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ABSTRACT

The multi-pulse Shilnikov orbits and chaotic dynamics for
a parametrically excited, simply supported rectangular buckled
thin plate are studied by using the extended Melnikov method.
Based on von Karman type equation and the Galerkin’s
approach, two-degree-of- freedom nonlinear system is obtained
for the rectangular thin plate. The extended Melnikov method
is directly applied to the non-autonomous governing equations
of the thin plate. The results obtained here show that the multi-
pulse chaotic motions can occur in the thin plate.

KEYWORDS: multi-pulse; non-autonomous; buckled thin
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INTRODUCTION

With the use of thin plate in shuttles and large space
stations, researches on nonlinear dynamics, bifurcation and
chaos of thin plate has received considerable interests in the
past decade. Abe et al. [1] used the method of multiple scales to
analyze the two-mode responses of simply supported thin
rectangular laminated plates subjected to harmonic excitation.
The global bifurcations and Shilnikov type chaotic dynamics
were investigated by Zhang et al. [2] and Zhang [3] for both
parametrically and externally excited and parametrically
excited simply supported rectangular thin plates. Awrejcewicz
et al. [4] used the Bubnov-Galerkin with high-order
approximations and finite difference methods to investigate the
complex vibrations and bifurcations of a thin plate-strip excited
transversally and axially. The dynamics of nonlinear polar

orthotropic circular plates with simply supported boundary
condition are investigated by Akour and Nayfeh [5], which
considered Kirchhoff strain displacement relations for thin
plates plus next higher-order nonlinear terms.

Although there are so many challenges and difficulties,
certain progress has been achieved in developing analytical
tools to study global bifurcations and chaotic dynamics for
high-dimensional nonlinear systems and giving systematic
applications to engineering problems in the past two decades.
Based on studies given by Wiggins [6], Kovacic and Wiggins
[7] developed a new global perturbation method which may be
used to detect the Shilnikov type single-pulse homoclinic and
heteroclinic orbits for four-dimensional autonomous ordinary
differential equations. Based on studies in literature [6] and [7],
Kaper and Kovacic [8] employed a modified Melnikov method
to study the existence of several types of multi-bump
homoclinic orbits to resonance bands for completely integral
Hamiltonian systems with perturbations. Camassa et al. [9]
extended the Melnikov method to investigate multi-pulse
jumping of homoclinic and heteroclinic orbits in a class of
perturbed Hamiltonian systems. Because of abstruseness in
understanding and difficulties in proof and derivation, the
method given in references [8,9] has seldom been used in
engineering application. Zhang and Yao [10-12] studied Multi-
pulse orbits in beam system and belt system by using energy-
phase method developed by Haller and Wiggins [13].

In this paper, the multi-pulse Shilnikov type orbits and
chaotic dynamics are analyzed for a parametrically excited
simply supported rectangular thin plate. The global
perturbation analysis is directly applied to the non-autonomous
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ordinary differential equations of motion for the thin plate by
the method in reference [9] for the first time. The case of
buckling for the rectangular thin plate is considered. The global
dynamic analysis and numerical simulations indicate that the
multi-pulse chaotic motion can occur in the rectangular thin
plate.

FORMULATION

We begin with a brief outline of the theory developed
in literature [8] and [9] that will be used in our analysis. The
general systems under consideration have the following
form

Xx=JID,H(X 1)+eg*(x, I, y,u,2) , (1a)
I=2g'(x, 1,7, 1 ¢, (1b)
7T=Q(x,1)+eg"(x, I, y,n,¢), (o)

where (x,1,7) e R?xRxS!, 0<g<<1, peRP denotes

parameters of the system, all functions are sufficiently
differentiable on the domains of interest and

o
J= ,
-1 0

Let &=0, the unperturbed system is given as

X=JD,H(x 1), (2a)
=0, (2b)
7=0(x,1) . (2¢)

Function H is Hamiltonian of the unperturbed system (2).
It is noticed that system (2) is an uncoupled two-degree-of-
freedom nonlinear system, the variable 1 remains constant

since | =0. There are two assumptions on equation (2):
Assumption 1. Forevery | with I, <1 <I,, equation (2a)

possesses a hyperbolic equilibrium point x =x,(1) which
varies continuously with 1, and connected to itself by a
homoclinic orbit x"(t,1).

Assumption 2. For some | =1, with I, <l,<]1,, there
exist conditions that Q(Xq(19),15)=0 and
dQ(ng(I), 1) (15) %0,

Assumption 1 indicates that in the four dimensional phase
space, the set
M ={(x1,7)|x=x (1), l; <1 <1,,0<y<2xf, (3)
is a two dimensional, normal hyperbolic invariant manifold.
The manifold M has three-dimensional stable and unstable
manifolds which are represented as W*(M) and W'(M),
respectively. Moreover, the existence of homoclinic orbit of
equation (2a) implies that W(M) and W"(M) intersect

non-transversally along a three- dimensional homoclinic
manifold denoted by T':

F:{(x, L) x=x"t1), 1y <1 < Iz,y:J.;DlH(xh(t,l), I)ds+yo} 4

Because y may represent the phase of the oscillations, with
assumption 2 when | =14, which is called as a resonant |

value, the phase shift Ay of the oscillations is defined as
Ay =y(+o0, 15) =y(=, Iy) . ®)
I = constant on the manifold M under assumption 2 denotes a

circle of the singular fixed points, the phase shift Ay gives the

shift in phase between the two endpoints of the heteroclinic
trajectory along the circle of fixed points.

Now we analyze the dynamics on the perturbed system
(1). In particular, the normal hyperbolic invariant manifold M
along with its stable and unstable manifolds will persist in the
perturbed system under arbitrary, sufficient small differentiable
perturbations. It is noticed that hyperbolic singular

points x =X, () may persist under small perturbations, in
particular, M — M. Therefore, we obtain
M =M, ={(x, 1, 7)x=%(1), I, <1 <1,,0<y < 2n}. (6)

For what is to follow, some definitions are needed. First,
the Melnikov function is given by the integral

Mo, vo)= [ (n(p"®).9(p" M), 1w, O))dt,  (7)
where
n=(D,H(x, 1), D;H(x, I)-D,H(x(1), 1),0), (8)

g=(g"(x, 1, v, 1, 0,9"(x, 1,7,1n,0),9"(x, 1, 7,p,0), (9

p"®) =(x"(t, 1), 1, y"(t, 1)+7,), (10)
The vector n is the normal to the homoclinic manifold T.
Second, the kpulse Melnikov function M, k=1,2,..-,

is defined as
k-1

My (o, 70, 1) = Y M(lg,70 + jAv(lo), ), (11)
j=0
where the amount of asymptotic phase changes is as follows:

8y(1o) = 0" (5,10), o)dke. (12

Theorem For some integer k , y=%,, u=p let the

following conditions be satisfied:
1. The kpulse Melnikov function has a simple zero point
iny,, that is,
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D,M(lg, 70, 1) #0. (13)
k=1 k>1.

k(IO 70 m=0,
2. Mi(lp, 70, m)#0 i=1

Then for all 1 —»1, , p—>pu the stable manifold and

unstable manifold of perturbed system (1) intersect
transversely.

EQUATIONS OF MOTION OF THE THIN PLATE

We consider the simply supported at the four edge
rectangular thin plate which the edge lengths are a and b
and thickness is h, respectively. The thin plate is subjected to
in-plane excitation which can be expressed in form
p=p,— P cosQt . We establish a Cartesian coordinate

system shown in Figure 1 such that coordinate Oxy is located

in the middle surface of thin plate.
0] a

| B>

1
:
P =Py — P COSQA |
1
1
1
1

b;/

z
Figure 1. The model of a rectangular thin plate and the
coordinate system

It is assumed that u, v and w represent the displacements of
a point in the middle plane of the thin plate in the x, y and
z directions, respectively. From van Karman type equations for
the thin plate, we obtain the governing equations of motion for
the rectangular thin plate as follows

2 2 2 2 2
Dvhwphl W W Wy, Sw P ow o (14)
ot2 ax?oay? oy?ox? axayaxay ot

2w Y 02w aow
v =Eh -— (15)
oxoy ) 0x° oy
Eh3

Where p is the density of thin plate, Dz—(—) is
121 v?

the bending rigidity, E is Young’s modulus, v is the
Possion’s ratio, ¢ is the stress function, and p is the
damping coefficient.

We assume that the boundary conditions of the simply
supported at the four edge rectangular thin plate can be written
as

2

at x=0 and x=a, w:a—W:O,
0X

2
at y=0 and y=b, w=2—"2v=o. (16)
y

The boundary conditions satisfied by the stress function

¢ may be expressed in the following form

2
_ 0% 0% | 1fow -
e e

and
b
h 6¢d at x=0 and x=a, (18)
y=p,
00y
v_j ﬂ- ﬂ 1fow) |y, 0, (19)
ox?  oy? 8y
and
J-Oasd)dx 0,at y=0 and y=bh, (20)

where &, is the corresponding displacement in x direction at

the boundary.

We mainly consider the nonlinear oscillations of the
rectangular thin plate in the first two modes. Thus, we write the
w in the following form

X 3 - 3mX
W(X'Yrt)=U1(t)S'n%Sln%y+u2(t)sm%sm%y, (21)

where u;(t) (i=1,2) are the amplitudes of two modes,

respectively.

Substituting equation (21) into equation (15), considering
the boundary conditions (17)-(19) and integrating, we obtain
the stress function as follows

¢(X v Y t) a0 (t) COSZT + g2 (1) COSZT +dgo(t) cos%

+ o (1) cosGT + oy (1) cosﬂcos 2 gy
a

2ny
b

ny

+ doy (1) cosz—cos + 04 (t)cosucos
a a

+dyq (1) cosA'—cosA'f:y—1 py (22)

9x2Eh 42
us,

where ¢20(t)— 9Eh Ulz, boa (t) =

Eh szh 02

Peo () = 28872 U3, oo (t) = ,
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A2Eh 25)°Eh
b (t) = T gtz 9z ® =—, Ul
(k +1)2 16(% +4)
25)?Eh 22Eh
¢42(t):ﬁulu21 Gaa(t) =— g b2,
16422 +1) 16002 +1]
Ly (23)
a

In order to obtain the dimensionless equations, we

introduce the transformations of the variables and parameters

12
_ab (120-v2)Y
= u, (24)

For simplicity, we drop overbars in the following analysis.

By means of the Galerkin’s method, substituting equations (21)

and (22) into equation (14) and integrating, we obtain the

governing equations of motion for the dimensionless as follows

Ry+U¥y — Op % + 2% T, cosQt + oy X2 +a,x,x% =0,  (25a)

K HUXy — X, +2X, f, COSQ + B, X5 +B,x7%, =0, (25b)
_12(1-v®)h? 1" +81

where ,
. ab 1612
3(1-v?)h? , 1
=2 7 7 e+ —=|,
Py 4ab 22
o, =B :12(1—v2)h2 1722 . 62512 . 62522 ,
e ab | n2f aela+a2f 160+ an2f

* 1, k=1
=|h - d h = ,
Ok ( k Po (mk)zj an k {9, k=2

S e A s e

fk =%hkpl’ k=1,2, (26)

where g, (k=1, 2) are two linear natural frequencies of the
thin plate, py (k=1, 2) are the critical forces corresponding
to two buckling modes at which thin plate loses the stability,
oy (k=1,2) are the natural frequencies of the two buckling
modes, and f, (k=1, 2) are the amplitudes of parametric

excitation. It is known that the buckling load is py. = p:, in

this paper, we restrict our attention to the case where the
applied static load is larger than the buckling load, namely,

Po > pOc/hk '

MULTI-PULSE ORBITS OF THE THIN PLATE

It is found from the aforementioned analysis that
equations (25a) and (25b) are the governing equations of
nonlinear oscillations of the rectangular thin plate for the first
and the second modes, respectively. From the point view of
engineering application, it is known that the motion of the
second mode is faster than one of the first one. Therefore, we
introduce the following coordinate transformation on equation
(25):

\/;ul :xz,\/au2 =Xy,Vp =X, W, =X, 0=Qt. (273)

p—oen, f o>ef, k=1,2. (27b)
Then, the following equations can be obtained:
i (28a)
U, = g,U; — ByUs — o, v2u, —epu, —2eu, f, cos¢ , (28b)
Vp =€V, (28¢c)
V, = GqVy — 0qVe — o U2y —epv, — 2ev, f cosd,  (28d)
b=0Q (28e)
where B].:HBL 51:&: al:ﬂ! ﬁ:i
i i i

Let ¢=0 in equation (28), the unperturbed system has
the following form

l‘]l = u2 ' (296')
Uy = 92“1‘51“13 — VU (29b)

v, =0, (29¢)
Vy = Givy — 0V —apufvy, (29d)

The Hamiltonian of unperturbed system (29) is obtained
as
1 1 1= 1 1. 1-
H :EUZZ_EgzulZ +ZB1U14 +Ef’sz12V12 _Eglvlz +Zalvf (30)
Now we want to find the hyperbolic fixed points of the
equation (29a) and (29b) at which assumption 2 holds:

u, =0, (31a)
92”1‘51“13 —o,viu; =0, (31b)
GV — 0w —opufv; =0, (31c)

The equation (19) can be solved as

(=]

(u,ud)=(0,0), where v{ =+ |21 (32a)

2
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Uy, Up) = (+ %,0), where v, =0.  (32b)
1

The singular fixed point of equation (29a) and (29b)

(ul,ud)=(0,0) is a saddle, and fixed points

(ul,uz):{i Z%OJ are centers, therefore equation (29a)
1

and (29b) can exhibit the homoclinic bifurcations, and the
homoclinic  orbits which connect the saddle point

(ud,ud)=(0,0) are obtained as

u1h=i %ﬁsech g,t, (333)
By

uh =+ 1292 sech [t tanh 33b

2 =% B_ gpttanh,/g,t, (33b)
1

From the results obtained in paper [14], in four-
dimensional phase space the set defined by

M = {(ul,uz,vl,v2)|u1=u2 =0,v;el,|v, H}, (34)

is a two-dimensional partial invariant manifold, it is known

that partial invariant manifold M is normally hyperbolic.
The manifold M has three-dimensional stable and unstable

manifolds which are represented as W*(M) and W"(M),
respectively. The existence of the homoclinic orbits of system
(17) connected to singular point (uY,ud)=(0,0) indicates
that W°(M) and WY(M)

dimensional homoclinic manifold denoted by I', which can be
written as

intersect along a three-

t
F:{(ul,uz,vl,vz)\ulh,ug,vleI,VZ:J‘ Dle(ulh,uzh,i &)ds+vg
. o

——

(35)
From equation (12), we can compute that

mv = [ ta, %@auf‘% 9% @)
—® 1 1 1

It is obvious that the unperturbed system (29) is a four
dimensional equations, whereas the perturbed system (28) is a
five dimensional system. When viewed in the full five-
dimensional phase space R*xS!, the partial normally

hyperbolic invariant manifold M of formula (34) can be
written as the following form

M(t):{(ulvuz1V1-V21¢)‘U1:U2 =0,vy el |vy |<H:¢=Qt+¢o}

@37
Based on the analysis in reference [15], we know that
M (t) along with its stable and unstable manifolds are

invariant under small, sufficiently differentiable perturbations,
moreover M, (t) , W*(M_(t)) and W“(M_(t)) are C' ¢ -

closeto M(t), WS(M(t)) and WY(M(t)).

Now we begin our analysis of the perturbed system.
Consider the following cross-section of the phase space

2 ={(u,v, )| d=0o}. (38)

The geometrical explanation of the cross-section =% is
shown as figure 2

M@t * =p, TME)NY =T,

Figure 2. The geometrical structure of the cross section X%
We introduce the scale transformation near the resonant

region as v; =V; +\/E\71, t=4et, and Taylor expand the

equation (28c) and (28d) in /e, to obtain the following

equations, for simplicity, we drop over-bar
Vl = V2 ’ (39&)

Vy = (9 —3v? )y — 3Wevlauv2 — euv, — 24ev? f, cos Ot (39b)

When ¢ =0, unperturbed system of equation (39) can be
written as
vy =y, (402)

. _ 2
Vo = (g1 —3vy ay)vy, (40b)

The fixed point(v;,Vv,)=(0,0)is a center of equation
(40), and is a saddle point of equation (39), from which we can
conclude that homoclinic orbits of the system (39) are
Shilnikov type orbits.

We are now at the point where we can compute the
Melnikov function. According to equation (7), the Melnikov
function of the first pulse can be computed as

+00
M =J. [—pu§ —2f,u5u, cos(Qt + 1) +¢0)—a2pv2v1°u12]dt

4p\/g+ 2,0 Qrn  do,u (919, o 41
=t sin(Qty + d¢p) csch +—==_[—==V. (41)
B Byo, 2o, B V@

The k-pulse Melnikov function can be computed according
to equation (11)

ST 2,0%n
3By B1v92

Qn

29,

c Aok 18102 o gy 2%l 19192 (g0
By O B1 0y

If k-pulse Melnikov function M, has simple points, that

K = ksin(Qt, +¢y)csch
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2 —~
4 21,9 Zsin(Qt, + o) csch On_, Aoy 1/ glgzvg
B1v 92 29, BV oy

q 4
+(k_1)2°‘2 /9192 _ “\/a=o, (43)
B O 3B
D, Mk_4°‘2“ ’glgzk;ﬁo (44)
By Ay

Then, equation (43) can be written as foIIowing:

2o, _ f,0" oy
3012\/_ Hg2a2\/_ 2@

We may choose proper parameters in equation (45), such
that the value of the following formula (46)
ZVZJ; ,(46)

f,0°n
222 T sin(Qt, +d)csch fn 21

i
924/010, \/E 3ya,0; \/7

is a nonnegative integer. Thus, system (28) has k-pulse
Shilnikov homoclinic orbits according to the theorem.
Now numerical simulations are used to predict the chaotic
motion of the parametrically excited, simply supported
rectangular thin plate. The fourth-order Runge-Kutta algorithm
is employed to explore the existence of the chaotic motions of
the thin plate. Figure 3 demonstrates the existence of the multi-
pulse chaotic motion of equation (25) with two buckling
modes. The chosen parameters and the initial conditions are
g, =082, g,=076, p=052, o,=136, a,=0.88,
B,=256 , f =112 , f,=109 , Q=1 and
(X, X, X9, X,) =(0.1,0.21, 0.5, 0.16) , respectively. Picture (a)
represents phase portrait on plane (x,, %, ); (b) waveform on
plane (t,x); (c) phase portrait on plane (x,,%,); (d)
waveform on plane (t,xz); (e) phase portraits in three-
dimensional space (X,, X5, %;) .

and

sin(Qty +¢g)csch —2vJ. (45)

w) : | |} .' !
| ( .5“:_ 1o-i ] {A IA # 1|| l‘# |I. r‘ |
% 7 y A 1 X, |
20} 9 Illh' ||HJ lwl MII ]‘”.l lwl l'l I..
s 0 5 10 15 fboo 1010 1020 030 1040 1050
X
(a) (b)

-10 -5 ] 5 10 11%[]0 1010 1020 1030 1040 1050

-E;E”.';D X2
(e)
Figure 3. Multi-pulse chaotic motion of the plate

CONCLUSIONS

Engineering researchers have taken great pains
researching on the nonlinear oscillations, bifurcations and
chaos of the buckled rectangular thin plates in the case of large
deformation. In this paper, the multi-pulse Shilnikov orbits and
chaotic dynamics are analyzed on the non-autonomous buckled
rectangular thin plate by using the extended Melnikov method
for the first time, which cannot be analyzed using the method
of multiple scales.

Most of the studies in literature on using the global
perturbation method to analyze the global and chaotic
dynamics are focused on autonomous differential equations.
For example, in papers [2,3] the non-autonomous ordinary
differential equations of the thin plate with two-degree-of-
freedom were derived by von Karman-type equation and
Galerkin’s approach. Then, the method of multiple scales was
used to transfer non-autonomous governing equation of motion
to the autonomous averaged equation. Based on the averaged
equation, the theory of normal form and the global perturbation
method were employed to study the global and chaotic
dynamics. The extended Melnikov method in paper [9] is also
used to dealt with four-dimensional autonomous ordinary
differential equations, while in this paper, the method in paper
[9] is generalized to resolve non-autonomous ordinary

differential equations by introducing the cross section =% .
Furthermore, the extended Melnikov method is focused on

the perturbed Hamiltonian systems, where the variable
v €[0, 2n) is bounded. In this paper, the system is in
Cartesian coordinate; therefore, the geometrical structure of the

normal hyperbolic invariant manifold M may be different.
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We deal with this deficiency by introducing the concept of part

invariant manifold in virtue of the reference. The geometrical
structure of the manifold M(t) and the cross section X%

need further deep research.
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