus, system (28) has k-pulse 
Shilnikov homoclinic orbits according to the theorem. 
Now numerical simulations are used to predict the chaotic 
motion of the parametrically excited, simply supported 
rectangular thin plate. The fourth-order Runge-Kutta algorithm 
is employed to explore the existence of the chaotic motions of 
the thin plate. Figure 3 demonstrates the existence of the multi-
pulse chaotic motion of equation (25) with two buckling 
modes. The chosen parameters and the initial conditions are 

82.01 =g , 76.02 =g , 52.0=µ , 36.11 =α , 88.02 =α , 
56.21 =β , 1121 =f , 1092 =f , 1=Ω  and  

)16.0,5.0,21.0,1.0(),,,( 2211 =xxxx && , respectively. Picture (a) 
represents phase portrait on plane ( )11 , xx & ; (b) waveform on 
plane ( )1, xt ; (c) phase portrait on plane ( )22 , xx & ; (d) 
waveform on plane ( )2, xt ; (e) phase portraits in three-
dimensional space ),,( 122 xxx & . 
 

  
1x

1x&

)(a
t

1x

)(b
 

oaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms 
  

 
Figure 3. Multi-pulse chaotic motion of the plate 

CONCLUSIONS 
Engineering researchers have taken great pains 

researching on the nonlinear oscillations, bifurcations and 
chaos of the buckled rectangular thin plates in the case of large 
deformation. In this paper, the multi-pulse Shilnikov orbits and 
chaotic dynamics are analyzed on the non-autonomous buckled 
rectangular thin plate by using the extended Melnikov method 
for the first time, which cannot be analyzed using the method 
of multiple scales.  

Most of the studies in literature on using the global 
perturbation method to analyze the global and chaotic 
dynamics are focused on autonomous differential equations. 
For example, in papers [2,3] the non-autonomous ordinary 
differential equations of the thin plate with two-degree-of-
freedom were derived by von Karman-type equation and 
Galerkin’s approach. Then, the method of multiple scales was 
used to transfer non-autonomous governing equation of motion 
to the autonomous averaged equation. Based on the averaged 
equation, the theory of normal form and the global perturbation 
method were employed to study the global and chaotic 
dynamics. The extended Melnikov method in paper [9] is also 
used to dealt with four-dimensional autonomous ordinary 
differential equations, while in this paper, the method in paper 
[9] is generalized to resolve non-autonomous ordinary 
differential equations by introducing the cross section 0φΣ . 

Furthermore, the extended Melnikov method is focused on 

the perturbed Hamiltonian systems, where the variable 

)2,0[ π∈γ  is bounded. In this paper, the system is in 

Cartesian coordinate; therefore, the geometrical structure of the 

normal hyperbolic invariant manifold M  may be different. 

2x2x&

1x

)(e

2x

2x&

)(c
t

2x

)(d
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Do
We deal with this deficiency by introducing the concept of part 

invariant manifold in virtue of the reference. The geometrical 

structure of the manifold )(tM  and the cross section 0φΣ  

need further deep research. 
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