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FORMAL BALLS IN FUZZY PARTIAL METRIC SPACES

J. WU AND Y. YUE

Abstract. In this paper, the poset BX of formal balls is studied in fuzzy

partial metric space (X, p, ∗). We introduce the notion of layered complete
fuzzy partial metric space and get that the poset BX of formal balls is a dcpo

if and only if (X, p, ∗) is layered complete fuzzy partial metric space.

1. Introduction

Edalat and Heckmann in [2] studied the domain of formal balls BX = X×[0,∞)
and provided a computational model for complete metric spaces. They proved that
a metric space (X, d) is complete if and only if the set of the formal balls BX
ordered by the relation (x, r) vd (y, s)( defined by d(x, y) ≤ r − s) is a domain.
The results of Edalat and Heckman have also been generalized to other kind of
metric structures, like for instance quasi-metric spaces [1, 10], fuzzy metric space
[8, 9] or lattice-valued partial metric spaces [11].

According to Lawvere’s view of metric spaces as [0,∞]op-categories, metric spaces
can be studied in an enriched categorical method, see [6]. Rutton in [13] studied
formal balls in generalized metric spaces by categorical method. It is shown that
balls and formal balls (viewed as fuzzy sets) can be related by Isbell conjugation,
and the collection of formal balls can be considered as a computational model. In
[18], Zhao showed that the process of forming formal balls in a metric space is a
special case of tensor completion of Ω-categories, the partial order defined on BX is
just the underlying order defined in metric space (take metric space as Ω-category).

Fuzzy metric space and its generalization are also important examples in metric
spaces. In [5], it is shown that KM-fuzzy metric space is equivalent to fuzzy metric
space(defined in [14]). Yue studied fuzzy partial metric as a generalization of both
fuzzy metric space and partial metric space by 4+-valued sets in [17]. The ideas in
[13, 18] can be easily extended to enriched categories. Hofmann and Reis studied
fuzzy metric spaces viewed as enriched categories in [3].

The aim of this paper is to study formal balls in fuzzy partial metric spaces.
Since L-valued sets are close related to Q-category(See [4]), we define a poset BX
of formal balls for fuzzy partial metric space (X, p, ∗) by the theory of Q-category
and prove that (X, p, ∗) is layered complete if and only if the formal balls BX in
(X, p, ∗) is a dcpo.
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2. Preliminaries

In this section, we recall some definitions and properties in fuzzy partial metrics
and Q-categories.

Definition 2.1. (see [7]) A partial metric is a function d : X ×X → R+ such that

(P1) ∀x, y ∈ X, x = y ⇔ d(x, x) = d(x, y) = d(y, y);
(P2) ∀x, y ∈ X, d(x, x) 6 d(x, y);
(P3) ∀x, y ∈ X, d(x, y) = d(y, x);
(P4) ∀x, y, z ∈ X, d(x, z) 6 d(x, y) + d(y, z)− d(y, y).

The pair (X, d) is called a partial metric space.

Definition 2.2. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a left-
continuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative;
(2) a ∗ 1 = a for all a ∈ [0, 1];
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d;
(4) ∗ is left-continuous.

For each left-continuous t-norm ∗, the implication → can be determined by
a→ b =

∨
{c ∈ [0, 1]|a ∗ c ≤ b} and we have a ∗ b ≤ c⇔ a ≤ b→ c for a, b, c ∈ [0, 1].

Three most commonly used left-continuous t-norm are the minimum, denoted
by ∧, the usual product, denoted by . and the  Lukasiewicz t-norm, denoted by
♦(a♦b = max{0, a+ b− 1}).

f : [0,+∞]→ [0, 1] is called a distance distribution function if it satisfies:

(1) f is non-decreasing;
(2) f is left-continuous on (0,+∞);
(3) f(0) = 0 and f(+∞) = 1.

Let 4+ denote the set of all distance distribution functions. (4+,6) will be a
complete lattice with the top element ε0 and the bottom element ε+∞, where for
r ∈ [0,+∞) , εr : [0,+∞]→ [0, 1] is defined by

εr(x) =

{
0, x 6 r,

1, x > r.

Define the commutative semigroup operation ⊕∗ : 4+ ×4+ →4+ by

f ⊕∗ g(x) =
∨

s+t=x

f(s) ∗ g(t).

It is easy to see that (4+,⊕∗, ε0) is a quantale and ⊕∗ can induce a binary operation
→∗: 4+ ×4+ →4+ by

f →∗ g =
∨

f⊕∗h6g

h,
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and f ⊕∗ h 6 g ⇐⇒ h 6 f →∗ g holds.

Remark 2.3. It is easy to check that the following properties are valid:

(1) εr1 ⊕∗ εr2 = εr1+r2 ;
(2) εr1 →∗ εr2 = εr2−r1 , when r1 ≤ r2;
(3) h 6 g ⇐⇒ h→∗ g = ε0.

Definition 2.4. (see [17]) Let ∗ be a left-continuous t-norm. p : X ×X → 4+ is
called a fuzzy partial metric if p satisfies the following axioms:

(PP1) ∀x, y ∈ X, p(x, y) 6 p(x, x);
(PP2) ∀x, y ∈ X, p(x, y) = p(y, x);
(PP3) ∀x, y, z ∈ X,

p(x, y)⊕∗ (p(y, y)→∗ p(y, z)) 6 p(x, z);
(PP4) x = y ⇐⇒ p(x, y) = p(x, x) = p(y, y) for

x, y ∈ X.

The triple (X, p, ∗) is called a fuzzy partial metric space.

Now we list some basic notions of quantaloid and quantaloid-enriched categories
in [12, 16].

A quantaloid is a category Q such that the set Q(X,Y ) of the arrows from X
to Y is a sup-lattice for all objects X,Y ∈ Q; and the composition operation ◦
preserves suprema in both variables, that is,

f ◦
∨
i∈I

gi =
∨
i∈I

(f ◦ gi),
∨
j∈J

fj ◦ g =
∨
j∈J

(fj ◦ g)

for all f, fj ∈ Q(Y, Z) and g, gi ∈ Q(X,Y ). The bottom and top element ofQ(X,Y )
are denoted by ⊥X,Y and >X,Y respectively; the identity arrow on an object X is
denoted by 1X .

Given a quantaloid Q and Q-arrows g ∈ Q(Y,Z) and f ∈ Q(X,Y ), there are
two adjunctions

− ◦ f a − ↙ f : Q(X,Z)→ Q(Y, Z),

g ◦ − a g ↘ − : Q(X,Y )→ Q(X,Z)

determined by the adjoint property

g ◦ f ≤ h⇔ g ≤ h↙ f ⇔ f ≤ g ↘ h.

LetQ be a quantaloid. AQ-category A is a set A0 of objects equipped with a type
map t : A0 → obj(Q)(tx is called the type of x) and hom-arrows A(x, y) ∈ Q(tx, ty)
such that

(1) 1tx ≤ A(x, x) for all x ∈ A0;
(2) A(y, z) ◦ A(x, y) ≤ A(x, z) for all x, y, z ∈ A0.

Let A and B be two Q-categories. A map F : A → B is call a Q-functor if F
satisfies the following conditions:

(1) F is type-preserving, i. e. tx = tF (x);
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(2) ∀x, x′ ∈ A0, A(x, x′) ≤ B(F (x), F (x′)).

A presheaf with type tφ on a Q-category A is a Q-distributor φ : A−→◦ ∗tφ, where
∗tφ is the Q-category with exactly one element ∗ such that t∗ = tφ. For a presheaf
φ : A−→◦ ∗tφ, we often write φ(x) instead of φ(x, ∗) for short. All presheaves on A
form a Q-category PA with

PA(φ, ψ) = ψ ↙ φ =
∧
x∈A0

ψ(x)↙ φ(x).

For x ∈ A0, P(tx) denotes all Q-arrows with domain tx. Let x ∈ A0 and
f ∈ P(tx). If there is f ⊗ x ∈ A0 with type t(f ⊗ x) = codomain(f) such that
A(f ⊗ x, y) = A(x, y) ↙ f for all y ∈ A0, then f ⊗ x is called the tensor of f and
x. A is called a tensored Q-category if f ⊗ x exists for all f and x.

From [15, 16], we know that PA is a tensored Q-category, and the tensor of
f ∈ P(tµ) and µ ∈ PA0 is f ◦ µ, i. e. , f ⊗ µ = f ◦ µ. A can be embedded in PA
by the Yoneda embedding Y : A→ PA in the following way: Y(x) = A(−, x), i. e.
Y(x)(y) = A(y, x) for all y ∈ A0. We denote Y(x) by Yx.

Let T (A)0 = {(x, f)|x ∈ A0, f ∈ P(tx)}. Define the type function t : T (A)0 →
obj(Q) by t((x, f)) = t(x) and define T (A) : T (A)0 × T (A)0 → Q by

T (A)((x, f), (y, g)) = PA(f ◦ Yx, g ◦ Yy).

Lemma 2.5. T (A) is a tensored Q-category.

Remark 2.6. Define a Q-functor E : A → T (A) by E(x) = (x, 1tx). Since
T (A)(E(x), E(y)) = T (A)((x, 1tx), (y, 1ty)) = A(x, y), A can be embedded in T (A)
by the full faithful Q-functor E.

Theorem 2.7. Let C be a tensored Q-category and F : A → C be a Q-functor.
Then there is a unique Q-functor T (F ) : T (A) → C preserves tensor and satisfies
F = T (F ) ◦ E.

Proof. Define T (F )((x, f)) = f ⊗F (x), where f ⊗F (x) is the tensor of f and F (x)
in C.

(1) F = T (F ) ◦ E: Since

T (f) ◦ E(x) = T (F )((x, 1tx)) = 1tx ⊗ F (x) = F (x),

this is to say F = T (f) ◦ E.
(2) T (F ) is a Q-functor:

C(T (F )((x, f)), T (F )((y, g))) = C(f ⊗ F (x), g ⊗ F (y))

= C(F (x), g ⊗ F (y))↙ f

≥ g ◦ C(F (x), F (y))↙ f

≥ g ◦ A(x, y)↙ f

= T (A)((x, f), (y, g)).

(3) T (F ) preserves tensor: On account of

T (f)(g ⊗ (x, f)) = T (F )((x, g ◦ f)) = (g ◦ f)⊗ F (x),
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we have

C((g ◦ f)⊗ F (x),−) = C(F (x),−)↙ (g ◦ f)

= (C(F (x),−)↙ f)↙ g

= C(f ⊗ F (x),−)↙ g

= C(g ⊗ (f ⊗ F (x)),−).

Then (g ◦ f)⊗ F (x) = g ⊗ (f ⊗ F (x)). It follows that T (f)(g ⊗ (x, f)) = g ⊗ (f ⊗
F (x)) = g ⊗ T (F )((x, f)), as desired.

(4) Uniqueness of T (F ): Suppose that G : T (A) → C is another Q-functor
preserves tensor and satisfies F = G ◦ E. Then G((x, f)) = G(f ⊗ (x, 1tx)) =
f⊗G(x, 1tx)) = f⊗(G◦E(x)) = f⊗F (x) = T (F )(x, f)). Therefore, G = T (F ). �

Remark 2.8. Let Q-cat denote the category of Q-categories and Q-functors, and
Q-Tcat denote the subcategory of Q-cat with objects are all tensored Q-category.
Theorem 2.7 tells us that T : Q-cat→ Q-Tcat is the right adjoint of the inclusion
functor i : Q-Tcat→ Q-cat.

T (A) is called the tensored completion of A. According to the underlying order
in Q-category, we can define (x, f) ≤ (y, g) if and only if t(x, f) = t(y, g) and
T (A)((x, f), (y, g)) ≥ 1t(x,f), i. e. , (x, f) ≤ (y, g) if and only if tx = ty and
f ≤ g ◦ A(x, y).

A quantale is exactly a quantaloid with only one object. From [16], given a
quantale L = (L,&, 1), we know there is another way to construct a quantaloid
D(L), called the quantaloid of diagonals in L as follows:
• objects: elements a, b, c, . . . in L;
• morphisms: D(L)(a, b) = {d ∈ L : (d↙ a)&a = d = b&(b↘ d)} for all objects

a, b.
• composition: β ◦ α = β&(b ↘ α) = (α ↙ b)&β for all α ∈ D(L)(a, b) and

β ∈ D(L)(b, c);
• the unit 1a of D(L)(a, a) is a;
• the partial order on D(L)(a, b) is inherited from L.

When L is a commutative and divisible quantale, ↘ is in accordance with ↙.
Hence we use → instead of ↘ and ↙ in the following discussion. It is easy to see
that D(L)(a, b) = {d ∈ L : d ≤ a ∧ b} and β ◦ α = β&(b → α) = α&(b → β) for
α ∈ D(L)(a, b) and β ∈ D(L)(b, c).

Remark 2.9. From [17], we know that (4+,⊕∧, ε0) is a commutative and divisible
quantale. Similar Example 2.14 in [16], we can think of fuzzy partial metric spaces
as D(4+)-category with further properties. From the above underlying order of
T (A) , we can define the partial order in fuzzy partial metric spaces: for f, g ∈ 4+,
(x, f) ≤ (y, g) if and only if p(x, x) = p(y, y) and f ≤ g ◦ p(x, y) = g ⊕∧ (p(y, y)→
p(y, x)). In the next section, we will use this partial order to study formal balls in
fuzzy partial metric spaces.
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3. Formal Balls in Fuzzy Partial Metric Spaces

A formal ball in a fuzzy partial metric space (X, p, ∗) is a pair (x, r) with x
in X, r in R+(i. e. , 0 6 r <∞). The set of formal balls in X is denoted by BX.
Formal balls are ordered: (x, r) 6 (y, s) iff (x, εr) 6 (y, εs) iff p(x, x)→∗ p(x, y) >
εr−s and p(x, x) = p(y, y).

Proposition 3.1. For every fuzzy partial metric space (X,P, ∗), BX is a poset.

Proof. Reflexivity: (x, r) 6 (x, r) since p(x, x)→∗ p(x, x) > εr−r = ε0.
Transitivity: (x, r) 6 (y, s) 6 (z, t) implies p(x, x) →∗ p(x, y) > εr−s and

p(y, y)→∗ p(y, z) > εt−s, thus

p(x, x)→∗ p(x, z) > p(x, x)→∗ (p(x, y)⊕∗ (p(y, y)→∗ p(y, z)))
> (p(x, x)→∗ p(x, y)⊕∗ (p(y, y)→∗ p(y, z)))
> (εs →∗ εr)⊕∗ (εt →∗ εs)
= εr−t

Antisymmetry: (x, r) 6 (y, s) 6 (x, r) implies r > s > r. This gives r = s and
thus, p(x, x)→∗ p(x, y) > ε0, p(y, y)→∗ p(x, y) > ε0 whence x = y. �

Definition 3.2. Let (X, p, ∗) be a fuzzy partial metric space. For every h ∈ 4+,
we get C (h) = {x ∈ X | p(x, x) = h}, the C (h) is called h-contour layer on (X, p, ∗).

Theorem 3.3. For every directed subset D of BX, there is an ascending sequence
{(xn, rn)} of elements of D which has the same upper bounds as D.

Proof. It is easy to see that there exists h ∈ 4+ such that xn ∈ C (h) for all n.
Take s = inf{r | (x, r) ∈ D}. Then there exists (yn, sn) ∈ D such that sn 6 s+1/n
for each n. Let (x1, r1) = (y1, s1), and for every n > 1, since D is directed, there is
(xn, rn) such that it is an upper bound of (xn−1, rn−1) and (yn, sn) in D. Let (z, t)
be an upper bound of {(xn, rn)}n, and let (a, u) be an element of D. Since D is
directed, there are upper bounds (bn, vn) of (a, u) and (xn, rn) in D. Then for all n

p(a, a)→∗ p(a, z)
> p(a, a)→∗ (p(a, bn)⊕∗ (p(bn, bn)→∗ p(bn, z)))
> p(a, a)→∗ (p(a, bn)⊕∗ (p(bn, bn)→∗ (p(xn, bn)⊕∗ (p(xn, xn)→∗ p(xn, z)))))
> (p(a, a)→∗ p(a, bn))⊕∗ (p(bn, bn)→∗ p(xn, bn))⊕∗ (p(xn, xn)→∗ p(xn, z))
> (εvn →∗ εu)⊕∗ (εvn →∗ εrn)⊕∗ (εt →∗ εrn)

= ε(u−vn)+(rn−vn)+(rn−t)

> εu−t+2(rn−s)

> εu−t+2/n

Hence, p(a, a)→∗ p(a, z) > εu−t, i. e. , (a, u) 6 (z, t) as required. �

Definition 3.4. Let (X, p, ∗) be a fuzzy partial metric space, C (h) be an h-contour
layer on (X, p, ∗) and let {xn} ⊆ C (h) be a sequence in X.
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(1) If ∀δ > 0, ∃N, s.t. ∀n > N,P (x.x) →∗ p(xn, x) > εδ, then {xn} is called
to be layered convergent to x.

(2) If ∀δ > 0, ∃N, s.t. ∀n,m > N,P (xn.xn) →∗ p(xn, xm) > εδ, then {xn} is
called a layered Cauchy sequence.

Proposition 3.5. If {(xn, rn)} is an ascending sequence in BX, then {rn} is
descending and convergent, and the sequence{xn} is a layered Cauchy sequence.

Proof. Assume xn ∈ C (h) for all n. (xn, rn) 6 (xn+1, rn+1) implies rn > rn+1.
Hence, {rn} is descending. Since rn > 0 for all n, the sequence {rn} is convergent
and thus Cauchy. Therefore, for every δ > 0, there is N such that for all m,n > N ,
rn − rm 6 δ and εrn−rm > εδ holds. For n > m > N, (xm, rn) 6 (xn, rn) holds,
whence p(xn, xn) →∗ p(xn, xm) > εrn−rm > εδ. Thus, {xn} is a layered Cauchy
sequence. �

Lemma 3.6. Every layered Cauchy sequence {xn} in X has a subsequence {xnk
}

such that {(xnk
, 2−k)} is ascending in BX.

Proof. Assume ∀n, xn ∈ C (h). Let n0 = 0. When k = 1, there is n1 > n0 = 0 such
that p(xi, xi)→∗ p(xi, xj) > ε2−2 for all i, j > n1. When k > 1 there is nk > nk+1

such that p(xi, xi) →∗ p(xi, xj) > ε2−(k+1) for all i, j > nk. Hence, p(xnk
, xnk

) →∗
p(xnk

, xnk+1
) > ε2−(k+1) = ε2−(k+1)−2−k , i. e. , (xnk

, 2−k) 6 (xnk+1
, 2−(k+1)). �

Theorem 3.7. For an ascending sequence {(xn, rn)} in BX and element (y, s) of
BX, the following are equivalent:

(i) (y, s) is the least upper bound of {(xn, rn)};
(ii) (y, s) is an upper bound of {(xn, rn)}, and limn→∞ rn = s;
(iii) limn→∞ xn = y and limn→∞ rn = s;

Proof. (i)⇒(ii) Since {(xn, rn)} is ascending with the upper bound (y, s), {rn} is
descending with the lower bound s. Assume limn→∞ rn 6= s, i. e. , there is δ > 0
such that rn > δ + s for all n. Since {xn} is a layered Cauchy sequence, there
is N such that p(xn, xn) →∗ p(xn, xm) > εδ/2 for all n,m > N , Hence for all
n > N, p(xn, xn) →∗ p(xn, xN ) > εδ/2 > εrn−(s+δ/2), or (xn, rn) 6 (xN , s + δ/2).
Since the sequence is ascending, (xN , s+δ) is an upper bound of the whole sequence.
Thus (y, s) 6 (xN , s+ δ/2), whence s > s+ δ/2, a contradiction.

(ii)⇒(iii) For every n, (xn, rn) 6 (y, s) holds, or p(xn, xn)→∗ p(xn, y) > εrn−s.
Since limn→∞ rn = s holds, limn→∞ xn = y follows.

(iii)⇒(i) First, we show (y, s) is an upper bound. Since ∀m,n,m > n, (xn, rn) 6
(xm, rm), p(xn, xn) →∗ p(xn, xm) > εrn−rm . Letting m tend to infinity, we obtain
p(xn, xn)→∗ p(xn, y) > εrn−s, whence (xn, rn) 6 (y, s).

If (z, t) is an arbitrary upper bound of the sequence, then (xn, rn) 6 (z, t)
holds for all n, whence p(xn, xn) →∗ p(xn, z) > εrn−t. Letting n tend to infin-
ity, p(y, y)→∗ p(y, z) > εs−t follows, i.e. , (y, s) 6 (z, t). �

Definition 3.8. Let (X, p, ∗) be a fuzzy partial metric space, C (h) be a h-contour
layer. We call (X, p, ∗) is layered complete fuzzy partial metric space, if for every
layered Cauchy sequence, there is x in C (h), such that limn→∞ xn = x.
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Theorem 3.9. For a fuzzy partial metric space X, the following are equivalent:

(i) X is a layered complete fuzzy partial metric space.
(ii) In BX, every ascending sequence has a least upper bound.
(iii) BX is dcpo, i. e. every directed set has a least upper bound.

Proof. The equivalence of (ii) and (iii) follows from Theorem 3.3.

Let X be a layered complete fuzzy partial metric space. If {(xn, rn)} is an as-
cending sequence in BX, then {rn} converges to some s, and {xn} is a layered
Cauchy sequence in X. By completeness, {xn} converges to some y in X. Thus,
(y, s) is the least upper bound of {(xn, rn)}.

Assume (ii) holds, and let {xn} be layered Cauchy sequence in X. By lemma
3. 6, it has a subsequence {xnk

} such that {(xnk
, 2−k)} is ascending. By (ii), this

sequence has a least upper bound (y, s). Thus limn→∞ xnk
= y. Since the whole

sequence {xn} is layered Cauchy and a subsequence converges to y, the whole
sequence converges to y. �

Remark 3.10. Let (X, p, ∗) be a fuzzy partial metric space. If for all x in X,
p(x, x) = ε0, the fuzzy partial metric space will be reduced to a fuzzy metric
space. So we can get the set of the formal balls BX in a fuzzy metric space. The
set of the formal balls BX are ordered by the relation (x, r) 6 (y, s) whenever
p(x, y) > εs →∗ εr.

Question In this paper, elements in BX are of the form (x, r) or (x, εr)—a special
case of (x, f) where f ∈ 4+. When BX = {(x, f)|x ∈ X, f ∈ 4+}, we want
to know how to define the completeness of fuzzy partial metric space to ensure
Theorem 3.9 is also valid? We leave it as a question for future study.

4. Formal Balls in Partial Metric Spaces

Let (X, d) be a partial metric space and define pd : X ×X →4+ by pd(x, y) =
εd(x,y). Then pd is a fuzzy partial metric under any left-continuous t-norm. So we
can get the following results about partial metric space.

The partial order on formal balls is define by (x, r) 6 (y, s) whenever p(x, y) −
p(x, x) 6 r − s and p(x, x) = p(y, y). Note that (x, r) 6 (y, s) implies r > s. For,
p(x, y)− p(x, x) 6 r − s, implies 0 6 r − s, whence s 6 r.

Definition 4.1. Let (X, p) be a partial metric space, We call it a layered complete
partial metric space, for every r ∈ R+, the metric space (Xr, d) is a complete metric
space, where Xr = {x ∈ X| d(x, x) = r}, d(x, y)− p(x, y)− p(x, x).

Theorem 4.2. For a partial metric space X, the following are equivalent:

(i) X is a layered complete partial metric space;
(ii) In BX, every ascending sequence has a least upper bound;
(iii) BX is dcpo.
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Example 4.3. For every complete metric space (X, d), the partial metric space
(X, p) is a layered complete partial metric space. Here p is defined by p(x, y) =
d(x, y), p(x, x) = 0.

Example 4.4. (X, d) is a complete metric, BX is the set of formal balls in (X, d)
and formal balls are ordered by xr 6 ys ⇐⇒ d(x, y) 6 r − s. We know that BX is
a post in [1]. We write xr instead of (x, r). We define a function p : BX2 → R+ :

p(xr, ys) =


max{2r, 2s}, xr | ys,

d(x, y) + r + s, xr - ys.

(Here, xr | ys implies xr 6 ys or ys 6 xr. xr - ys implies xr 
 ys and ys 
 xr).
Note that p(xr, ys) = p(xr, xr)⇔ xr 6 ys. We can assert that (BX, p) is a partial
metric space.

Proof. In fact, for all xr, ys, zt ∈ BX:
(P1) xr = ys ⇔ p(xr, xr) = p(xr, ys) and p(xr, ys) = p(ys, ys): Obvious.
(P2)p(xr, xr) 6 p(xr, ys): Obvious.
(P3)p(xr, ys) = p(ys, xr) : Obvious.
(p4)p(xr, zt) 6 p(xr, ys) + p(ys, zt)− p(ys, ys):

(a) Assume xr | zt. Since xr 6 zt, we know that p(xr, zt) = p(xr, xr) 6
p(xr, ys). Hence p(xr, zt) 6 p(xr, ys) +p(ys, zt)−p(ys, ys). Similarly, since zt 6 xr,
we can get the same result.

(b) Assume xr - zt, xr | ys and zt | ys. Since xr 6 ys and zt 6 ys, we
know p(xr, ys) = p(xr, xr), p(ys, zt) = p(zt, zt). Hence p(xr, zt) = d(x, z) + r + t 6
d(x, y) + d(y, z) + r + t 6 (r − s) + (t − s) + (r + t) = 2t + 2r − 2s = p(xr, ys) +
p(ys, zt)−p(ys, ys). Similarly, since ys 6 xr and ys 6 zt, we can get the same result.

(c) Assume xr - zt, xr - ys and zt | ys. Since zt 6 ys, we know p(ys, zt) =
p(zt, zt). Hence p(xr, zt) = d(x, z) + r+ t 6 d(x, y) + d(y, z) + r+ t 6 d(x, y) + t−
s+ r+ t = d(x, y) + r+ s+ 2t−2s = p(xr, ys) +p(ys, zt)−p(ys, ys). Similarly, since
ys 6 zt, we can get the same result.

(d) Assume xr - zt, xr - ys and zt - ys. p(xr, zt) = d(x, z) + r + t 6 d(x, y) +
d(y, z)+r+ t 6 d(x, y)+r+s+d(y, z)+ t+s−2s = p(xr, ys)+p(ys, zt)−p(ys, ys).

So (BX, p) is a partial metric space. It is obvious that (BX, p) is a layered
complete partial metric space too. �
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