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We determine the symmetry generators of some ordinary difference equations and proceeded to find the first integral and reduce
the order of the difference equations. We show that, in some cases, the symmetry generator and first integral are associated via the
“invariance condition.” That is, the first integral may be invariant under the symmetry of the original difference equation. When
this condition is satisfied, we may proceed to double reduction of the difference equation.

1. Introduction

The theory, reasoning, and algebraic structures dealing with
the construction of symmetries for differential equations
(DEs) are now well established and documented. Moreover,
the application of these in the analysis of DEs, in particular,
for finding exact solutions, is widely used in a variety of areas
from relativity to fluid mechanics (see [1–4]). Secondly, the
relationship between symmetries and conservation laws has
been a subject of interest since Noether’s celebrated work [5]
for variational DEs. The extension of this relationship to DEs
which may not be variational has been done more recently
[6, 7]. The first consequence of this interplay has led to the
double reduction of DEs [8–10].

A vast amount of work has been done to extend the ideas
and applications of symmetries to difference equations (ΔEs)
in a number of ways—see [11–15] and references therein. In
some cases, the ΔEs are constructed from the DEs in such
a way that the algebra of Lie symmetries remains the same
[16]. As far as conservation laws of ΔEs go, the work is more
recent—see [12, 17]. Here, we construct symmetries and con-
servation laws for some ordinary ΔEs, utilise the symmetries
to obtain reductions of the equations, and show, in fact, that
the notion of “association” between these concepts can be
analogously extended to ordinaryΔEs.That is, an association
between a symmetry and first integral exists if and only if the
first integral is invariant under the symmetry.Thus, a “double
reduction” of the ΔE is possible.

2. Preliminaries and Definitions

Consider the following𝑁th-order OΔE:

𝑢
𝑛+𝑁

= 𝜔 (𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

, . . . , 𝑢
𝑛+𝑁−1

) , (1)

where 𝜔 is a smooth function such that (𝜕𝜔/𝜕𝑢
𝑛
) ̸= 0 and

integer 𝑛 is an independent variable. The general solution of
(1) can be written in the form

𝑢
𝑛
= 𝐹 (𝑛, 𝑐

1
, . . . , 𝑐

𝑁
) (2)

and depends on𝑁 arbitrary independent constants 𝑐
𝑖
.

Definition 1. We define S to be the shift operator acting on 𝑛
as follows:

S : 𝑛 → 𝑛 + 1. (3)

That is, if 𝑢
𝑛
= 𝐹(𝑛, 𝑐

1
, . . . , 𝑐

𝑁
) then

S (𝑢
𝑛
) = 𝑢
𝑛+1

. (4)

In the same way,

S (𝑢
𝑛+𝑘

) = 𝑢
𝑛+𝑘+1

, 𝑘 = 0, . . . , 𝑁 − 2. (5)
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Definition 2. A symmetry generator,𝑋, of (1) is given by

𝑋 = 𝑄 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
)

𝜕

𝜕𝑢
𝑛

+ (S𝑄 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
))

𝜕

𝜕𝑢
𝑛+1

+ ⋅ ⋅ ⋅ + (S
𝑁−1

𝑄 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
))

𝜕

𝜕𝑢
𝑛+𝑁−1

(6)

and satisfies the symmetry condition

𝑆
𝑁

𝑄 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
) − 𝑋𝜔 = 0, (7)

where 𝑄 = 𝑄(𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
) is a function called the

characteristic of the one-parameter group.

Definition 3. If 𝜙 is a first integral, then it is constant on the
solutions of the OΔE and hence satisfies

S (𝜙 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
)) = 𝜙 (𝑛, 𝑢

𝑛
, . . . , 𝑢

𝑛+𝑁−1
) ,

𝜙 (𝑛 + 1, 𝑢
𝑛+1

, . . . , 𝜔 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
))

= 𝜙 (𝑛, 𝑢
𝑛
, . . . , 𝑢

𝑛+𝑁−1
) ,

(8)

where S is the shift operator defined in (3).

2.1. First Integral. In [11], Hydon presents a methodology to
construct the first integrals of OΔEs directly. For thismethod,
the symmetries of the OΔE need not be known. Here, we will
only consider second-order OΔE’s.

We construct first integrals using (8) and an additional
condition; that is,

𝜙 (𝑛 + 1, 𝑢
𝑛+1

, 𝜔 (𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

)) = 𝜙 (𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) ,

𝜕𝜙

𝜕𝑢
𝑛+1

̸= 0.

(9)

Now let

𝑃
1
(𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) =
𝜕𝜙

𝜕𝑢
𝑛

(𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) ,

𝑃
2
(𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) =
𝜕𝜙

𝜕𝑢
𝑛+1

.

(10)

Next we differentiate (9) with respect to 𝑢
𝑛
; we obtain

𝑃
1
= S𝑃
2

𝜕𝜔

𝜕𝑢
𝑛

. (11)

Differentiating (9) with respect to 𝑢
𝑛+1

we get

𝑃
2
= S𝑃
1
+

𝜕𝜔

𝜕𝑢
𝑛+1

S𝑃
2
. (12)

Thus, 𝑃
2
satisfies the second-order linear functional equation

or first integral condition,

S(
𝜕𝜔

𝜕𝑢
𝑛

)S
2

𝑃
2
+

𝜕𝜔

𝜕𝑢
𝑛+1

S𝑃
2
− 𝑃
2
= 0. (13)

After solving for 𝑃
2
and constructing 𝑃

1
, we need to check

that the integrability condition
𝜕𝑃
1

𝜕𝑢
𝑛+1

=
𝜕𝑃
2

𝜕𝑢
𝑛

(14)

is satisfied.Hence if (14) holds, the first integral takes the form

𝜙 = ∫ (𝑃
1
𝑑𝑢
𝑛
+ 𝑃
2
𝑑𝑢
𝑛+1

) + 𝐺 (𝑛) . (15)

To solve for 𝐺(𝑛), we substitute (15) into (9) and solve for the
resulting first-order OΔE.

2.2. Using Symmetries to Obtain the General Solution of
an OΔE. We begin this section by providing some useful
definitions. We consider the theory and example provided by
Hydon in [11].

Definition 4. The commutator of two symmetry generators
𝑋
𝑁
and𝑋

𝑀
is denoted by [𝑋

𝑁
, 𝑋
𝑀
] and defined by

[𝑋
𝑁
, 𝑋
𝑀
] = 𝑋

𝑁
𝑋
𝑀
− 𝑋
𝑀
𝑋
𝑁
= − [𝑋

𝑀
, 𝑋
𝑁
] . (16)

Definition 5. Given a symmetry generator for a second-order
OΔE,

𝑋 = 𝑄 (𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

)
𝜕

𝜕𝑢
𝑛

+ 𝑄 (𝑛 + 1, 𝑢
𝑛+1

, 𝜔 (𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

))

×
𝜕

𝜕𝑢
𝑛+1

;

(17)

there exists an invariant,
V
𝑛
= V (𝑛, 𝑢

𝑛
, 𝑢
𝑛+1

) , (18)

satisfying

𝑋V
𝑛
= 0,

𝜕V
𝑛

𝜕𝑢
𝑛+1

̸= 0. (19)

To determine the invariant, we use themethod of charac-
teristics. Note that the invariant satisfies

[𝑄
𝜕

𝜕𝑢
𝑛

+ S𝑄
𝜕

𝜕𝑢
𝑛+1

] V
𝑛
= 0. (20)

We make the assumption that (18) can be inverted to obtain
𝑢
𝑛+1

= 𝜔 (𝑛, 𝑢
𝑛
, V
𝑛
) (21)

for some function𝜔. Solving (21) requires finding a canonical
coordinate

𝑠
𝑛
= 𝑠 (𝑛, 𝑢

𝑛
) (22)

which satisfies 𝑋𝑠
𝑛

= 1. The most obvious choice [11] of
canonical coordinate is

𝑠 (𝑛, 𝑢
𝑛
) = ∫

𝑑𝑢
𝑛

𝑄 (𝑛, 𝑢
𝑛
, 𝜔 (𝑛, 𝑢

𝑛
, 𝑓 (𝑛; 𝑐

1
)))

(23)

with a general solution of the form

𝑠
𝑛
= 𝑐
2
+

𝑛−1

∑

𝑘=𝑛0

𝑔 (𝑘, 𝑓 (𝑘; 𝑐
1
)) , (24)

where 𝑛
0
is any integer.
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3. Application

The aim of this section is to consider two examples and find
their symmetries, first integrals, and general solution. We
also briefly discuss what is meant by double reduction and
association.

3.1. Example 1. Consider the second-order OΔE [11]:

𝜔 = 𝑢
𝑛+2

=
𝑛

𝑛 + 1
𝑢
𝑛
+

1

𝑢
𝑛+1

. (25)

3.1.1. Symmetry Generator. Suppose that we seek characteris-
tics of the form𝑄 = 𝑄(𝑛, 𝑢

𝑛
). To do this, we use the symmetry

condition and solve for 𝑄 = 𝑄(𝑛, 𝑢
𝑛
). Here, the symmetry

condition, given by (7), becomes

𝑄 (𝑛 + 2, 𝜔) + 𝑄 (𝑛 + 1, 𝑢
𝑛+1

)
1

𝑢
2

𝑛+1

− 𝑄 (𝑛, 𝑢
𝑛
) (

𝑛

𝑛 + 1
) = 0.

(26)

Firstly, we differentiate (26) with respect to 𝑢
𝑛
(keeping 𝜔

fixed) and we consider 𝑢
𝑛+1

to be a function of 𝑛, 𝑢
𝑛
, and

𝜔. By the implicit function theorem differentiating 𝑢
𝑛+1

with
respect to 𝑢

𝑛
yields

𝜕𝑢
𝑛+1

𝜕𝑢
𝑛

= −
(𝜕𝜔/𝜕𝑢

𝑛
)

(𝜕𝜔/𝜕𝑢
𝑛+1

)
=
𝑛𝑢
2

𝑛+1

𝑛 + 1
. (27)

Secondly, we apply the differential operator, given by

𝐿 =
𝜕

𝜕𝑢
𝑛

+
𝜕𝑢
𝑛+1

𝜕𝑢
𝑛

𝜕

𝜕𝑢
𝑛+1

, (28)

to (26) to get

−
2𝑛

(𝑛 + 1) 𝑢
𝑛+1

𝑄 (𝑛 + 1, 𝑢
𝑛+1

) +
𝑛

𝑛 + 1
𝑄


(𝑛 + 1, 𝑢
𝑛+1

)

−
𝑛

𝑛 + 1
𝑄


(𝑛, 𝑢
𝑛
) = 0.

(29)

To solve (29), we differentiate it with respect to 𝑢
𝑛
keeping

𝑢
𝑛+1

fixed. As a result we obtain the ODE:

𝑑

𝑑𝑢
𝑛

(
𝑛

𝑛 + 1
𝑄


(𝑛, 𝑢
𝑛
)) = 0 (30)

whose solution is given by

𝑄 (𝑛, 𝑢
𝑛
) = (

𝑛 + 1

𝑛
)𝐴 (𝑛) 𝑢

𝑛
+ 𝐵 (𝑛) . (31)

We suppose that 𝐵(𝑛) = 0 for ease of computation. Next we
substitute (31) into (29) andwe simplify the resulting equation
to obtain

[
−𝑛 (𝑛 + 2)

(𝑛 + 1)
2
]𝐴 (𝑛 + 1) = 𝐴 (𝑛) . (32)

Thus,

𝐴 (𝑛) = (
𝑛

𝑛 + 1
) 2𝑐(−1)

𝑛−1

, (33)

where 𝑐 is a constant. Substituting (33) into (31) leads to

𝑄 (𝑛, 𝑢
𝑛
) = (

𝑛 + 1

𝑛
) (

𝑛

𝑛 + 1
) 2𝑐(−1)

𝑛−1

𝑢
𝑛
= 2𝑐(−1)

𝑛−1

𝑢
𝑛
.

(34)

Therefore, the symmetry generator is given by

𝑋 = 2𝑐(−1)
𝑛−1

𝑢
𝑛

𝜕

𝜕𝑢
𝑛

. (35)

3.1.2. First Integral. Suppose that 𝑃
2
= 𝑃
2
(𝑛, 𝑢
𝑛
); then (13) can

be rewritten to give

(
𝑛 + 1

𝑛 + 2
)𝑃
2
(𝑛 + 2, 𝑢

𝑛+2
) −

1

𝑢
2

𝑛+1

𝑃
2
(𝑛 + 1, 𝑢

𝑛+1
)

− 𝑃
2
(𝑛, 𝑢
𝑛
) = 0.

(36)

We apply the differential operator 𝐿, given by (28), to (36) to
get

𝑛

𝑛 + 1

2

𝑢
𝑛+1

𝑃
2
(𝑛 + 1, 𝑢

𝑛+1
) −

𝑛

𝑛 + 1
𝑃


2
(𝑛 + 1, 𝑢

𝑛+1
)

− 𝑃


2
(𝑛, 𝑢
𝑛
) = 0.

(37)

Next we differentiate (37) with respect to 𝑢
𝑛
keeping 𝑢

𝑛+1

constant to obtain (𝑑/𝑑𝑢
𝑛
)(𝑃


2
(𝑛, 𝑢
𝑛
)) = 0 whose solution is

given by

𝑃
2
(𝑛, 𝑢
𝑛
) = 𝐵 (𝑛) 𝑢

𝑛
+ 𝑐 = 𝐵 (𝑛) 𝑢

𝑛
(38)

if we take 𝑐 = 0. We substitute (38) into (37) to obtain the
difference equation

𝐵 (𝑛 + 1) =
𝑛 + 1

𝑛
𝐵 (𝑛) . (39)

We choose 𝐵(1) = 1 to get

𝐵 (𝑛) = 𝑛. (40)

The next step consists of substituting (40) into (38) to get

𝑃
2
(𝑛, 𝑢
𝑛
) = 𝑛𝑢

𝑛
. (41)

From (11) we get

𝑃
1
(𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) = S𝑃
2

𝜕𝜔

𝜕𝑢
𝑛

= 𝑛𝑢
𝑛+1

= 𝑃
1
(𝑛, 𝑢
𝑛+1

) . (42)

Since the integrability condition holds, we can calculate the
first integral 𝜙. From (41) and (42) we have

𝜙 = ∫ (𝑃
1
𝑑𝑢
𝑛
+ 𝑃
2
𝑑𝑢
𝑛+1

) + 𝐺 (𝑛) = 𝑛𝑢
𝑛
𝑢
𝑛+1

+ 𝐺 (𝑛) . (43)

To find 𝐺(𝑛) we substitute (43) into (9). We obtain

𝐺 (𝑛 + 1) − 𝐺 (𝑛) + 𝑛 + 1 = 0 (44)
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whose solution is given by

𝐺 (𝑛) = −
𝑛 (𝑛 + 1)

2
. (45)

Finally we substitute (45) into (43) to obtain the first integral

𝜙 = 𝑛𝑢
𝑛
𝑢
𝑛+1

−
𝑛 (𝑛 + 1)

2
. (46)

Note. The symmetry generator given by (35) acts on the first
integral, 𝜙, to produce the following equation:

𝑋𝜙 = 𝑄 (𝑛, 𝑢
𝑛
)
𝜕𝜙

𝜕𝑢
𝑛

+ 𝑄 (𝑛 + 1, 𝑢
𝑛+1

)
𝜕𝜙

𝜕𝑢
𝑛+1

= 2𝑐(−1)
𝑛−1

(𝑛𝑢
𝑛
𝑛𝑢
𝑛+1

− 𝑛𝑢
𝑛
𝑛𝑢
𝑛+1

)

= 0.

(47)

We say𝑋 and 𝜙 are associated and this property has far reach-
ing consequences on “further” reduction of the equation.

3.1.3. Symmetry Reduction. Recall that, in Section 3.1.1, we
calculated the symmetry generator,𝑋, to be

𝑋 = 2𝑐(−1)
𝑛−1

𝑢
𝑛

𝜕

𝜕𝑢
𝑛

(48)

given by (35). Suppose V
𝑛
= V(𝑛, 𝑢

𝑛
, 𝑢
𝑛+1

) is an invariant of𝑋.
Then

𝑋V
𝑛
= (𝑄 (𝑛, 𝑢

𝑛
)

𝜕

𝜕𝑢
𝑛

+S𝑄 (𝑛, 𝑢
𝑛
)

𝜕

𝜕𝑢
𝑛+1

) V
𝑛
= 0. (49)

We can use the characteristics
𝑑𝑢
𝑛

2𝑐(−1)
𝑛−1

𝑢
𝑛

=
𝑑𝑢
𝑛+1

2𝑐(−1)
𝑛

𝑢
𝑛+1

=
𝑑V
𝑛

0
(50)

to solve for V
𝑛
and construct the equation. The independent

and dependent variables are given by
𝛼 = 𝑢

𝑛
𝑢
𝑛+1

, 𝛾 = V
𝑛
, (51)

respectively. Therefore by (51), the dependent variable, V
𝑛
, is

given by
V
𝑛
= 𝑢
𝑛
𝑢
𝑛+1

. (52)
Applying the shift operator on V

𝑛
and solving the resulting

equation we get

V
𝑛
=
𝑛 + 1

2
+
𝑐

𝑛
, (53)

where 𝑐 is a constant. Then by (52) and (53) and solving for
𝑢
𝑛+1

we obtain

𝑢
𝑛+1

=
𝑛 + 1

2𝑢
𝑛

+
𝑐

𝑛𝑢
𝑛

. (54)

Note. Equation (25) has been reduced by one order into (54).
Solving (54) for 𝑐 gives

𝑐 = 𝑛𝑢
𝑛
𝑢
𝑛+1

−
𝑛 (𝑛 + 1)

2
= 𝜙. (55)

The first integral 𝜙, given by (46), and the reduction are the
same. This is another indication of a relationship between 𝜙

and 𝑋. In fact, this is the association; that is, 𝜙 is invariant
under𝑋.

3.2. Example 2. Consider the following linear difference
equation [11]:

𝜔 = 𝑢
𝑛+2

= 2𝑢
𝑛+1

− 𝑢
𝑛
. (56)

3.2.1. Symmetry. Suppose that 𝑄 = 𝑄(𝑛, 𝑢
𝑛
); then the

symmetry condition becomes

𝑄 (𝑛 + 2, 𝜔) − 2𝑄 (𝑛 + 1, 𝑢
𝑛+1

) + 𝑄 (𝑛, 𝑢
𝑛
) = 0. (57)

Similarly, we apply the operator 𝐿 to (57) and we differentiate
the resulting equation:

𝑄


(𝑛, 𝑢
𝑛
) − 𝑄


(𝑛 + 1, 𝑢
𝑛+1

) = 0, (58)

with respect to 𝑢
𝑛
to get 𝑄(𝑛, 𝑢

𝑛
) = 0. Therefore,

𝑄 (𝑛, 𝑢
𝑛
) = 𝐴 (𝑛) 𝑢

𝑛
+ 𝐵 (𝑛) . (59)

Next we solve for 𝐴(𝑛) by substituting (59) into (58). This
gives

𝐴 (𝑛 + 1) = 𝐴 (𝑛) = 𝑎, (60)

where 𝑎 is a constant. Substituting 𝐴(𝑛) = 𝑎 into (59) yields

𝑄 (𝑛, 𝑢
𝑛
) = 𝑎𝑢

𝑛
+ 𝐵 (𝑛) . (61)

The substitution of (61) into (57) yields

𝐵 (𝑛 + 2) − 2𝐵 (𝑛 + 1) + 𝐵 (𝑛) = 0. (62)

Thus,

𝐵 (𝑛) = 𝑏𝑛 + 𝑐, (63)

where 𝑏 and 𝑐 are arbitrary constants. Finally we substitute
(63) into (61) and obtain the characteristic

𝑄 (𝑛, 𝑢
𝑛
) = 𝑎𝑢

𝑛
+ 𝑏𝑛 + 𝑐. (64)

Therefore, the Lie symmetry generators are

𝑋
1
= 𝑢
𝑛

𝜕

𝜕𝑢
𝑛

, 𝑋
2
= 𝑛

𝜕

𝜕𝑢
𝑛

, 𝑋
3
=

𝜕

𝜕𝑢
𝑛

. (65)

3.2.2. First Integral. Suppose that 𝑃
2
= 𝑃
2
(𝑛, 𝑢
𝑛
). The first

integral condition is given by

𝑃
2
(𝑛 + 2, 𝜔) − 2𝑃

2
(𝑛 + 1, 𝑢

𝑛+1
) + 𝑃
2
(𝑛, 𝑢
𝑛
) = 0. (66)

The solution to (66) is given by

𝑃
2
(𝑛, 𝑢
𝑛
) = 𝑘𝑢

𝑛
+ 𝑝𝑛 + 𝑞, (67)

where 𝑘, 𝑝, and 𝑞 are constants. Then by (11), we have

𝑃
1
(𝑛, 𝑢
𝑛+1

) = S𝑃
2
(𝑛, 𝑢
𝑛
)
𝜕𝜔

𝜕𝑢
𝑛

= −𝑘𝑢
𝑛+1

− 𝑝𝑛 − 𝑝 − 𝑞.

(68)
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Substituting (67) and (68) into (15) we obtain the first integral

𝜙 = 𝑝𝑛 (𝑢
𝑛+1

− 𝑢
𝑛
) + 𝑞 (𝑢

𝑛+1
− 𝑢
𝑛
) − 𝑝𝑢

𝑛
+ 𝐺 (𝑛) . (69)

Then we have

S𝜙 = 𝑝𝑛 (𝑢
𝑛+1

− 𝑢
𝑛
) + 𝑞 (𝑢

𝑛+1
− 𝑢
𝑛
) − 𝑝𝑢

𝑛
+ 𝐺 (𝑛 + 1) .

(70)

To satisfy (8), we equate (69) and (70). This gives

𝐺 (𝑛 + 1) = 𝐺 (𝑛) = 𝑟, (71)

where 𝑟 is a constant. We thus write 𝜙 as

𝜙 = (𝑝𝑛 + 𝑞) 𝑢
𝑛+1

− (𝑝𝑛 + 𝑝 + 𝑞) 𝑢
𝑛
+ 𝑟. (72)

Next we check if𝜙 is associatedwith the symmetry generators
given in (65).

(i) Consider that 𝑋
1
= 𝑢
𝑛
𝜕/𝜕𝑢
𝑛
. One can readily verify

that

𝑋
1
𝜙 = −𝑢

𝑛
(𝑝𝑛 + 𝑞 + 𝑝) + 𝑢

𝑛+1
(𝑝𝑛 + 𝑞) . (73)

Thus 𝜙 is associated with 𝑋
1
; that is, 𝑋𝜙 = 0, if the

following equations are satisfied:

𝑝𝑛 + 𝑞 + 𝑝 = 0, 𝑝𝑛 + 𝑞 = 0. (74)

Solving the above equations simultaneously gives 𝑝 =

𝑞 = 0. Hence, for 𝜙 to be associated with𝑋
1
,

𝜙 = 𝑟. (75)

(ii) Consider that𝑋
2
= 𝑛𝜕/𝜕𝑢

𝑛
. We have

𝑋
2
𝜙 = 𝑛

𝜕𝜙

𝜕𝑢
𝑛

+ (𝑛 + 1)
𝜕𝜙

𝜕𝑢
𝑛+1

= 𝑞. (76)

Hence 𝜙 is associated with𝑋
2
if 𝑞 = 0, that is, if

𝜙 = 𝑝𝑛𝑢
𝑛+1

− (𝑝𝑛 + 𝑝) 𝑢
𝑛
+ 𝑟. (77)

(iii) Consider that𝑋
3
= 𝑐𝜕/𝜕𝑢

𝑛
. Then,

𝑋
3
𝜙 = 𝑐

𝜕𝜙

𝜕𝑢
𝑛

+ 𝑐
𝜕𝜙

𝜕𝑢
𝑛+1

= −𝑐𝑝. (78)

Here 𝜙 is associated with𝑋
3
if 𝑝 = 0. Therefore

𝜙 = 𝑞 (𝑢
𝑛+1

− 𝑢
𝑛
) + 𝑟. (79)

3.2.3. General Solution. We now find the general solution
of (56). We determine the commutators of the symmetries
to indicate the order of the symmetries in the reduction
procedure.

(i) Since

[𝑋
1
, 𝑋
2
] = −𝑋

2
, (80)

(56) will be reduced using 𝑋
2
first. Suppose that V

𝑛
=

V(𝑛, 𝑢
𝑛
, 𝑢
𝑛+1

) is the invariant of𝑋
2
. Then

𝑋
2
V
𝑛
= [𝑛

𝜕V
𝑛

𝜕𝑢
𝑛

+ (𝑛 + 1)
𝜕V
𝑛

𝜕𝑢
𝑛+1

] = 0. (81)

Using the method of characteristic we get

V
𝑛
= 𝑛𝑢
𝑛+1

− (𝑛 + 1) 𝑢
𝑛
. (82)

Applying the shift operator on V
𝑛
yields

S (V
𝑛
) = V
𝑛+1

= V
𝑛
; (83)

that is,

V
𝑛+1

= V
𝑛
= 𝑐
1
, (84)

where 𝑐
1
is a constant. Equating (82) and (84) and

solving for 𝑢
𝑛+1

, we have

𝑢
𝑛+1

=
𝑐
1

𝑛
+ (1 +

1

𝑛
) 𝑢
𝑛

(85)

whose solution is given by

𝑢
𝑛
= 𝑛𝑐
2
+ 𝑐
1
(𝑛 − 1) , (86)

where 𝑐
2
is an arbitrary constant. Equation (86) is the

general solution of (56).
Note that solving for 𝑐

1
in (85) yields

𝑐
1
= 𝑛𝑢
𝑛+1

− (𝑛 + 1) 𝑢
𝑛
. (87)

Therefore, 𝜙 (given by (77)) and the reduction are the
same if 𝑝 = 1 and 𝑟 = 0. That is, 𝜙 = 𝑐

1
. If this

condition holds then 𝜙 is invariant under𝑋
2
.

(ii) We can also find a general solution of (56) by using a
different symmetry generator. Here,

[𝑋
1
, 𝑋
3
] = −𝑋

1
, (88)

so that (56) will be reduced using 𝑋
1
first. Again

suppose that V
𝑛
= V(𝑛, 𝑢

𝑛
, 𝑢
𝑛+1

) is invariant of 𝑋
1
.

Then

𝑋
1
V
𝑛
= [𝑢
𝑛

𝜕V
𝑛

𝜕𝑢
𝑛

+ 𝑢
𝑛+1

𝜕V
𝑛

𝜕𝑢
𝑛+1

] = 0. (89)

Using the method of characteristics we get

V
𝑛
=
𝑢
𝑛+1

𝑢
𝑛

. (90)

Therefore applying the shift operator on V
𝑛
gives

V
𝑛+1

= 2 −
1

V
𝑛

(91)
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whose solution is given by

V
𝑛
=
1 + 2𝑐

1
+ 𝑛𝑐
1

1 + 𝑐
1
+ 𝑛𝑐
1

, (92)

where 𝑐
1
is a constant. Equating (90) and (92) results

in

𝑢
𝑛+1

= (
1 + 2𝑐

1
+ 𝑛𝑐
1

1 + 𝑐
1
+ 𝑛𝑐
1

)𝑢
𝑛
. (93)

Therefore the general solution of (56) is given by

𝑢
𝑛
=
(1 + 𝑐
1
+ 𝑛𝑐
1
) 𝑐
2

1 + 𝑐
1

, (94)

where 𝑐
2
is a constant.

(iii) Finally we consider the commutator of𝑋
2
and𝑋

3
.We

have

[𝑋
2
, 𝑋
3
] = 0. (95)

Since the commutator is 0, we can first reduce the
OΔE with either 𝑋

2
or 𝑋
3
. However, since we have

already reduced (56) with 𝑋
2
, we will use 𝑋

3
. As

before, suppose that V
𝑛
= V(𝑛, 𝑢

𝑛
, 𝑢
𝑛+1

) is invariant of
𝑋
3
. Then

𝑋
3
V
𝑛
= [𝑐

𝜕V
𝑛

𝜕𝑢
𝑛

+ 𝑐
𝜕V
𝑛

𝜕𝑢
𝑛+1

] = 0. (96)

Applying the method of characteristics, we have

V
𝑛
= 𝑢
𝑛+1

− 𝑢
𝑛
. (97)

Applying the shift factor, S, on (97) and solving the
resulting equation we get

S (V
𝑛
) = V
𝑛+1

= V
𝑛
= 𝑐
1
. (98)

Equating (97) and (98) gives

𝑢
𝑛+1

= 𝑢
𝑛
+ 𝑐
1
. (99)

We solve (99) and find

𝑢
𝑛
= 𝑛𝑐
1
+ 𝑐
2

(100)

which is a general solution of (56). It has to be noted
that (99) is the same as 𝜙 (given by (75)) if 𝑞 = 1 and
𝑟 = 0. If this is true then 𝜙 is invariant under𝑋

3
.

4. Conclusion

We have recalled the procedure to calculate the symmetry
generators of some ordinary difference equations and pro-
ceeded to find the first integral and reduce the order of the
difference equations. We have shown that, in some cases, the
symmetry generator, 𝑋, and first integral, 𝜙, are associated
via the invariance condition 𝑋𝜙 = 0. When this condition is
satisfied, wemay proceed to double reduction of the equation.
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