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Abstract—Dynamic SPECT reconstruction using a single slow
camera rotation is a highly underdetermined problem, which
requires the use of regularization techniques to obtain useful
results. The dSPECT algorithm (Farncombe et al. 1999) provides
temporal but not spatial regularization, resulting in poor contrast
and low activity levels in organs of interest, due mostly to blur-
ring. In this paper we incorporate a user-assisted segmentation
algorithm (Saad et al. 2008) into the reconstruction process to
improve the results. Following an initial reconstruction using the
existing dSPECT technique, a user places seeds in the image
to indicate regions of interest (ROIs). A random-walk based
automatic segmentation algorithm then assigns every voxel in
the image to one of the ROIs, based on its proximity to the seeds
as well as the similarity between time activity curves (TACs). The
user is then able to visualize the segmentation and improve it
if necessary. Average TACs are extracted from each ROI and
assigned to every voxel in the ROI, giving an image with a
spatially uniform TAC in each ROI. This image is then used
as initial input to a second run of dSPECT, in order to adjust
the dynamic image to better fit the projection data.

We test this approach with a digital phantom simulating the
kinetics of Tc99m-DTPA in the renal system, including healthy
and unhealthy behaviour. Summed TACs for each kidney and the
bladder were calculated for the spatially regularized and non-
regularized reconstructions, and compared to the true values.
The TACs for the two kidneys were noticeably improved in every
case, while TACs for the smaller bladder region were unchanged.
Furthermore, in two cases where the segmentation was intention-
ally done incorrectly, the spatially regularized reconstructions
were still as good as the non-regularized ones. In general, the
segmentation-based regularization improves TAC quality within
ROIs, as well as image contrast.

Index Terms—dynamic SPECT, dSPECT, image reconstruc-
tion, segmentation, random walk

I. INTRODUCTION

The goal of dynamic single photon emission computed

tomography (SPECT) is to reconstruct a time series of three-

dimensional images from a SPECT scan. From these images

one can extract information about the temporal behaviour

of the radiotracer in order to assess bodily function; for

instance, the metabolism of 99mTc-DTPA by the renal sys-

tem. A dynamic SPECT reconstruction can provide better

quantitative information than current planar dynamic nuclear

medicine techniques, which are not able to accurately correct
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for effects due to attenuation and organ overlap, due to their

two-dimensional nature.

A reconstruction method using a conventional single slow

camera rotation is desirable, as it is easily implemented with

current technology. A drawback of this approach, in which

each projection corresponds to one timeframe of the 4D recon-

structed image, is that it results in a highly underdetermined

reconstruction problem. In such a problem there are many

more unknown values to be solved for than there are equations

that constrain them, meaning that ther are infinitely many

possible solutions. As a result, one must apply regularization

techniques to obtain a physiologically realistic solution. The

dSPECT method of Farncombe et al. [1], [2] imposes temporal

regularization by forcing the time-activity curve (TAC) in

each voxel to obey a simple constraint. In this paper, we

incorporate a user-assisted image segmentation method [3]

into the dSPECT reconstruction process to provide additional

spatial regularization. This segmentation-based regularization

improves TAC accuracy and image contrast.

II. METHODOLOGY

A digital phantom was used to model tracer kinetics in

the renal system, including kidneys, ureters, bladder and

background activity. Time-dependent activity concentrations

were generated using a compartmental model (Fig. 1, Ta-

ble I), and then assigned to anatomical regions obtained from

the NCAT [4] digital phantom. A 370 MBq injection was

simulated, with 20% going to the renal system and the rest

distributed evenly as background. Six different test cases were

simulated: (A) healthy behaviour in both kidneys, (B) un-

healthy behaviour in both kidneys, (C) unhealthy behaviour in

the left kidney, (D) unhealthy behaviour in the right kidney,

(E) unhealthy behaviour in only the bottom third of the left

kidney, and (F) unhealthy behaviour in the bottom third of the

right kidney.

Healthy renal behaviour was defined as wash-in and wash-

out with peak activity occurring 100s post-injection and T 1
2

(half-maximum of activity, during washout) at 290s. Unhealthy

behaviour had peak activity at 200s and T 1
2

at 2135s. A set

of projections was generated from the phantom, including the

effects of Poisson noise, attenuation and collimator blurring.

The acquisition protocol was a dual-head rotation over 270◦

per head, with the two heads at 90◦ to one another. The

simulated rotation started with one head behind the supine

patient and the other next to the right kidney, with the

heads rotating clockwise. This protocol was chosen because

it provides spatial information for each time frame from two
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Fig. 1. Generalized compartmental model used to generate TACs for
the different anatomical regions in the dynamic digital phantom. Transfer
coefficients k were altered to model healthy or unhealthy behaviour (See
Table I). Depending on the situation, some compartments were not used; for
instance, phantoms A, C and E did not include the compartment for unhealthy
right kidney.

k12R,k12L k12BG k23R, k23L k34R, k34L

Healthy (h) 0.2 1.6 0.3 1.0
Unhealthy (u) 0.2 1.6 0.03 0.1

TABLE I
KINETIC COEFFICIENT VALUES USED IN THE COMPARTMENTAL MODEL

(FIG. 1) TO GENERATE THE HEALTHY AND UNHEALTHY TIME-DEPENDENT

ACTIVITY IN EACH ORGAN. THESE VALUES WERE CHOSEN BECAUSE THEY

PROVIDED CURVES THAT AGREED WELL WITH PLANAR CLINICAL DATA.
UNHEALTHY BEHAVIOUR WAS SIMULATED BY KIDNEY-TO-URETER AND

URETER-TO-BLADDER COEFFICIENTS THAT WERE 10% THE VALUE OF THE

HEALTHY COEFFICIENTS.

different angles, and because it acquires less attenuated data

from behind the patient early in the scan, when tracer kinetics

are changing more rapidly. Forty-eight 20s projections were

simulated.

The projections and attenuation map generated from the

phantom were used as input to the dSPECT [1] reconstruction

algorithm. dSPECT is an iterative expectation-maximization

(EM) algorithm which enforces a simple constraint on the

TAC for each image voxel – the activity must only increase,

only decrease, or increase to a peak and then decrease over

the whole time interval. This constraint is enforced through

the inclusion of a difference tensor, A, into the standard

maximum-likelihood expectation maximization (MLEM) [5]

algorithm. Rather than optimizing over image intensities x,

the algorithm optimizes over the temporal differences between

neighbouring time frames, denoted by x̃ = Ax. Since all the

differences in x̃ are positive, the desired temporal behaviour

is enforced. Thus, the acquisition is modelled by

CA−1x̃ = p (1)

where C is the projection system matrix including patient-

specific attenuation and depth-dependent collimator resolution

modelling, A−1 is the inverse of A, and p is the acquired

projection data, including Poisson noise. A−1 is guaranteed

to exist since the mapping from x to x̃ is one-to-one. The

dSPECT update formula is then given by

x̃new
ik =

1∑
j CijkA−1

ijk

x̃old
ik

∑

j

CijkA−1
ijk

pjk∑
i CijkA−1

ijkx̃old
ik

(2)

where i and j are matrix/vector (spatial) indices, and k is the

temporal index (time frame).

The number of time frames k corresponds to the number

of projection views acquired – forty-eight in this study. Since

the time frame in which the maximum TAC value occurs is

not known a priori, the algorithm also allows the assumed

peak location for each voxel (encoded in A) to shift after

every iteration, based on the projection data [2]. For instance,

if it is initially assumed that activity in a voxel peaks in the

16th time frame, but the projection data suggest that it should

peak earlier, then the assumed peak location will shift to an

earlier time frame. Due to the necessity of locating the peak

location for each voxel, the algorithm must be run with more

iterations than are conventionally used for static MLEM to

obtain a satisfactory reconstruction.

dSPECT was run with sixty iterations to generate a spatially

non-regularized (NR) reconstruction for each test case. These

reconstructions were computed beginning with a generic initial

condition where activity was assumed to be increasing in the

lower 24 slices of the volume (containing only background

and bladder) and assumed to peak at the 24th time frame

in the upper 40 frames (which contained the kidneys). This

initial condition and number of iterations were chosen based

on earlier experiments where they gave good results. The

(NR) reconstructions gave a reasonable approximation to the

true activity, but suffered from poor contrast between the

organs of interest and background activity, as well as a lack

of uniformity within each region of interest (ROI). The poor

contrast resulted in lowered activity levels in the organs of

interest, as their boundaries blurred with the background. To

address this problem, we incorporated segmentation into the

reconstruction algorithm.

Segmentation was achieved by a user-assisted method [3],

as follows. Each (NR) reconstruction was loaded into an

interactive segmentation program and a single coronal slice

that showed all ROIs (the two kidneys and the bladder) was

examined. A user placed seeds for five segments (zero activity,

background activity, right kidney, left kidney and bladder)

and then ran an automatic 4D probabalistic segmentation

algorithm. Fig. 2 shows an example of the seeding procedure.

In cases E and F a sixth segment was also seeded in the

unhealthy part of one kidney. The algorithm generated a

probabilistic field using a random walk approach [6] that

took into account both the proximity of each voxel to the

user-defined seeds, as well as similarity between TACs in

each voxel within a segment. Each voxel was thus assigned a

probability of belonging to each of the segments, and made

part of the segment corresponding to the highest probability.

Once the automatic segmentation was completed, the user

was able to visualize the probabilistic segmentation result

using volume rendering [7]. Then, the user could interact in

real-time with the probabilistic field through intuitive graphical

user interface widgets to improve the final segmentation.

For example, if voxels that were clearly part of the left
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Fig. 2. Screenshot of the interactive segmentation program that was used in
the proposed reconstruction method, illustrating typical user seeds (indicated
by coloured ‘+’ signs in the right panel) that were placed before running
the probabilistic segmentation. The five segments are zero activity (black),
background (cyan), right kidney (blue), left kidney (red) and bladder (yellow).

kidney were assigned to the right kidney segment due to the

similarity between TACs, they could be re-assigned to the left

kidney segment. Fig. 3 gives an example of a volume-rendered

segmentation obtained after this step. The segmentation was

obtained from the (NR) reconstruction only, with no additional

knowledge about organ locations (e.g. from a CT map), aside

from the seeds provided by the user.

Average TACs for each segment were computed, and then

assigned to every voxel in that segment, creating an averaged

image where the TAC was spatially uniform in every segment.

This image was used as the initial input for another run of

dSPECT, this time over 50 iterations. The purpose of the

second run was to adjust the segmented image to better fit the

projection data. This is necessary since in a realistic situation

one would not expect the activity within each segment to be

perfectly uniform; furthermore, this step corrects for errors

made during the segmentation process, such as assigning

regions with different behaviour to the same segment and then

averaging them. The final result of this calculation was our

Fig. 3. 3D volume rendering of segmentation obtained for case C, showing
right kidney (blue), left kidney (red), bladder (cyan) and background (grey
boundary).

Fig. 4. Flowchart of calculations performed in the study. (1) Creation
of projections from phantom volumes, (2) Creation of (NR) reconstruction
using dSPECT, (3) Segmentation of (NR) reconstruction using 4D dynamic
segmentation algorithm, (4) Creation of averaged image, and (5) Creation of
(REG) reconstruction using the averaged image.

proposed regularized (REG) reconstruction. The flowchart of

calculations done to provide the (NR) and (REG) reconstruc-

tions is illustrated in Fig. 4.

To evaluate the performance of the new proposed algorithm,

we defined three ROIs in the reconstruction: left kidney (LK),

right kidney (RK) and bladder (BD), whose boundaries were

known exactly from the phantom. For cases E and F, an extra

ROI was included in the partially unhealthy kidney. For each

ROI we measured the relative error of the summed TAC by

ΔA% =
‖TACrecon − TACtrue‖2

‖TACtrue‖2

× 100% (3)

where ‖·‖2 is the l2-norm, TACrecon was obtained by sum-

ming the TACs in every voxel of that ROI in the recon-

structed image, and TACtrue was obtained similarly from

the phantom. We calculated ΔA% for both the (NR) and

(REG) reconstructions. Two additional cases with incorrect

segmentations were also tested – case C with two segments

defined in the uniformly unhealthy left kidney, and case E

with only one segment defined in the left kidney (which had

healthy and unhealthy parts). In these cases, we wished to

examine whether the algorithm produced poor results if the

user made an incorrect assumption during segmentation; i.e.,

defining more or fewer segments than required. These two

cases are referred to by (REG-W).

III. RESULTS

Results are summarized in Table II. For the kidney ROIs,

the segmentation-based regularization reduced the error ΔA%
in every case. The improvement was especially noticeable in

regions with healthy behaviour; the (REG) image had ΔA%
values more than five times smaller than those found in the

(NR) image in 3 cases. The error for unhealthy TACs was

reduced by 1.5 to 2.5 times, in general. The summed TAC for

the bladder was not generally improved by the regularization;

one possible explanation is that the bladder region in the

phantom is about half the size of either of the kidneys, making

it more difficult to obtain an accurate segmentation. Finally, in

the two cases with incorrect segmentations (REG-W), the error

was not appreciably reduced in the poorly segmented ROIs,

illustrating the importance of using a good segmentation. It
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Fig. 5. Summed TACS generated for case E, showing typical improvements.
The (REG) TAC is noticeably better for all ROIs except the bladder, where
performance is the same as the (NR) case.

is worth noting, however, that accuracy was not diminished,

even in case (E - REG-W) where the non-uniform left kidney

was made uniform in the regularization step, prior to the

second dSPECT run. Thus, the second dSPECT run was able

to correct for this error.

Visually, the (REG) reconstructions are also an improve-

ment on the (NR) reconstructions. The boundaries between the

kidneys and background activity are generally more sharply

delineated, with less blurring evident. Figure 6 shows an

example of a coronal slice illustrating this improved image

contrast.

ROI RK(H) RK (U) LK (H) LK (U) BD
Simulation
A - NR 24.0 × 19.8 × 14.0
A - REG 4.5 × 5.5 × 15.2
B - NR × 19.3 × 14.8 18.8
B - REG × 5.6 × 5.3 7.1
C - NR 25.4 × × 14.6 14.9
C - REG 6.9 × × 8.3 13.1
C - REG-W 5.3 × × 13.6 15.4
D - NR × 18.8 19.7 × 14.7
D - REG × 7.8 3.7 × 15.6
E - NR 23.2 × 20.4 16.3 14.4
E - REG 4.5 × 11.5 7.8 15.2
E - REG-W 4.3 × 8.5 15.2 15.3
F - NR 29.5 23.3 19.0 × 14.7
F - REG 12.5 14.7 13.4 × 13.9

TABLE II
RELATIVE ERROR ΔA% FOR THE THREE ROIS FOR EACH SIMULATION.
THE BEST RESULT FOR EACH CASE IS HIGHLIGHTED IN BOLD. (H) AND

(U) DENOTE REGIONS OF HEALTHY AND UNHEALTHY BEHAVIOUR,
WHERE APPLICABLE. FOR INSTANCE, IN (D) THE ENTIRE RIGHT KIDNEY

WAS UNHEALTHY AND THE ENTIRE LEFT KIDNEY WAS HEALTHY, SO

RK(H) AND LK(U) DO NOT APPLY (DENOTED BY ×).
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Fig. 6. Profiles drawn through kidneys in a single coronal slice for Case A,
at a frame in the third minute. The (REG) reconstruction is less blurred and
the profile agrees much better with the true profile at the organ edges than
the (NR) reconstruction.

IV. CONCLUSIONS

In this paper we incorporate a user-assisted segmentation

method into the dSPECT reconstruction algorithm. The seg-

mentation is applied between two runs of the reconstruction

algorithm in order to provide more spatial information to the

reconstruction. We find that using segmentation as a means of

spatial regularization can significantly improve the accuracy

of the summed TACs within ROIs in the reconstruction, as

well as image contrast. Furthermore, the algorithm is robust,

in the sense that errors made during the segmentation step do

not worsen the quality of the reconstruction.
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