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ABSTRACT

We describe how episodic illiquidity arises from a breakdown in cooperation between market partic-

ipants. We first solve a one-period trading game in continuous-time, using an asset pricing equation

that accounts for the price impact of trading. Then, in a multi-period framework, we describe an

equilibrium in which traders cooperate most of the time through repeated interaction and provide

‘apparent liquidity’ to each other. Cooperation breaks down when the stakes are high, leading

to predatory trading and episodic illiquidity. Equilibrium strategies involving cooperation across

markets lead to less frequent episodic illiquidity, but cause contagion when cooperation breaks

down.
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Why is illiquidity rare and episodic? Pastor and Stambaugh (2003) detect only 14 aggregate

low-liquidity months in the time period 1962-1999. Despite being of significant magnitude, most

of those episodes were short-lived and were followed by long-periods of liquidity.1 The origin of

this empirical observation still remains a puzzle. In this paper, we attempt to contribute to the

explanation of this puzzle by developing a theoretical model in which a breakdown in cooperation

between traders in the market manifests itself in predatory trading. This mechanism leads to

sudden and short-lived illiquidity.

We develop a dynamic model of trading based on liquidity needs. During each period, a liquidity

event may occur in which a trader is required to liquidate a large block of an asset in a relatively

short time period. This need for liquidity is observed by a tight oligopoly, whose members may

choose to predate or cooperate. Predation involves racing and fading the distressed trader to the

market, causing an adverse price impact for the trader2. Cooperation involves refraining from

predation and allows the distressed trader to transact at more favorable prices. In our model,

traders cooperate most of the time through repeated interaction, providing ‘apparent liquidity’ to

each other. However, episodically this cooperation breaks down, especially when the stakes are

high, leading to opportunism and loss of this apparent liquidity.

The following quote provides a recent example of an episodic breakdown in cooperation between

cooperative periods in the European debt market (New York Times Sept. 15, 2004):

“...The bond sale, executed Aug. 2, caused widespread concern in Europe’s markets.

Citigroup sold 11 billion euros of European government debt within minutes, mainly

through electronic trades, then bought some of it back at lower prices less than an hour

later, rival traders say. Though the trades were not illegal, they angered other bond

houses, which said the bank violated an unspoken agreement not to flood the market to
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drive down prices.”3

This suggests that market participants cooperate, though there is episodic predation which leads

to acute changes in prices. Note that predatory behavior can involve either exploiting a distressed

trader’s liquidity requirements or inducing another trader to be distressed.

There exists some empirical evidence that cooperation affects price evolution and liquidity in

financial markets. Cooperation and reputation have been shown to affect liquidity costs on the floor

of the New York Stock Exchange (NYSE). Battalio, Ellul, and Jennings (2005) show an increase in

liquidity costs in the trading days surrounding a stock’s relocation on the floor of the exchange.4

They find that brokers who simultaneously relocate with the stock and continue their long-term

cooperation with the specialist obtain a lower cost of liquidity, which manifests in a smaller bid-ask

spread. Cocco, Gomes, and Martins (2003) detect evidence in the Interbank market that banks

provide liquidity to each other in times of financial stress. They find that banks establish lending

relationships in this market to provide insurance against the risk of shortage or excess of funds

during the reserve maintenance period.5

We model the effects of cooperation and predation on liquidity as follows. We start by estab-

lishing a predatory stage game in continuous time, and then model cooperation by embedding it

in a repeated game framework. In the stage game, each trader faces a differential game with other

strategic traders, in which trading has both a temporary and a permanent impact on the price of

the asset.6 That is, the price of the asset is affected by the current rate of trading (temporary price

impact) and by the total cumulative quantity traded over time (permanent price impact). Because

we use a pricing equation that accounts for the effect of trading pressure on price (in contrast to

the model of Brunnermeier and Pedersen (2005)), the strategic traders, as a group, suffer a surplus

loss when predatory trading is present. This surplus loss motivates the traders to cooperate and
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provide liquidity to each other in our repeated game.78

In the equilibrium of our stage game, traders ‘race’ to market, selling quickly in the beginning

of the period, at an exponentially decreasing rate. Also in equilibrium, predators initially race the

distressed traders to market, but eventually ‘fade’ them and buy back. This racing and fading

behavior is well-known in the trading industry and has been previously modeled by Foster and

Viswanathan (1996).

We model cooperation by embedding the predatory stage game in a dynamic game. We first

consider an infinitely-repeated game in which the magnitude of the liquidity event is fixed. In this

framework, there exists an extremal equilibrium which is Pareto superior for the traders. We extend

the model to episodic illiquidity by allowing the exogenous magnitude of the liquidity event in the

repeated game to be stochastic. Given such stochastic liquidity shocks, we provide predictions as to

the magnitude of liquidity event required to trigger liquidity crises and describe how a breakdown

in cooperation leads to price volatility. Finally, we allow for multimarket contact in the stochastic

version of our dynamic game. This increases cooperation across markets, but leads to contagion of

predation and liquidity crises across all markets.9

We note a few empirical implications of our model. We show that the need for liquidity over time

needs to be sufficiently symmetric for the traders to cooperate. Asymmetric distress probabilities

lead to the abandonment of cooperation in equilibrium. We also show that traders are more likely

to cooperate in markets where the permanent price impact of trading is high and the temporary

price impact of trading is low. These are also the markets in which the predatory equilibrium

strategies are the most aggressive. We would expect liquidity in these markets to be smooth most

of the time and the episodes of illiquidity to be the most marked. If the degree of asymmetric

information associated with an asset is a good predictor of the permanent price impact of trading,
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then securities that have a concentrated ownership, that have a high insider ownership, or that are

from high-growth, research intensive firms should exhibit this type of pattern and have the most

marked spikes in illiquidity. In contrast, securities with diffuse ownership of shares from mature

(value) firms should exhibit spikes in illiquidity with lower magnitude. If a higher average daily

trading volume and higher number of outstanding shares are good predictors of a lower temporary

impact of trading, then securities with large number of outstanding shares that are traded in large

volumes should also have more steady apparent liquidity, but more marked illiquidity episodes.

To our knowledge, even though this empirical typology seems natural, securities in the market

have not been grouped into these categories before and studied for their permanent and transitory

illiquidity, which would be required to test the implications of our model.10

The paper is organized as follows. Section I introduces the price equation and sets up the stage

game. We derive closed-form solutions for the trading dynamics and quantify the surplus loss due

to competitive trading. Section II uses the stage game with one predator and one distressed trader

as the basis for a multi-period game. We consider an infinitely-repeated game with the magnitude

of the liquidity shocks fixed in Section II A. Section II A also provides a model for the relationship

between insiders and outsiders in these markets. Section II B models episodic illiquidity by having

the magnitude of the liquidity shocks be stochastic. Contagion of illiquidity across markets is also

addressed in this section. Section III concludes. Appendix A contains proofs. While the stage-

game solution in Section I is based on the equilibrium over open-loop strategies, in Appendix B we

consider the equilibrium over closed-loop strategies and argue that the results are not qualitatively

different.
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I. Trading and Predation

A. Asset price model

The economy consists of two types of participants. The first type are the strategic traders, which

we index with i = 1, 2, ..., n. These traders are risk-neutral and maximize trading profits. They

form a tight oligopoly over order flow in the financial market. Large traders are usually present in

markets as proprietary trading desks, trading both on their own accounts as well as for others. The

strategic traders observe the order flow and have inside information regarding transient liquidity

needs in the market. They attempt to generate profits through their ability to forecast price moves,

and to affect asset prices.

The second type of players are the long-term investors who form the competitive fringe. The

long-term investors usually trade in the interest of mutual funds or private clients and exhibit

less aggressive trading strategies. Long-term investors are more likely to follow a ‘buy and hold

strategy’, limit the number of transactions that they undertake, and avoid taking over-leveraged

positions. They trade according to fundamentals. The primary difference between the two types

of traders is that the long-term investors are not aware of transient liquidity needs in the economy.

There exists a risk-free asset and a risky asset, traded in continuous-time. The aggregate supply

S > 0 of the risky asset at any time t is divided between the strategic investors’ holdings Xt and the

long-term investors’ holdings Zt such that S = Xt +Zt. The return on the risky asset is stochastic.

The yield on the risk-free asset is zero.

The asset is traded at the price

Pt = Ut + γXt + λYt, (1)
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where

dXt = Ytdt, (2)

and Ut is the stochastic process dUt = σ(t, Ut)dBt, with Bt some one-dimensional Brownian motion

on (Ω,F , P ).

A similar pricing relationship was previously derived by Vayanos (1998), and also by Gennotte

and Kyle (1991) who show that it arises from the equilibrium strategies between a market maker

and an informed trader when the position of the noise traders follows a smoothed Brownian motion.

Likewise, Pritsker (2004) obtains a similar relationship for the price impact of large trades when

institutional investors transact in the market. Huberman and Stanzl (2004b) consider a similar

relationship in discrete time.1112

The pricing equation is composed of three parts. Ut represents the expected value of future

dividends and is modeled as a martingale stochastic diffusion process. The diffusion does not

include a drift term, which is justified by the short-term nature of the events modeled.13

The second and third terms partition the price impact of trading into permanent and temporary

components. Such a decomposition is justified on theoretical grounds, as noted above, and seems

reasonable in light of the empirical work on block trades by Kraus and Stoll (1972), Holthausen,

Leftwich, and Mayers (1990) and Cheng and Madhavan (1997) that find large permanent and

temporary effects for block trades on the New York Stock Exchange. Cheng and Madhavan (1997)

estimate the temporary and permanent price impacts of block trades exceeding 10,000 shares in

the ‘downstairs’ and ‘upstairs’ markets at the NYSE. The permanent price impact, measured from

the price at the trade immediately prior to the block trade to the price of the 20th trade after

the block trade, is −6.66 in the downstairs market and −7.59 upstairs, both in basis points of
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the logarithmic return averaged over blocks of all sizes. The temporary price impact, measured

from the price at the 20th trade after the block trade to the price at which the block was traded,

is −5.28 downstairs and −5.81 upstairs, again in basis points of the logarithmic return averaged

over blocks of all sizes. Cheng and Madhavan show that both the permanent and temporary price

impact increase in magnitude with the size of the traded block. For instance, the permanent price

impact in the downstairs market is −5.63 for blocks of size 10 to 20 (thousands), −8.77 for blocks

of size 20 to 50, and −15.09 for blocks over 50. Importantly, Sadka (2005) finds that the correlation

between the temporary component and the permanent component is around 0.28, which suggests

that there is significant variation in the ratio of the temporary price impact to the permanent price

impact.14

In the second term, Xt =
∑n

i=1 Xi
t is the inventory variable, which measures the aggregate

amount of the asset that the strategic traders hold at time t. As Xt increases, the supply available

to the long-term investors decreases and the price at which they can access the asset increases. The

model parameter γ measures the permanent liquidity effects of trading. That is, it measures the

change in price of the asset which is independent of the rate at which the asset is traded. Note

that the level of asymmetric information in an asset is likely to be a major determinant of γ, as

demand for the asset will then play a more important role in price formation. For instance, we

expect a AAA-rated corporate bond to have lower asymmetric information associated with it than

a B-rated bond. In our model, the AAA-rated bond should then have a lower γ than the B-rated

bond. Likewise, an asset with concentrated ownership should have a higher level of asymmetric

information (and therefore a higher γ) than an asset with a more dispersed ownership structure.

For an asset with more asymmetric information, the market will more strongly adjust the asset

price based on the net change in the supply of the asset.
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The third term measures the instantaneous, reversible price pressure that occurs as a result of

trading. Yt =
∑n

i=1 Y i
t is the aggregate rate of trading of the asset by the strategic traders. The

faster the traders sell, the lower a price they will realize. This leads to surplus loss effects, which

are discussed in the following subsections. The price-impact parameter λ measures the temporary,

reversible asset price change that occurs during trading. Trading volume and shares outstanding

are likely to play a role in the level of λ.

B. Stage Game: Trading Dynamics

Our stage game is one of complete information. Many assets that are prone to illiquidity are

traded in non-anonymous markets in which a few large dealers dominate order flow.15 Further,

roughly half of the trading volume at the New York Stock Exchange is traded in blocks over 10, 000

shares (Seppi 1990) and much of that occurs in the ‘upstairs’ market, which is non-anonymous. As

a result, the liquidity needs of large traders are usually observed quickly by others.

For an example where this game structure is a natural choice, consider a thinly-traded corporate

bond issue that is traded by a small number of broker-dealers. Trading occurs either by direct

negotiation over the phone, or by ‘sunshine trading’ in which a mini-auction is held. The players

are well-known to each other because each deals repeatedly with the others. Their trading habits

and strategies are common knowledge.16 When one trader needs to trade a large block of shares of

an asset, this need is observed by others in the market and the optimal trading strategies solve a

game of complete information.

In the stage game, strategic traders are either distressed or are predators. A liquidity event

occurs at time t = 0, whereby the distressed traders are required to buy or sell a large block of the

asset ∆x in a short time horizon T (say, by the end of the trading day). Forced liquidation usually
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arises because of the need to offset another cash-constrained position such as an over-leveraged

position, or it occurs as a result of a risk management maneuver. The predators are informed of

the trading requirement of the distressed traders and compete strategically in the market to exploit

the price impact of the distressed trader’s selling. For clarity of exposition, we assume that the

opportunistic traders must return to their original positions in the asset by the end of the trading

period, and that the distressed traders are informed of this requirement.17 Further, we assume

that, except for their trading targets, all strategic traders are identical. That is, the only difference

between the two types of strategic traders is that the trading target is ∆x for the distressed traders,

and zero for the predatory traders.

At the start of the stage game, every trader chooses a trading schedule Y i
t over the period [0, T ]

to maximize their own expected value, assuming the other traders will do likewise. Subject to their

respective initial and terminal holding constraints, they solve the following dynamic program

maximize
Y i

t ∈Y
E
[

∫ T
0
−PtY

i
t dt
]

subject to Xi
0 = x0i

Xi
T = xT i,

(3)

where the maximization is over Y i
t , t ∈ [0, T ], with the strategy space Y restricted so that, for each

i, Y i
t is continuous and admissible, i.e., satisfies the integrability condition

E
[

∫ T

0

−PtY
i
t dt
]

< ∞. (4)

Note that Pt depends on Y i
t and on the trading strategies of other traders as in Equation 1. The

restriction Y i
t ∈ L2, (i.e.,

∫ T
0

(Y i
t )2 < ∞), among others, ensures admissibility. Note that the

9



position Xi
t is a differentiable function with continuous derivatives.1819

We restrict our analysis in the paper to the open-loop Nash equilibrium solutions to this differ-

ential game.20 In equilibrium, each trader chooses ex ante a time-dependent trading strategy that

is the best response to the other traders’ expected actions. As noted in the proof in Appendix A,

the restriction to smooth functionals that are admissible and the concavity of the objective function

in Xi
t and Y i

t ensures that the problem is well-posed.21

The equilibrium solution of the open-loop problem is ‘weakly time consistent’. That is, the

solution to the subproblem over the interval [t1, T ] (with initial conditions as given by the solution

of the [0, T ]-problem at time t1) is the truncation of the [0, T ]-solution over that sub-interval.22

Along the equilibrium path, a trader does follow a continuation strategy that maximizes his utility

given his equilibrium play until that point.23

The following result outlines the unique Nash equilibrium solution for the traders. This formu-

lation will serve as a basis for deriving the equilibrium strategies when several distressed traders are

present without opportunism and when there are both opportunistic and distressed traders present

in the economy. It will also allow for analysis of trader surplus, which will motivate cooperation

between traders in the repeated game.

RESULT 1 (General Solution) Consider N traders that choose a time-dependent trading rate

Y i
t to solve the optimization problem in Equation 3, subject to the asset price given by Equation 1.

Then, the unique open-loop Nash equilibrium (among the class of continuous admissible functionals)

in this game is for trader i to trade according to the function

Y i
t = a e−

n−1

n+1

γ
λ

t + bi e
γ

λ
t, (5)
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with a ∈ R, and bi ∈ R, i = 1, . . . , n, such that
∑n

i=1 bi = 0. The coefficients a and bi are uniquely

determined from the boundary conditions to be

a =
n − 1

n + 1

γ

λ

(

1 − e−
n−1

n+1

γ
λ

T
)−1

∑n
i=1 ∆xi

n

bi =
γ

λ

(

e
γ

λ
T − 1

)−1

(

∆xi −
∑n

j=1 ∆xj

n

)

,

(6)

where ∆xi = xT i − x0i.

Proof. See Appendix A. �

The equilibrium trading strategy in Equation (5) is composed of two parts. For small t, the

first component dominates the trading strategy and for larger t within the interval T , the second

part dominates. The first term, a e−
n−1

n+1

γ

λ
t, describes how fast traders ‘race’ to the market during

a sell-off or a buying frenzy. The second term, bie
γ

λ
t, describes the magnitude of ‘fading’ by each

trader. Fading refers to traders reversing the direction in which they are trading and, for the cases

we consider in our stage game, only occurs when opportunistic traders are present. For example,

consider the case where a trader needs to sell a block of shares of an asset and there are predatory

traders present in the market. The first component describes the rate at which they all trade

when they initially race each other to the market, and the second component describes the trading

dynamic when the predators buy back.

Note that the constant a in Equation (6) is a function of the average trading target over all

traders. All traders race to the market in similar fashion, based on the common knowledge of

their overall trading target. Towards the end of the period, traders ‘fade’ based on their particular

trading targets. The constants bi are a function of how each trader’s trading target is different from
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the average. A ‘distressed trader’, in the sense that he has a higher-than-average trading target,

towards the end of the period will trade in the same direction as the racing. A ‘predatory trader’,

in the sense that she has a smaller-than-average trading target, will ‘fade’ in the opposite direction,

that is reverse the direction in which she is trading.

To develop more intuition regarding Result 1, we evaluate Equation (5) for special cases, which

we will use when we consider the games of repeated interaction in Section II.

Case 1 (Symmetric Distressed Traders). First, consider the optimal trading policy when a

trader has monopoly power and buys or sells in the absence of other strategic traders. For n = 1,

the optimal trading policy (5) for a single trader is to trade at a constant rate, Yt = a = ∆x
T ,

where ∆x is the block of shares that the trader needs to buy or sell. This result is consistent with

Bertsimas and Lo (1998) and Huberman and Stanzl (2004b).Insert

Figure 1

here

Now, consider n symmetric traders, each needing to sell an identical amount of shares ∆x
n . From

Equation (5), the unique equilibrium smooth trading strategy is

Y i
t = a e−

n−1

n+1

γ

λ
t, i = 1, . . . , n, (7)

where a is as in (6) with
∑n

i=1 ∆xi = ∆x. Figure 1 plots these trading policies with ∆x = 1, T = 1,

γ = 10 and λ = 1. If the permanent price impact of trading is lower (small γ), trading will occur

comparatively later. If the temporary price impact of trading is smaller (small λ), trading will

occur comparatively earlier. For n = 1 we obtain the constant selling rate (solid horizontal line). If

there are more traders, everybody will trade earlier. Note that the rate of trading goes to e−
γ
λ

t as

n → ∞ (dotted line). That is, there is an upper bound on how fast traders will sell their position,

regardless of how many traders are in the race. Note that the shape of the curve depends on γ
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and on λ only through the ratio γ
λ . However, the scale of the γ and λ parameters does otherwise

matter in relation to Ut. For instance, the expected long-term fractional loss in value of the asset

is proportional to γ/Ut.Insert

Figure 2

here

Figure 2 plots the corresponding price process (for a constant Ut = 50). For a single trader, the

price changes linearly over the trading period. By trading at a constant rate, the single trader is

able to “walk down the demand curve” and not incur a loss in surplus due to excessive short-term

price pressure from the trading intensity (straight solid line). For a large number of traders, the

price function over t ∈ [0, T ] quickly approaches a constant value. The information regarding the

trader’s target position in the asset quickly becomes incorporated in the asset price (dotted line).

There is a surplus loss to the strategic traders as trading pressure depresses prices quickly. We

quantify these surplus changes in the next subsection.

Case 2 (Distressed Trader and Predatory Trader). We now set up and analyze the two-

player predatory stage game, which will form the basis for the games in Section II. Consider that

there exists one distressed and one opportunistic trader. Each trader chooses a trading schedule

(Y d
t and Y p

t ) over the period [0, T ] to maximize his own expected value, assuming the other trader

will do likewise. From Result 1, the unique equilibrium smooth trading policies are

Y d
t = a e−

1
3

γ
λ

t + b e
γ
λ

t

Y p
t = a e−

1
3

γ

λ
t − b e

γ

λ
t,

(8)

where

a =
γ

6λ

(

1 − e−
1
3

γ

λ
T
)−1

∆x, b =
γ

2λ

(

e
γ

λ
T − 1

)−1

∆x. (9)

The shape of the trading strategy depends on the parameters of the market. Figure 3 gives anInsert

Figure 3

here
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example, with ∆x = 1, T = 1, γ = 10 and λ = 1. The strategy involves the opportunistic trader

initially racing the distressed trader to the market in an exponential fashion, and then fading the

distressed trader towards the end of the period, also exponentially. If the first trader needs to sell,

that is ∆x < 0, the predatory trader sells short at beginning and buys back in later periods to cover

his position. If the distressed trader is required to buy a block of the asset, the opposite strategy

by the predator ensues. In general, we see that the presence of the predator will lead the distressed

trader to increase his trading volume at the beginning and at the end of the trading period.

C. Surplus Effects

Based on the trading dynamics in Section I B, we quantify the surplus changes that occur when

traders race to market and when predatory trading occurs. The surplus values that we derive will

be used in the following sections.

First, consider the expected value for a single trader with monopoly power. Given the price (1)

and the optimal trading rate Yt = ∆x
T , the expected value for the single trader is given by

V1 = −U0 ∆x −
(

γ

2
+

λ

T

)

∆x2. (10)

This is the trader’s first best when there are no other competing traders informed of the trader’s

trading requirement ∆x. The costs due to short-term trading pressure are minimized. When other

players trade strategically at the same time, the value that the trader can derive is strictly lower

that V1. We will also see that when multiple traders compete in a sell-off or if there is predatory

trading, the aggregate surplus available to all traders is decreased.

Define Vn as the total expected value for the strategic traders when n traders play this game

14



and define ∆Vn as the change in total surplus that occurs compared to the expected value when

all participants trade at a constant rate (V1). The following result provides expressions for Vn and

∆Vn, and shows that the loss in surplus is increasing with the number of traders. It will lay some

groundwork for the surplus results for the case where there is a distressed and a predatory trader

(that is, for n = 2), and is also of interest on its own for the monotonicities.

RESULT 2 (Expected Total Surplus and Loss for Multiple Traders) The total expected value for

n traders with a combined trading target ∆x is

Vn = − U0 ∆x − γ

2

(

1 +
n − 1

n + 1
· e

n−1

n+1

γ

λ
T + 1

e
n−1

n+1

γ

λ
T − 1

)

∆x2. (11)

The expected loss in total surplus from competition is

∆Vn = V1 − Vn = γ

(

1

2
· n − 1

n + 1
· e

n−1

n+1

γ

λ
T + 1

e
n−1

n+1

γ

λ
T − 1

− 1
γ
λT

)

∆x2. (12)

∆Vn is positive, monotonic increasing in γ, T and n, and monotonic decreasing in λ.

Proof. See Appendix A. �

Now we apply Result 2 to the two-trader case and derive a surplus result that we will use in

Section II. We define V2 as the total expected value for the strategic traders when two traders

play this game, and we define Vd and Vp as the expected values to the distressed trader and to the

opportunistic trader (as defined in Section I B). Likewise, we define ∆V2 as the change in surplus

that occurs compared to the expected value V1 that is obtained when the participants trade at a

constant rate.
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RESULT 3 (Expected Total Surplus and Loss for Two Traders) The total expected value for the

distressed trader and the predatory trader is

V2 = Vd + Vp = − U0 ∆x − γ

3
· 2e

1

3

γ

λ
T − 1

e
1
3

γ

λ
T − 1

∆x2. (13)

The expected value is divided as

Vd = −U0 ∆x − γ

6

5e
γ

λ
T + e

2

3

γ

λ
T + e

1

3

γ

λ
T − 1

e
γ

λ
T − 1

∆x2,

Vp =
γ

6
· e

2
3

γ

λ
T − 1

e
2

3

γ

λ
T + e

1

3

γ

λ
T + 1

∆x2.

(14)

The expected loss due to predation for the distressed trader is

∆Vd = V1 − Vd = γ

(

1

6
· 2e

γ

λ
T + e

2
3

γ

λ
T + e

1
3

γ

λ
T + 2

e
γ

λ
T − 1

− 1
γ
λT

)

∆x2, (15)

and the expected loss from predation in total surplus for the strategic traders is

∆V2 = V1 − V2 = γ

(

1

6
· e

1
3

γ

λ
T + 1

e
1

3

γ

λ
T − 1

− 1
γ
λT

)

∆x2. (16)

Vp is monotonically increasing in γ and in T , and monotonically decreasing in λ.

The ratio of gains to the predator to the losses to the distressed trader,
Vp

∆Vd
, is monotonically

decreasing in γ and in T , monotonically increasing in λ, and is bounded by 4
5

>
Vp

∆Vd
> 1

2
. Note

that it follows from Result 2 that ∆V2 is positive, monotonic increasing in γ and T , and monotonic

decreasing in λ. From the monotonicity of Vp it also follows that ∆Vd = ∆V2 + Vp is monotonic.

Proof. See Appendix A. �
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From the solutions for the rate of trading, we can see that a larger γ
λ ratio (more permanent

price impact and less temporary price impact) creates conditions for more aggressive predation, in

the sense that trading will be relatively more concentrated at the beginning and at the end of the

period. Racing is faster, and fading occurs closer to the end of the trading period.

Since
Vp

∆Vd
is bounded in the interval [1

2
, 4

5
], the losses to the distressed trader are strictly

higher than the gains by the predator24. Even though the monotonicity of Vp implies that market

conditions that lead to more aggressive predation (larger γ or lower λ or both) will lead to more

gains from predation, since
Vp

∆Vd
decreases in γ and increases in λ, the losses to the distressed trader

grow faster than the gains to the predator. In this one-shot stage game, this represents a significant

surplus loss to the traders as a whole.25 In a dynamic setting, which we model in the next section,

if both traders have a possible liquidity need in each period, there exists a potential for Pareto

improvement if the traders can cooperate. As we will see, the ratio γ
λ is the key determinant of

whether cooperation is possible.

Finally, for some insight into the magnitude of the available Pareto improvement, consider the

case when λ ≪ γT . These are the conditions under which predation is most aggressive, that is

when racing and fading are fastest as a consequence of the low transaction costs. Taking the limit

λ → 0 (which, by change of units, is immediately seen to be equivalent to T → ∞), L’Hôpital’s rule

yields for the overall surplus loss, the distressed trader’s losses from predation, and the predator’s

gains:

∆V2 → γ

6
∆x2,

∆Vd → γ

3
∆x2,

Vp → γ

6
∆x2.

(17)
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In the limit, under market conditions that favor the most aggressive predation, the predator gains

(Vp) half of what the distressed trader loses (∆Vd). This is the lower bound for
Vp

∆Vd
.

II. Cooperation and Liquidity

To illustrate the incentives for cooperation in financial markets and the implications for market

liquidity, we consider a dynamic game in which there are two strategic traders, as well as a large

number of long-term investors. Each player faces a common discount factor δ, and the common

asset price determinants Ut, γ, and λ. At the beginning of each stage, nature moves first and

assigns a type to each of the traders. With probability pi, i = 1, 2, each trader must liquidate a

large position of size ∆x. With probability 1 − pi, they may act as a predator if their competitor

needs liquidity. In each round, the traders have perfect information about each other’s type.26

We assume that the distress probabilities p1 and p2 are mutually independent. In each time

period one of the following four events occurs: neither of the two players is distressed, with proba-

bility (1−p1)(1−p2); the second player is distressed but the first is not, with probability (1−p1)p2;

the first player is distressed but the second is not, with probability p1(1 − p2); both players are

distressed, with probability p1p2. The four probabilities add to one. Cooperation is possible when

either there exists one predator and one distressed trader (with probability p1 + p2 − 2p1p2), or

when both players are distressed (with probability p1p2). If only one of the players is distressed and

needs to liquidate a position, cooperation involves the other refraining from engaging in predatory

trading. If both traders are distressed, cooperation involves both traders selling at a constant rate

and refraining from racing each other to the market for their own gain.

Cooperation provides the players with the ability to quickly sell large blocks of shares for the

price that would be obtained by selling them progressively over time. That is, while cooperation is
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sustained, the distressed trader is allowed to ‘walk down the demand curve’, rather than having the

information regarding the trading target quickly incorporated into the asset price, ahead of most

of his trading. In this sense, that large blocks of shares can be moved for a better price, the market

will appear more liquid. It will also avoid the volatility and potential instability and disruption

from the large trading volume peaks associated with the racing and fading.

In what follows, we consider two versions of the model. As a building block, we develop a

benchmark model in which the magnitude of the shock ∆x is constant. The two traders participate

in an infinitely-repeated game and the punishment strategy that they use is a grim-trigger strategy

(Friedman 1971). We determine which markets are prone to breakdowns in cooperation and analyze

the effect of distress probabilities on the ability to support cooperation. We show that the ability

to cooperate in markets has market structure implications.

Subsequently, we build upon the benchmark model and allow ∆x to be a stochastic random

variable. The traders choose optimal strategies by taking expectations over ∆x and the distress

probabilities that they face. In the equilibrium of this dynamic game, the traders implicitly agree

not to punish each other for predating when the stakes are high. That is, they use a punishment

strategy along the lines of Rotemberg and Saloner (1986). Episodically, cooperation breaks down,

leading to episodic illiquidity, which is short-lived. Finally, we consider the effect of multi-market

contact and the contagion of illiquidity in the stochastic model.

A. Fixed Liquidity Needs and Cooperation

Consider that the two strategic traders play an infinitely-repeated game in which the magnitude

of the liquidity shock ∆x is constant. The punishment strategy considered is a trigger strategy in

the spirit of Friedman (1971) and Dutta and Madhavan (1997). That is, for cooperation to occur
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in equilibrium for a given discount factor δ, the expected value of a perpetuity of cooperation must

exceed that of a one-time deviation plus a perpetuity of non-cooperation. By the Folk theorem, a

convex set of subgame-perfect Nash equilibria may exist in which intermediate levels of cooperation

occur. For clarity of exposition, we focus on the extremal equilibrium that allows for the maximal

cooperation.

The goal here to predict when traders will abandon a cooperative effort, thereby leading to a

reduction of the apparent liquidity in the market. We perform a ‘comparative statics’ analysis by

comparing the discount factor δ required for cooperation to be possible under different scenarios

of the other problem parameters. Given any particular punishment scheme, such as the more

complicated penal codes in Abreu (1988), such a critical δ can be derived. For this analysis, we do

not allow the players to change punishment schemes to achieve cooperation. We focus on trigger

strategies because they lead to the same economic results, while maintaining clarity of the model.Table I

about

here

The following result describes the extremal equilibrium of our repeated game with fixed liquidity

needs (∆x) in each period, using a trigger strategy. Refer to Table I for the expected values derived

in Section I.

RESULT 4 (Repeated Game with Two Symmetric Traders) Define the expected values as in Sec-

tion I. When a trigger strategy (punishment strategy) is used, the discount factor required to support

collusion is

δ ≥ δmin = max {δ1, δ2} , (18)

where the δi are the lowest discount factors for which each player does not have an incentive to

predate given the opportunity to do so (and given that the same is true for the other player), which
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are

δ1 =
Vp

p1(1 − p2)∆Vd + 2p1p2∆V2 + (1 − (1 − p1)p2)Vp
,

δ2 =
Vp

(1 − p1)p2∆Vd + 2p1p2∆V2 + (1 − p1(1 − p2))Vp
.

(19)

The δ1 and δ2 bounds on the discount factor (and therefore δmin) are monotonically increasing in

λ and in T , and monotonically decreasing in γ.

Proof. See Appendix A. �

Result 4 predicts that cooperation is more likely for assets with a higher permanent price

impact of trading, since the minimum discount factor δ for which cooperation can be supported is

monotonically decreasing in γ. In Section I C, we showed that the surplus loss to predatory trading

is monotonically increasing in γ. Since with higher γ there exists a higher Pareto improvement

available, it becomes more desirable for the traders to maintain cooperation. In contrast, in markets

with a high temporary impact of trading λ, we would expect a lower level of cooperation. Since

the Pareto improvement available monotonically decreases in λ, the level of cooperation should be

lower for these markets.

Given Result 4, we can focus on the ratio γ
λ to predict whether there will exist more or less

aggressive cooperation. For large γ
λ , we expect cooperation to dominate predation. For small γ

λ ,

we expect predation to be more prevalent. The ratio γ
λ impacts the liquidity available in asset

markets. In Section II B, we will show that markets with a large γ
λ have relatively smooth liquidity

most of the time, but have the most marked spikes of illiquidity. These results arise because the

monotonicities in Result 4 hold in the stochastic model.

From Result 4, we analyze how δ relates to the probabilities of distress. That is, how the
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probabilities of each trader having future liquidity needs affects the traders’ ability to cooperate.

We will see that it is easier to support cooperation when the probabilities of distress are higher and

more symmetric.Insert

Figure 4

here

Consider the example in Figure 4. The figure plots the minimum δ for which cooperation is

feasible, as a function of γ. The other parameters are ∆x = 1, U0 = 10, T = 10, and λ = 1. The

base case is the solid-line, in which p1 = 0.5 and p2 = 0.5. For all values of γ, the δ required for

cooperation is less than 1, which means that if the strategic traders are sufficiently patient they can

cooperate in any market. Now consider the case where p1 = 0.1 and p2 = 0.1. It is still possible

to cooperate in any market, but the required δ is higher. As the probability of distress decreases,

a player which is not distressed and has the opportunity to predate will likely have to wait longer

until the next event where he might in turn benefit from cooperation from the other player. For

the value of future benefits from cooperation to be sufficient for the player not to have an incentive

to predate, the future needs to be less discounted (i.e., higher δ). Finally, consider the case where

p1 = 0.5 and p2 = 0.3. In this case, it is not possible for the traders to cooperate in markets with

low γ. Since we must have δ ∈ [0, 1], we can find a bound on γ/λ, below which cooperation should

never be observed. Symmetry in distress probabilities between the traders is an important factor

for cooperation. In markets with a low γ/λ, even a small degree of asymmetry will be enough to

cause the traders to abandon a cooperative relationship.

These conclusions are supported analytically as follows. Without loss of generality, assume

δ1 = δmin (that is, p1 < p2). Equation (19) can be rewritten as

δ1 =
Vp

p2 [p1∆V2 − Vp] + p1∆Vd + Vp
. (20)
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From Equation 20 we can see that δ1 is monotonically increasing in p2 (since we can establish that

Vp ≥ ∆V2 from Vp/∆Vd > 1/2 in Result 3 and ∆Vd = ∆V2 +Vp). A larger probability of distress for

the ‘larger’ trader makes cooperation by the ‘smaller’ trader more difficult (cooperation is possible

only under a narrower range of market conditions). We can also rewrite Equation (19) as

δ1 =
Vp

p1 [(1 − p2)∆Vd + 2p2∆V2 + p2Vp] + (1 − p2)Vp
, (21)

from which we see that δ1 is monotonic decreasing in p1. A larger probability of distress for ‘smaller’

trader makes cooperation easier (possible under a wider range of market conditions).

Using Result 4 it is possible to place bounds on how symmetric the distress probabilities must

be in order to support cooperation. Consider, for example, that the traders are infinitely patient

(δ = 1) and, without loss of generality, that p1 < p2. To support cooperation it must be that

p1 ≥ p2

Vp

∆Vd
− p1p2

∆V2

∆Vd
. (22)

Evaluating Equation (22) under extreme market conditions (γ/λ → 0 and γ/λ → ∞) allows us to

derive the relative values of the distress probabilities for which cooperation is possible.27 Taking

the limits above, Equation (22) becomes

p1 ≥ 4

5
p2 −

1

5
p1p2 and p1 ≥ 1

2
p2 −

1

2
p1p2. (23)

Another useful relation is from the case where distress events are infrequent (p1, p2 ≪ 1). The

probably of both players being simultaneously distressed is then negligible. The size of the smaller
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player relative to larger player is then bounded by

p1

p2

≥ Vp

∆Vd
. (24)

In the limit cases above (γ/λ → 0 and γ/λ → ∞) this is

p1

p2

≥ 4

5
and

p1

p2

≥ 1

2
. (25)

As discussed above, the traders’ distress probabilities need to be sufficiently symmetric for cooper-

ation to be possible. Equation (25) provides some insight on the required level of symmetry.

The requirement for symmetry in distress probabilities has implications for market structure.

Strategic traders often trade on behalf of external clients who use these markets. For example,

proprietary trading desks trade for both their clients and on their own account. If the probability

of needing to trade large blocks in a short time period is linked to the market share of external

clients that a trader serves, the model predicts that active traders may have an incentive to share

the market with their competition. If a duopoly exists (when a monopoly is not possible), it may

be to the benefit of a large trader to allow a smaller trader to grow in size so that a Pareto superior

outcome for the strategic traders can be achieved. This incentive to share the market will need to

be weighed against the benefits of having more business for oneself. However, should the surplus

from be cooperation be lost, the value of being an ‘insider’ will be eroded, and with it the ability

to extract rents from external clients.

Consider the following scenario in which there exists two strategic traders and a representative

outsider who seeks to trade a block of an asset. The strategic traders have two alternatives when an
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outsider needs to trade. They may initiate a predatory strategy, race and fade the external player

to the market, and earn a profit by affecting the price of the asset. Alternatively, the outsider may

become a client of the traders so that the traders may exact rents for use of their services (these

rents may arise in the form of a bid-ask spread). The fact that there exists a cooperative outcome

in this market between the insiders provides a means by which a relatively stable, albeit widened,

bid-ask spread may exist, and we do not necessarily observe price volatility when a non-member

needs liquidity. The amount of the surplus available between the traders and the client is ∆Vd,

since the outsider is indifferent between receiving Vd, and paying ∆Vd in order to receive V1 when

using the services of the strategic traders.28Insert

Figure 5

here

The external client uses each trader with probabilities p1 and p2. Equation (22) implies that

the relative market shares of the traders should be reasonably symmetric to support cooperation.

Consider the example in Figure 5 in which the minimum δ necessary to support cooperation is

plotted as a function of p1. Two ranges of scenarios are illustrated: p1 = p2 (bold line) and

p1 +p2 = 0.5 (dotted line). When the traders’ distress probabilities (market shares) are symmetric,

cooperation is always possible, as long as traders are sufficiently patient. However, when the

market shares are asymmetric and p1 < 0.18 (36% market share) or p1 > 0.32 (64% market share),

cooperation is not possible. If one trader has a larger than 64% share, he may find it to his own

interest to allow his opponent to gain market share so that their ongoing Pareto superior relationship

may continue. This may provide an explanation for the observation in practice of deviations in the

bid-ask spread without resulting in price wars.Insert

Figure 6

here

Figure 6 illustrates, for three different values of δ, the (p1, p2) pairs that can support cooperation.

The values of δ plotted are 1, 0.9 and 0.8. The other parameters are ∆x = 1, U0 = 10, T = 10,

γ = 1, and λ = 1. The shaded region corresponds to the (p1, p2) pairs for which cooperation
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is possible if both traders use a discount factor δ = 0.8. Note that the boundaries of the sets

are not straight lines due to the bilinear terms p1p2, but are nearly so for small values of p1 and

p2. For δ = 1, and for small probabilities, the set boundaries go to the origin with slope Vp/∆Vd

and ∆Vd/Vp. As the sum of the two probabilities becomes smaller, traders are required to be of

more similar sizes for a cooperative outcome to be feasible. Note that the bold and dashed lines

correspond to the cases plotted in Figure 5. Considering cases with smaller overall frequency of

events p1 + p2 corresponds to moving the dashed line to the lower-left. Figure 5 and Figure 6

both illustrate the result that market shares need to be sufficiently symmetric for cooperation to

be possible.

In the next section, we consider these relationships when the liquidity event (∆x) is stochastic

across time. We will also discuss the effect of multimarket contact and contagion of illiquidity.

B. Episodic Illiquidity and Contagion

B.1. Shocks of Random Magnitude

In Section IIA, we evaluated the requirements for cooperation given that ∆x is a fixed amount

of the asset. In that formulation, if cooperation is possible (based on the market parameters and

δ), the traders never deviate. To characterize episodic illiquidity, ∆x is better modeled as a random

variable. In the event of a large ∆x, it is more profitable for the traders to deviate for a one-time

gain. However, instead of initiating a grim-trigger strategy, there are more profitable strategies

available to the cartel.

The large traders implicitly agree to restrain from predating when the magnitude of the shock

is below some threshold ∆x∗ and, conversely, not to punish other players in future periods for

predating when the shock is above that threshold. That is, when a player has trading requirement
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that exceeds ∆x∗, the other player will predate, but cooperation is resumed in subsequent periods.

This equilibrium behavior results in episodically increased volatility.29

Another way to describe this equilibrium is that each trader agrees to restrain from predating

on the other, but only as long as they ‘behave responsibly’ in their risk management. This creates

a natural restriction on the exposure that each trader can take without a disproportionate increase

in the risk of their portfolio.

The value of ∆x∗ which is optimal for the cartel (in the sense of leading to the highest expected

value for its members) can be computed for any distribution of the trading requirement for each

player. In general, ∆x∗ can only be characterized implicitly.

RESULT 5 (Shocks of Random Magnitude) Consider trading requirements for each of two players

which are shocks of random magnitude ∆x distributed i.i.d. according to the density f(y), which

we assume to be

(i) symmetric, f(y) = f(−y),

(ii) with unbounded support, f(y) > 0,∀y ∈ R,

(iii) and with finite variance,
∫∞

−∞
y2f(y)dy < ∞.

A strategy with episodic predation with threshold ∆x∗ is feasible with any ∆x∗ that satisfies

2C

∫ ∆x∗

0

y2f(y)dy ≥ K(∆x∗)2. (26)

The supremum of ∆x∗ such that the inequality is satisfied exists, and we designate it by ∆x. The

following strategy profile constitutes a sub-game perfect Nash equilibrium. At time t = 0, we predate

if |∆x| > ∆x∗, and otherwise cooperate. At time t 6= 0,
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1. If the history of play ht−1 is such that for every period in which |∆x| < ∆x∗ there was no

predation, then

(a) If |∆x| > ∆x∗, predate this period.

(b) If |∆x| < ∆x∗, cooperate.

2. If ht−1 is such that for |∆x| < ∆x∗, there was predation, then predate.

The constants above are

C =
δ

1 − δ

[

p1(1 − p2)Kd + 2p1p2K2 − (1 − p1)p2K

]

(27)

and K = Vp/∆x2, with Kd = ∆Vd/∆x2 and K2 = ∆V2/∆x2 (that is, K, Kd and K2 are the factors

multiplying ∆x2 in the expected values Vp, ∆Vd and ∆V2; note that K in (26) is the factor in the

expected gain to the predator).

Proof. See Appendix A. �

In what follows, the parameter C/K has the interpretation of representing the benefits from

cooperation relative to the costs of cooperation. For each of the players i, the numerator C is

increasing in the discount rate (δ), increasing in pi, and decreasing in pj 6=i. The ratio C/K is

also increasing in Kd (the welfare loss if player i is distressed and player pj 6=i is not), increasing

in K1 (the total welfare loss if both are distressed and do not cooperate), and is decreasing in K

(the profit from predation). C/K is then a measure of the relative strengths of the incentives to

cooperate and predate.Insert

Figure 7

here

To gain intuition about how the parameter C/K affects market liquidity, consider that the

shock ∆x is normally distributed. In Figure 7, the left-hand-side of the inequality in Equation 26
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is plotted with the solid-line and the right-hand-side is plotted with the dashed-line. For ∆x∗ in an

interval [∆x,∆x], it is possible to sustain the subgame-perfect Nash equilibrium. For ∆x∗ > ∆x,

the value gained for deviation is too high, and cooperation cannot be maintained. The supremum

∆x defines the most profitable strategy for the cartel. (Note that ∆x might be zero, in which case

traders never cooperate.)

The nature of the solutions is essentially independent of the scale parameter of the distribution.

Consider a family of distributions fa(y) = af(ay). If we determine solutions in terms of ∆x∗/a,

the set of feasible thresholds is independent of the asset parameters. The inequality in Equation 26

is equivalent to

2
C

K

∫ ∆x∗

a

0

y2fa(y)dy ≥
(

∆x∗

a

)2

, (28)

so that, after the corresponding scaling, the solutions to the inequality are constant with scaling of

the distribution. For example, if we consider the zero-mean normal distribution

f(y) =
1

σ
√

2π
e−

1
2

y2

σ2 , (29)

we can rewrite the inequality as

K

C

(

∆x∗

σ

)2

≤ 2

∫ ∆x∗

σ

0

y2 1√
2π

e−
1
2
y2

dy. (30)

Therefore, we can parameterize any such problem using only C/K and ∆x∗/σ.Insert

Figure 8

here

Figure 8 plots ∆x/σ and ∆x/σ as a function of C/K. The solid-line represents ∆x/σ and the

dotted-line represents ∆x/σ. For any value of C/K, the vertical segment between the lines is the

set of ∆x∗ (in standard deviations) such that cooperation is possible. Note that there exists a
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critical value for C/K (represented by the small circle), below which it is impossible to support

cooperation. Any threshold we might consider would always be too high, in that the immediate

gains from deviation provide an incentive to deviate, and too small, in that the expected future

rewards from cooperation during those shocks that do fall below the threshold do not provide

sufficient incentive to cooperate.

We can now determine the minimum or critical C/K for which there is a non-zero ∆x, that is

for which an episodic predation strategy is feasible. Consider again the normal distribution and

the inequality in Equation (30). Taking the derivative of the difference between the two sides of

the inequality with respect to ∆x∗ and equating to zero leads to

K

C
=

1√
2π

∆x∗

σ
e
− 1

2

“

∆x∗

σ

”2

. (31)

This characterizes the points in Figure 7 where the solid and dashed lines have the same derivative.

Using this at the supremum (i.e., with equality holding in (30)), we obtain the case where the lines

touch at a single point rather that having two intersections (other than zero). After a change of

variable in the integral, we obtain

∫ ∆x∗

σ

0

y2 1

2π
e−

1
2
y2

dy =
1

2

(

∆x∗

σ

)3 1√
2π

e
− 1

2

“

∆x∗

σ

”2

, (32)

which is straightforward to solve numerically for ∆x∗/σ. Since C/K only depends on ∆x∗ through

∆x∗/σ, the minimum C/K ratio for which there is a feasible strategy of the episodic predation

type does not depend on the scale parameter of the distribution. For the normal distribution, the

minimum C/K for which there is a non-zero ∆x, that is for which an episodic predation strategy is
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feasible, is C/K = 4.6729 for any σ. This imposes restrictions on the parameters. For assets with

parameters such that C/K is less than this critical value, no episodic predation strategy is feasible.

The threshold associated with this C/K ratio is ∆x = ∆x = 1.3688σ.

In Section II A, we showed that the ability for traders to cooperate when the liquidity needs

are fixed is increasing in γ
λ . By Result 3, it is easy to show that C/K is also monotonically

increasing in γ and monotonically decreasing in λ. This implies that markets with high γ
λ will have

a higher C/K. Based on this, the following predictions are natural. For assets with a high level of

asymmetric information (high γ) that are widely traded in large volume (low λ), we would expect

there to be liquidity that is stable most of the time (apparent liquidity), but disappears episodically.

An example of this type of security would be a growth stock (perhaps a tech stock) with diffuse

ownership. In contrast, a low γ
λ asset may have liquidity levels that fluctuate more regularly, but

will not exhibit marked illiquidity in an episodic way. An example of a low γ
λ asset would be a

thinly traded AA-rated corporate bond. To our knowledge, securities have not been grouped into

these categories before and studied for their permanent and temporary illiquidity. This would be

necessary to test the empirical implications of our model.

B.2. Contagion Across Markets

Suppose that the members of the oligopoly can cooperate in more than one market. As an

example, consider institutional traders who dominate mortgage markets and are also strategic

traders in other fixed income markets. If a liquidity event is large enough to disturb cooperation

in one market, it may also affect cooperation in the others. Bernheim and Whinston (1990) find

that if markets are not identical, multimarket contact supports cooperation. In our case, and since

assets are not perfectly correlated, multimarket contact makes it easier to maintain cooperation.
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In this section, we discuss the effects of multimarket contact on episodic illiquidity across markets.

Consider traders that participate in n markets, where the trading requirement in each market

is a stochastic random variable. We define a liquidity event to be such that all trading targets

for each of the n assets have the same sign (i.e., liquidity shocks occur in the same direction in

all markets).30 The trading targets are modeled as jointly normal and conditionally independent

given that they are either all positive or all negative. We also use the simplifying assumption that

trading targets in all the assets have the same variance. The density in the positive orthant (y such

that yi ≥ 0, all i) and in the negative orthants (y such that yi ≤ 0, all i) is

f(y) =
2n−1

σn(2π)n/2
e−

yT y

σ2 , (33)

and zero elsewhere.

The shape of the optimal region for cooperation is spherical. This is the region in which the

incentive to predate, which is proportional to
∑n

i=1 ∆x2
i , is constant. The inequality for n assets

involves an integral in n dimension which, using the radial symmetry of the normal distribution

can be written as

2C

∫ r

0

Snyn+1f(y)dy ≥ Kr2, (34)

where r is the radius of the cooperation region, and

Sn =
1

2n

2π
n
2

Γ(n
2
)

(35)

is the area of the intersection of the sphere of unit radius in n dimension with the positive orthant.

It can easily be verified that, as for the one-asset case, the nature of the solutions is essentially
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independent of the scale parameter of the distribution (say the standard deviation).Insert

Figure 9

here

Figure 9 is the multimarket version of Figure 8 in that it plots ∆x and ∆x for episodic predation

over n markets, n = 1, 2, . . . , 8. The minimum value of C/K that is required to support cooperation

decreases as the number of markets increases. Adding markets can make cooperation possible where

it would otherwise not be possible. This is because adding markets increases the relative value of

cooperation, given that punishment is effected over all markets. (Consider, for instance, C/K = 4.0.

With these parameters, traders are unable to cooperate over one market, but are able to do so over

2 or more markets.) Also note that the supremum of r increases with n. The probability that an

episode of predation will occur is in fact seen to decrease with n. We expect episodes of predation

to be more significant, since they now affect n markets, but less frequent with contagion strategies.

The minimum values of C/K for cooperation over multiple markets, n = 1, 2, . . . , 20, are listed in

Table II.Table II

about

here III. Conclusion

We have presented a model where the breakdown of cooperation in financial markets leads to

episodic illiquidity. This model is based on an equilibrium strategy in which traders cooperate most

of the time through repeated interaction, providing ‘apparent liquidity’ to each other. However,

episodically this cooperation breaks down, especially when the stakes are high, leading to oppor-

tunism and loss of this apparent liquidity. Our model provides an explanation for why episodic

liquidity breakdowns do not occur more often, and predicts that this apparent liquidity is more eas-

ily sustained in asset markets with a high permanent price impact of trading and a low temporary

impact of trading.

We solve a competitive trading game for strategic traders (predatory stage game), which is
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formulated as a continuous-time dynamic programming problem using an asset pricing equation

which accounts for transaction costs from price impact of trading. According to this model, traders

‘race’ to market, selling quickly in the beginning of the period. Also in equilibrium, predators

initially race distressed traders to market, but eventually ‘fade’ them and buy back. The presence

of predators in the market leads to a surplus loss to the strategic traders.

Cooperation in the market is modeled by embedding this predatory stage game in a dynamic

game with infinite horizon. Cooperation allows for the trading of large blocks of the asset at more

favorable prices, so that the surplus loss due to predatory trading can be avoided. This leads to

predictions about the types of markets in which cooperation is more likely.

We believe that our model presents a plausible argument for the level of predation or cooperation

in financial markets being a determinant of available liquidity, and a contributor to the episodic

nature of illiquidity.
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ENDNOTES

1 See Acharya and Pedersen (2005) for evidence of a flight to quality during these episodes.

2 Predatory trading has been defined by Brunnermeier and Pedersen (2005) as trading that in-

duces and/or exploits another investor’s need to change their position. It is important to distinguish

predatory trading from front-running. Front-running is an illegal activity in which a specialist, act-

ing as an agent of an investor, trades on his own account in the same direction as his client before

he fulfills his client’s order. In this way, the specialist profits but violates his legal obligation as an

agent of the investor. Predatory activity occurs in the absence of such a legal obligation.

3 On February 2, 2005 the Wall Street Journal reported that this predatory trading plan was

referred to as “Dr. Evil” by traders working at Citicorp.

4 This is an exogenous event that changes long-run relationships between brokers and the spe-

cialist.

5 Other articles in this literature include Berhardt, Dvoracek, Hughson, and Werner (2005),

Desgranges and Foucault (2005), Reiss and Werner (2004), Ramadorai (2003), Hansch, Naik, and

Viswanathan (1999), Massa and Simonov (2003).

6 Motivation for partitioning price effects based on permanent and temporary components of

liquidity is given in the body of the paper, but is based on work by Kraus and Stoll (1972),

Holthausen, Leftwich, and Mayers (1990), Cheng and Madhavan (1997), Huang and Stoll (1997),

Sadka (2005).
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7 In the formulation by Brunnermeier and Pedersen, no transaction costs are incurred in the

equilibrium solution and all gains by the predators are exactly offset by losses by distressed traders,

so that there would be no feasible Pareto improvement in a repeated game. There are other

substantial differences between the models. Brunnermeier and Pedersen impose exogenous holding

limits [−x̄, x̄] for traders, whereas we do not make this restriction. Our model involves a stochastic

price process, while in Brunnermeier and Pedersen the asset pricing relationship is deterministic.

Finally note that Brunnermeier and Pedersen’s model predicts “price-overshooting”, whereas our

model does not. However, this is a consequence of, in our stage game model, all traders having

an identical time horizon. If we relax this as in Brunnermeier and Pedersen to allow predators a

longer horizon, price overshooting is also observed in our model.

8 Attari, Mello, and Ruckes (2005) also describe predatory trading behavior with a two-period

model. They show that predators may even lend to others that are “financially fragile” because

they can obtain higher profits by trading against them for a longer period of time. Our model

is more general in that it is in an infinite-horizon, multi-period framework, with each period a

continuous-time game.

9 Our mechanism for contagion is different from that of Brunnermeier and Pedersen (2004).

The contagion in Brunnermeier and Pedersen (2004) is caused by a wealth effect. As prices in the

market drop, additional traders are induced into a state of distress and a market-wide sell-off is

observed. In contrast, contagion in our model occurs when traders abandon cooperation in a model

of repeated interaction.

10 Another possible test of our model would be a natural experiment. For example, comparing

the liquidity pattern in the foreign exchange market before and after electronic automation might
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reveal the effects of relationships and cooperation on liquidity.

11 Directly linking trading pressure and price distinguishes our model from Brunnermeier and

Pedersen (2005), where transaction costs are modeled via an exogenous parameter A (the maximum

trading rate at which transaction costs are avoided), which does not directly affect prices in the

market. This results in there being no surplus to be gained from cooperation.

12Further motivation for our use of this pricing relationship are the empirical and theoretical

studies that link trading pressure and asset prices (Keim and Madhavan 1996, Kaul, Mehrotra, and

Morck 2000, Holthausen, Leftwich, and Mayers 1990, Chan and Lakonishok 1995, Bertsimas and

Lo 1998, Fedyk 2001, DeMarzo and Uroševic 2000, Almgren and Chriss 2000, Almgren and Chriss

1999, Huberman and Stanzl 2004a).

13 In a model with no discounting, Huberman and Stanzl (2004a) show that the presence of a drift

term is inconsistent with no arbitrage. This result can be extended to the case with discounting. For

no arbitrage to hold, the difference between the drift coefficient and the continuous-time discount

factor must be zero. For the multi-period game which we will later discuss, the assumption is that

T is relatively small, that is the distress and predation events develop over short periods of time,

and the discounting within each period is not significant. The period-to-period discount factor is

then also close to one. Since each period is short, the multi-stage game will consist of many short

periods, where the probabilities of a player being distressed in any one of those periods are small,

so that the period-to-period discount factor is significant to the problem.

14 Huang and Stoll (1997) show large variation in the ratio γ
λ in Table 2 in their paper. For the

stocks considered, the ratio γ
λ varies from 0.02 to 0.22, which seems especially significant given the

sample of large liquid stocks that they consider.
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15 Duffie, Garleanu, and Pedersen (2005) also study the factors which affect liquidity in non-

anonymous markets.

16 A particularly clear example of this is the mortgage market developed by Salomon Brothers.

Once this market was established and profitable, many of Salomon’s mortgage traders were hired

by other investment banks to run their mortgage desks. As a consequence, the trading habits of

all of the desks were especially well-known to each other.

17 A variation on this model would be to allow the opportunistic traders to trade over a longer time

period than the distressed traders. The solution for such a model is similar. However, the predatory

trader will now choose what position to have by the end of the distressed seller’s deadline. The

choice of this position is made by maximizing the expected value from trading over the distressed

seller’s period, plus the expected value from selling the position at the end of that period at a

constant rate over the additional time. (See also Footnote 7.)

18 Our admissibility restriction is similar in spirit to Back and Baruch (2004). It restricts trader

i’s strategy given the price process, hence it depends on the strategies of other traders. As noted,

it is easy to show that the restriction Y i
t ∈ L2 suffices to ensure admissibility, so that there are

standard restrictions that ensure admissibility.

19 The single trader version of this problem is related to Huberman and Stanzl (2004b),Huberman

and Stanzl (2004a),Almgren and Chriss (1999),Almgren and Chriss (2000),Bertsimas and Lo (1998).

20In Appendix B we analyze closed-loop strategies, where players take into account the other

players’ response functions and are able to change their trading schedules part-way through the

game. From an asymptotic approximation (and numerical experiments), we have found that the
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solution to the closed-loop differential game is qualitatively similar to that of the open-loop differen-

tial game, except that the welfare loss in closed loop is higher. Hence, the incentives for cooperation

are stronger in the closed-loop solution, which would make the players more likely to cooperate in

the repeated-game analysis of Section II.

21Our approach to existence is similar to Huberman and Stanzl (2004a), who consider a related

problem in continuous time for a single trader. As in their paper, we restrict ourselves to the class

of smooth differentiable strategies. An alternative approach is to ensure smoothness by defining the

solution to the continuous-time problem as the limit of the solutions to a sequence of discrete-time

problems, which is the approach we use in the analysis of the closed-loop version of the problem in

Appendix B.

22See Theorem 6.12 in Basar and Olsder (1999) and related discussion.

23However, the open loop strategy is not ‘strongly time consistent’ or subgame perfect. The

closed-loop solution discussed in Appendix B is strongly time-consistent.

24Note that these bounds are tight, in that they can be approximated arbitrarily close under

some combination of valid parameters.

25 In our stage game, we do not allow for ex-post renegotiation. Surplus losses are common in

many models in non-cooperative game theory (i.e., Prisoner’s Dilemma and Centipede Game) and

motivate cooperation in repeated play.

26In models of implicit collusion under imperfect information (Green and Porter 1984, Abreu,

Pearce, and Stacchetti 1986), players never deviate in equilibrium, but enter punishment phases

because of exogenous price changes. Our game is one of complete information, where deviations
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cannot arise from such exogenous factors. This allows for a simpler model which captures the key

issues of interest, namely how apparent liquidity arises from incentives to cooperate.

27 The limits γ
λ → 0 and γ

λ → ∞ are defined as follows. The limit γ
λ → 0 is achieved by letting

γ → 0, or λ → ∞, or both. The limit γ
λ → ∞ is achieved analogously.

28To determine the division of this surplus between the insiders and the external player, it is

possible to use a generalized Nash bargaining solution in which the insiders receive fraction τ of

the surplus and the client receives fraction 1 − τ . The example that we consider (Figure 5), is

equivalent to assuming τ = 1. This is without any significant loss of generality, since relaxing this

assumption lead to the same comparative statics.

29 Episodic illiquidity also occurs during extreme financial distress. During extreme distress, a

member of the oligopoly becomes a finite concern. Because the horizon of this game is finite, the

players work out their strategy profiles by backwards induction and cooperation disappears.

30 Implicitly, we are assuming that there is a common cause driving the liquidity event. That is,

the liquidity needs for each trader are positively correlated across markets. We can generalize the

model to account for arbitrary correlation. However, it is seems less plausible that a trader would

simultaneously have both large positive and large negative liquidity needs.
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Figure 1. Trading rate (Yt) for multiple traders with identical targets (solid for n = 1, 2, 3, 4, 5,
dashed for n = ∞) during a market sell-off. Competition among traders leads to a ‘race to
trade’. Traders sell at a decreasing exponential rate. For n = 1 we obtain the constant selling
rate (solid horizontal line). If there are more traders, everybody will trade earlier. Note that
there is an upper bound on how fast traders will sell their position (Yt → e−

γ

λ
t as n → ∞),

regardless of how many traders are in the race (dotted line). The parameters for this example are
∆x = 1, T = 1, γ = 10, λ = 1.
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Figure 2. Expected price for multiple traders with identical targets (solid for n = 1, 2, 3, 4, 5,
dashed for n = ∞). When n = 1, trading occurs at a constant rate (straight solid line). When
the are a large number of traders present (n large), trading pressure depresses prices quickly(dotted
line). The parameters for this example are ∆x = −1, T = 1, γ = 10, λ = 1, with constant
Ut = 50.
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Figure 3. One trader with position target (solid) and one ‘opportunistic’ trader (dashed). The
opportunistic trader initial races the distressed trader to the market in a sell-off. Then, toward the
end of the period, the opportunistic trader reverses their position and fades the distressed trader.
The parameters for this example are ∆x = 1, T = 1, γ = 10, λ = 0.1.
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Figure 4. Minimum δ for which cooperation is feasible as a function of γ, with logarithmic
scale on the γ-axis. Three different cases of the distress probabilities of each trader are plotted
(the probabilities are assumed independent). It is always possible to support cooperation when
p1 = p2 = 0.5 and when p1 = p2 = 0.1, but it is harder when the distress probabilities are lower.
When the permanent price impact parameter γ is low it is impossible support cooperation when the
distress probabilities are asymmetric (p1 = 0.5 and p2 = 0.3). The other parameters are ∆x = 1,
U0 = 10, T = 10, and λ = 1.
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Figure 5. Minimum δ as a function of distress probabilities, the cases of p1 = p2 (bold), and
p2 = 0.5−p1 (dashed). Parameters are ∆x = 1, U0 = 10, T = 10, γ = 1, and λ = 1. The horizontal
reference lines correspond to the iso-δ lines in Figure 6.
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Figure 6. Values of p1 and p2 for which cooperation can be sustained, given δ (plotted for the
cases δ = 1, δ = 0.9, and δ = 0.8). For instance, for δ = 0.8 the cooperative equilibrium exists if p1

and p2 fall in the shaded region. The bold and dashed lines indicate the values of p1 and p2 that
are plotted in Figure 5.

50



0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

x∆x ∆x

Figure 7. Left- (solid) and right-hand-side (dashed) of Equation (26). The curves intersect at
zero, ∆x, and ∆x.
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Figure 8. Normally distributed shocks, upper and lower bounds for ∆x∗/σ as a function of the
asset parameters. The ratio C/K measures the benefits from cooperation relative to the costs of
cooperating in financial markets. The open-circle at C/K = 4.6729 is the minimum C/K for which
there exists a non-zero ∆x, that is for which an episodic predation strategy is feasible.
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Figure 9. Lowest and highest r such that the strategy (episodic predation with contagion over n
assets, n = 1, 2, . . . , 8) is an equilibrium, plotted as a function of the asset parameters, common to
all assets. The shocks are independent and normally distributed conditional on shocks being either
all positive or all negative. The ratio C/K measures the benefits from cooperation relative to the
costs of cooperating in financial markets. The open-circle for each curve is the minimum C/K for
which there exists a non-zero ∆x, that is for which an episodic predation strategy is feasible. Note
that the minimum C/K decreases as the number of markets n increase.
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Table I
Expected Values from Strategic Trading

Listed are the expected values that traders gain or lose when a sell-off occurs in the market. If only one

trader is present, they sell a block of shares ∆x in the time interval [0, T ] and gain the value V1. When a

predator is present they will earn less and the loss they incur is ∆Vd = V1 − Vd, where Vd is the value they

gain when they trade against the predator. The predator makes a profit of Vp and the aggregate surplus

to the predator and distressed trader is V2 = Vd + Vp. We show that the change in overall surplus, ∆V2,

is always negative. The expressions in the right-hand column of the table are derived in the paper. U0 is

the expected value of future dividends, γ measures the permanent impact of trading, and λ measures the

temporary impact of trading.

Surplus to distressed trader,
no predation

V1 −U0 ∆x −
(

1
2

+ 1
γ
λ

T

)

γ ∆x2

Surplus to distressed trader
during predation

Vd −U0 ∆x − 1
6

5e
γ
λ

T
+e

2
3

γ
λ

T
+e

1
3

γ
λ

T
−1

e
γ
λ

T
−1

γ ∆x2

Change in surplus to dis-
tressed trader (V1 − Vd)

∆Vd

(

1
6
· 2e

γ
λ

T
+e

2
3

γ
λ

T
+e

1
3

γ
λ

T
+2

e
γ
λ

T
−1

− 1
γ

λ
T

)

γ ∆x2

Surplus to predator Vp
1
6
· e

2
3

γ
λ

T
−1

e
2
3

γ
λ

T
+e

1
3

γ
λ

T
+1

γ ∆x2

Total surplus to predator
and distressed trader

V2 −U0 ∆x − 1
3
· 2e

1
3

γ
λ

T
−1

e
1
3

γ
λ

T
−1

γ ∆x2

Change in overall surplus
with predatory trading

∆V2

(

1
6
· e

1
3

γ
λ

T
+1

e
1
3

γ
λ

T
−1

− 1
γ

λ
T

)

γ ∆x2
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Table II
Multimarket contact across n-markets.

The ratio C/K measures the benefits from cooperation relative to the costs of cooperating in financial

markets. For n = 1, 2, . . . , 20, we calculate the minimum values of C/K for which cooperation is possible

over multiple markets. As the number of markets increases (n increases), the relative benefit needed to

support cooperation decreases.

n C/K n C/K n C/K n C/K

1 4.6729 6 2.2664 11 1.9299 16 1.7740
2 3.3509 7 2.1687 12 1.8907 17 1.7517
3 2.8507 8 2.0913 13 1.8563 18 1.7314
4 2.5747 9 2.0280 14 1.8259 19 1.7127
5 2.3950 10 1.9751 15 1.7986 20 1.6954
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Table III
Expected Values from Strategic Trading: Comparing Open-Loop and

Closed-Loop Strategies

Listed are the expected values that traders gain or lose when a sell-off occurs in the market. Considering

the limit conditions when T → ∞ or λ → 0, we calculate the values to the strategic traders when they

use open-loop and closed-loop strategies. U0 is the expected value of future dividends and γ measures the

permanent impact of trading. The values to the traders are qualitatively similar, though the aggregate

surplus loss to the traders is worse in the closed-loop case.

Open-Loop Closed-Loop

Surplus to distressed trader,
no predation

V1 −U0 ∆x − 1
2
γ ∆x2 −U0 ∆x − 1

2
γ ∆x2

Surplus to distressed trader
during predation

Vd −U0 ∆x − 5
6
γ ∆x2 −U0 ∆x − 7

8
γ ∆x2

Change in surplus to dis-
tressed trader (V1 − Vd)

∆Vd
1
3
γ ∆x2 3

8
γ ∆x2

Surplus to predator Vp
1
6
γ ∆x2 1

8
γ ∆x2

Total surplus to predator
and distressed trader

V2 −U0 ∆x − 2
3
γ ∆x2 −U0 ∆x − 3

4
γ ∆x2

Change in overall surplus
with predatory trading

∆V2
1
6
γ ∆x2 1

4
γ ∆x2
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Appendix A

Derivations

Proof of Result 1 (General Solution)

Given that each player’s objective is linear in Ut, and that the strategies are open-loop, we can

bring the expectation inside the integral (Fubini’s theorem applies since the trading rate Y i
t is

admissible) and consider the equivalent problem with a deterministic asset pricing equation, in

which Ut is replaced by a constant u = U0,

Pt = u + γ
n
∑

j=1

Xj
t + λ

n
∑

j=1

Y j
t . (A.1)

This is a standard deterministic control problem with objective concave in Xi
t and Y i

t and

constraint linear in the control Y i
t . If the solutions to the necessary conditions are continuous,

sufficiency follows.

With the multiplier function Zi
t associated with the constraint dXi

t = Y i
t dt, necessary optimality

conditions for the problem faced by trader i are (Basar and Olsder 1999)

u + γ
∑n

j=1 Xj
t + λ

∑n
j=1 Y j

t + λY i
t + Zi

t = 0

dZi
t = −γ Y i

t dt.

(A.2)

The second equation ensures that the multiplier function is continuous (as required for sufficiency).

Differentiating the first equation with respect to t, and substituting the second,

γ

n
∑

j=1

Y j
t dt + λ

n
∑

j=1

dY j
t + λdY i

t − γY i
t dt = 0. (A.3)
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The n such equations for each trader can be collected together as

λ(I + 11T )dYt = γ(I − 11T )Ytdt, (A.4)

where I is the n × n identity matrix, 1 is the n-vector with all entries equal to one, and 11T is

an n × n matrix with all elements equal to one. From the formula for the inverse of the rank-one

update of a matrix (Kailath 1980), the inverse of I +11T is I − 1
n+1

11T , which we use to write the

linear dynamic system in the form

dYt =
γ

λ
AYtdt, where A = I − 2

n + 1
11T . (A.5)

Since A1 = 1 − 2
n+1

n1 = −n−1
n+1

1, the vector of ones is an eigenvector of the matrix A, with

associated eigenvalue −n−1
n+1

. Likewise, vectors in the null-space of 1 are eigenvectors of A, with

eigenvalue 1: for v orthogonal to the vector of ones, that is satisfying 1T v = 0, we find that Av = v.

The dimension of this sub-space, and multiplicity of the eigenvalue 1, is n − 1. Since the matrix

A has a full set of n independent eigenvectors, all Jordan blocks are of size 1 and solutions to

the system of linear differential equations are as stated in (5). This characterizes any continuous

policy (with continuous dual functional) which is an extremal of the problem. Since a continuous

extremal exists, from the concavity of the objective in the state and control and linearity of the

constraint, this is the unique extremal of the problem (in the admissible class). The n trading

target constraints and 1T b = 0 uniquely determine the n free parameters in the solution (integrate

the Y i
t , equate to ∆xi, and solve for a and b).

�

58



We next show a Lemma and Corollary, which will be of use in proving Result 2.

LEMMA A.1 The function f : R+ 7→ R

f(y) =
1 + e−y

1 − e−y
− 2

y
(A.6)

is positive increasing.

Proof. We first show limy→0 f(y) = 0. Applying l’Hôpital’s rule, we find

lim
y→0

f(y) = lim
y→0

−ye−y + 1 + e−y − 2e−y

1 − e−y + ye−y
= lim

y→0

ye−y

2e−y − ye−y
= 0. (A.7)

We now show f ′(y) > 0.

f ′(y) =
−2e−y

(1 − e−y)2
+

2

y2
=

2

(1 − e−y)2y2

(

−y2e−y + 1 + e−2y − 2e−y
)

. (A.8)

For y > 0, the denominator is positive. We show that the numerator is also positive, g(y) =

−y2e−y + 1 + e−2y − 2e−y > 0, from g(0) = 0 and g′(y) > 0:

g′(y) = −2ye−y + y2e−y − 2e−2y + 2e−y = e−y
(

−2y + y2 − 2e−y + 2
)

. (A.9)

Likewise, we show h(y) = −2y + y2 − 2e−y + 2 > 0, from h(0) = 0 and h′(y) > 0:

h′(y) = −2 + 2y + 2e−y, (A.10)

which is positive if e−y > 1 − y, which is true for any y 6= 0 (from the intercept and derivative at
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zero and from the convexity of the exponential). �

COROLLARY A.1 The function g : R+ 7→ R

g(y) = y
1 + e−y

1 − e−y
(A.11)

is positive increasing.

Proof. Write

g(y) = yf(y) + 2, (A.12)

where f is as in the previous Lemma. The product of two positive increasing functions is positive

increasing. �

Proof of Result 2 (Expected Total Surplus and Loss for Multiple Traders)

The expected surplus is obtained by integration of

−Pt

n
∑

i=1

Y i
t = −Pt n a e−

n−1

n+1

γ
λ

t (A.13)

over t ∈ [0, T ], followed by algebraic simplification. The proofs of the monotonicities are direct

applications of the Lemma above or of its Corollary, using y = T , y = γ, y = 1
λ , and y = n−1

n+1
(with

n relaxed to be in R). For λ and n, we also need the fact that the composition of two monotonic

functions is monotonic. �

Proof of Result 3 (Expected Total Surplus and Loss for Two Traders)

By Equation (8), Y = Y d
t + Y p

t = 2ae−
1
3

γ
λ

t. By integration of −PtY over t ∈ [0, T ], followed by
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algebraic simplification, the results in Equations (13) and (16) are derived. The monotonicities are

verified by differentiation of Equation (16). We define V− = Vd − Vp and Y− = Y d
t − Y p

t = 2be
γ

λ
t.

Integrate −PtY− over t ∈ [0, T ] and simplify to obtain

V− = Vd − Vp = − u∆x − γ
e

γ
λ

T

e
γ

λ
T − 1

∆x2. (A.14)

Vd and Vp are obtained by simplification of (V2 + V−)/2 and (V2 − V−)/2.

The proof for the monotonicity of
Vp

∆Vd
is along the same lines as for Result 2 (with lengthier

algebra). The bounds on
Vp

∆Vd
are the limits at 0 and +∞, obtained by applying l’Hôpital’s rule as

needed. �

Proof of Result 4 (Repeated Game with Two Symmetric Traders)

For trader 1, the gains from cooperation must exceed those of one-time deviation and infinite

non-cooperation or

δ1
1−δ1

[

p1(1 − p2)V1(∆x) + 1
2
p1p2V1(2∆x)

]

≥

Vp(∆x) + δ1
1−δ1

[

(1 − p1)p2Vp(∆x) + p1(1 − p2)Vd(∆x) + 1
2
p1p2V2(2∆x)

]

.

(A.15)

Since ∆V2 is quadratic in ∆x, we have that 1
2

∆V2(2∆x) = 2∆V2(∆x) (we then omit the argument

when it is ∆x). The first equation in (19) follows by solving for δ1. The second equation is derived

similarly for trader 2. For both traders to cooperate, it must be that δ ≥ max{δ1, δ2}. The

monotonicities can be proved algebraically, along the same lines as for Result 2. �

Proof of Result 5 (Shocks of Random Magnitude)

Equation (A.15) can be written in this context as Equation (26), where f is the density of ∆x
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and C and K are as defined. For values of C sufficiently large or values of K sufficiently small,

Equation (26) will be satisfied and there will exist a ∆x∗ such that cooperation is possible. As

long as |∆x| < ∆x∗, the traders will cooperate since the value of cooperating exceeds that of a

one-time deviation and subsequent grim-trigger play. If |∆x| ≥ ∆x∗, the traders will predate and

resume cooperation in the next period if possible. If Equation 26 is not satisfied, then cooperation

is not possible and the traders will always predate. Thus, there exists a subgame perfect Nash

equilibrium as described. The left-hand side of Equation 26 is bounded since f has finite variance

and the right-hand-side is unbounded. Hence the supremum of ∆x∗ is bounded. For existence of

∆x, note that zero is a solution. �
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Appendix B

Closed-Loop Solution

In our analysis of the stage game, the strategies considered are deterministic. They are open-

loop, in the sense that traders choose their strategies at time t = 0. It is assumed that traders would

not respond to other traders’ deviations from their optimal strategies. We would have obtained

the same solution had we defined the Y i
t to be Ft-adapted (where Ft is the filtration of the σ-

algebras generated by Bt). Note however that this is in the strict sense that traders are aware of

the underlying process Ut that defines price fundamentals, but not of the actual price Pt and of the

other players’ trading rates Yt. (The argument for the solution to this variation on the open-loop

problem to be the same as in Result 1 is based on the value functions’ linearity in Ut, as is done

below in this section.)

We now consider closed-loop strategies, in that traders know or can infer the other traders’ rate

of trading, and respond accordingly. Under such strategies, Y i
t is adapted to all the information

existing at time t, and players can revise their trading decisions at any time based on such informa-

tion. This means that earlier decisions must account for other players’ response function at later

times. This inability to commit ahead of time to not deviate from a given strategy over the entire

[0, T ] period leads to more aggressive strategies than in the open-loop case, including faster racing.

Closed-loop strategies are substantially more difficult to analyze than open-loop, and we are

not able to provide a closed-form solution. We do provide a description of the equilibrium optimal

strategies in terms of a value function with two scalar parameter which satisfy a triangular system

of nonlinear differential equations. Our numerical simulations have shown the open- and closed-

loop solutions not to be substantially different. We provide some analytical justification for this
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observation. In particular, from a fixed-point analysis of the Riccati equations, we provide closed-

form expressions for the expected value for each of the players when T is large.

We derive the closed-loop result for the deterministic case and then show that it holds for the

stochastic pricing equation. We consider strategies where the trading rate is constant over time

increments of length ∆t. The reward for trader i over each time increment is

ri(u, y,∆t) =

∫ ∆t

0

−
(

u + γ 1Ty τ + λ1Ty
)

yidτ (B.1)

= −
(

u +
(γ

2
∆t + λ

)

1Ty
)

yi∆t. (B.2)

We formulate the problem as a dynamic game, with an n + 1-dimensional state, composed of

u(t) ∈ R and φ(t) ∈ Rn. The first component, u(t), is the expected price at time t, including the

permanent price impact of previous trades (in previous notation, u(t) = Ut + γ
∑n

i=1 Xi
t). The n

components of φ(t) are the remaining trading targets for each trader, that is, the amount they still

need to trade by T (in previous notation, φi(t) = xT i − Xi
t). The state transition over a period of

length ∆t with each player trading at a constant rate yi is

u′(u, y,∆t) = u + γ 1Ty ∆t, (B.3)

φ′(φ, y,∆t) = φ − y∆t. (B.4)

The value functions for each of the n traders must simultaneously satisfy

V i(u, φ, t) = max
yi

ri(u, y,∆t) + V i(u′(u, y,∆t), φ′(φ, y,∆t), t + ∆t),

i = 1, . . . , n. (B.5)
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We will show that the value functions can be represented in the form

V i(u, φ, t) = −uφi − α(t)φi1
Tφ + β(t)

(

1Tφ
)2

, (B.6)

and derive Riccati equations for α(t), β(t) ∈ R. We take the limit ∆t → 0 to find the differential

equations for the continuous-time case.

Substituting (B.6), (B.2), (B.3), and (B.4) in (B.5) and letting ∆t → 0, we obtain

−dα(t)

dt
φi1

Tφ +
dβ(t)

dt

(

1Tφ
)2

=

= max
yi

−λ yi1
Ty − γ φi1

Ty + α φi1
Ty + α yi1

Tφ − 2β 1Ty 1Tφ. (B.7)

Differentiating with respect to yi and equating to zero, we obtain the optimality condition

λ(yi + 1Ty) = (α − γ)φi + (α − 2β)1Tφ, (B.8)

which we collect over i = 1, . . . , n as

λ(I + 11T )y =
(

(α − γ)I + (α − 2β)11T
)

φ. (B.9)

Multiplying on the left by 1
λ(I − 1

n+1
11T ), we solve for the equilibrium trading rates as a function

of the state,

y =
1

λ

(

(α − γ)I +
1

n + 1
(−2β + γ)11T

)

φ, (B.10)
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which can equivalently be written individually as

yi =
1

λ

(

(α − γ)φi +
1

n + 1
(−2β + γ)1Tφ

)

, i = 1, . . . , n. (B.11)

The sum of the trading rates is found to be

1Ty =
1

λ

(

α − 2
n

n + 1
β − 1

n + 1
γ

)

1Tφ. (B.12)

Substituting (B.11) and (B.12) in (B.7), we verify that the structure of the value function as

postulated in (B.6) is in fact preserved over time (more strongly, it can be verified that the structure

is preserved before letting ∆t → 0). Collecting terms and simplifying, we obtain the following

triangular representation for the Riccati equations,

dα

dt
=

1

λ
α(α − γ), (B.13)

dβ

dt
=

1

λ

(

2αβ − 1

(n + 1)2
(2nβ + γ)2

)

. (B.14)

So far we have assumed a deterministic u. The objectives for the deterministic case are linear

in u, the corresponding optimal policies do not depend on u, and the value functions were found to

be linear in u. Using these value functions for the stochastic case, the ∂2V i/∂u2 terms in the HJB

equations are zero, and all other terms are as in the HJB equations for the deterministic case. That

is, if given value functions and optimal policies satisfy the HJB equations for the deterministic case,

they also satisfy the HJB equations for the stochastic case.

Conditions for verification of the HJB equation are met (Karatzas and Shreve 1988) as the value

function is differentiable in t and smooth in the state.
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While the system of nonlinear equations (B.13) and (B.14) is difficult to solve in closed form, a

number of its properties can be studied. As T → ∞, and since the expected values are bounded due

to the overall convexity of the problem and the triangular structure precludes oscillatory behavior,

α(0) and β(0) must converge to fixed points of the differential equations. The fixed points for the

first equation are 0 and γ, of which only α = γ is stable (note that (B.13) is convex-quadratic in α,

and we are considering integration backwards in time). With α = γ, we solve for the fixed points

of β, which are found to be 1
2
γ and 1

2n2 γ, of which only β = 1

2n2 γ is stable (note that (B.14) is

concave-quadratic in β).

In the case n = 1, we have φi(0)1
Tφ(0) = (1Tφ(0))2 = ∆x2, so that

V = −U0∆x − γ∆x2 +
1

2
γ∆x2 = −U∆x − 1

2
γ∆x2. (B.15)

As expected, we recover the same value as for the open-loop case (which corresponds to a constant

trading rate).

Consider now the case n = 2, with the distressed trader needing to trade φ1(0) = ∆x, and the

predatory trader’s target being φ2(0) = 0. For the distressed trader, φ1(0)1
Tφ(0) = (1Tφ(0))2 =

∆x2. For the predatory trader, φ2(0)1
Tφ(0) = 0 and (1Tφ(0))2 = ∆x2. Table III summarizes the

same expected values as in Table I, but for T large (T → ∞ or, equivalently by change of units, λ

small, i.e., λ → 0). Overall, the expected values are similar. The loss to the distressed trader is

somewhat larger in the closed-loop case, the gain to predatory trader somewhat smaller, and the

overall welfare loss somewhat larger. The ratio of gains to the predatory trader per losses to the

distressed trader decreases from 1/2 in the open-loop case to 1/3 in the closed-loop case (cf.lower

bound in Result 3). Cooperation between traders will therefore be more likely in the closed-loop
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case.Table III

about

here

For n traders, and still under the assumption of a long trading horizon, we can derive the shape

of the racing under closed-loop strategies. During the racing stage, that is for small t, α(t) and

β(t) are approximately constant (under the assumption of large T or small λ). Using the stable

fixed-point values α = γ and β = 1

2n2 γ in (B.11), we obtain

yi =
γ

λ
· n − 1

n
· 1Tφ

n
, i = 1, . . . , n. (B.16)

Since yi = −dφi/dt, we conclude that, with closed-loop strategies, the racing is of the form

yi = a e−
γ

λ
n−1

n
t, (B.17)

with the constant a ∈ R a function of the average trading target. This is slightly faster than what

we found for the open-loop case, which was yi = a e−
γ

λ
n−1

n+1
t.
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