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We present high-quality x-ray scattering experiments on pure water taken over a temperature 

range of 2°C to 77°C using a synchrotron beam line at the Advanced Light Source (ALS) at 

Lawrence Berkeley National Laboratory. The ALS x-ray scattering intensities are qualitatively 

different in trend of maximum intensity over this temperature range compared to older x-ray 

experiments. While the common procedure is to report both the intensity curve and radial 

distribution function(s), the proper extraction of the real-space pair correlation functions from the 

experimental scattering is very difficult due to uncertainty introduced in the experimental 

corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of 

Fourier transforming truncated data in Q-space. Instead we consider the direct calculation of x-

ray scattering spectra using electron densities derived from density functional theory based on 

real-space configurations generated with classical water models. The simulation of the 

experimental intensity is therefore definitive for determining radial distribution functions over a 

smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with 

DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-

Pol2 in particular shows quantitative agreement over the full temperature range. The resulting 

radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space 

water structure over the biologically relevant temperature range studied here.  
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Introduction 

Liquid water structure is characterized by x-ray (or neutron) diffraction that measures 

experimental intensities as a function of momentum transfer, Q=4πsin(θ/2)/λ, where λ is the 

wavelength and θ is the scattering angle with respect to the incident beam. The most recent x-ray 

data taken at ambient conditions at the Advanced Light Source (ALS) at Lawrence Berkeley 

National Laboratory exhibited significant differences when compared to the scattering curves of 

past x-ray experiments[1-3]. We believe the new measurements to be superior since they benefit 

from the use of a third generation synchrotron source, more accurate intensities using a modern 

CCD detector, and careful control of error in the applied corrections[3]. However no such high 

quality x-ray measurements exist yet at other thermodynamic state points. In this study we detail 

the collection and processing of x-ray diffraction intensity data from pure liquid water 

throughout the temperature range of 2°C to 77°C at ambient pressure, a temperature range that is 

most important for water related to biological studies.  

The intensity is the true experimental observable in which error-bars are well-defined. 

However, it is typical practice for water scattering experiments to also report radial distributions 

in addition to the intensity profile, primarily because it is more convenient and practical to 

consider water structure in terms of real-space distribution functions [1,4-14]. In actuality the 

gOO(r)’s extracted from the x-ray diffraction measurements are highly-derived functions, not 

necessarily unique, and there is no way of quantifying the errors introduced in their extraction 

based on finite Q data[3]. Therefore it is not surprising that the reported oxygen-oxygen radial 

distribution function, gOO(r), obtained by various x-ray and neutron scattering groups over the 

last 30 years have been inconsistent[4,10,12]. Recently, independent experimental approaches of 

x-ray[1] and neutron[14] scattering, using different analyses to extract radial distribution 
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functions[2,15], independently converged on the same oxygen-oxygen radial distribution 

function for ambient temperature and pressure as shown in Figure 1.  

However extracting real-space pair correlation functions from the intensity remains a 

primary source of uncertainty that potentially degrades the actual high-quality of the 

experimental data itself. Currently it is thought that the intensity out to Q=20-25Å-1 would be 

needed to reliably Fourier transform the data to get converged real-space functions. Based on the 

uncertainties in any approach for extracting real-space functions, such as Q-space 

continuation[7], fitting procedures in r-space[2], and reverse Monte Carlo methods[16,17] and its 

extensions[15], it is important to further test the assumptions made in deriving radial distribution 

functions based on a smaller range of Q. With the advent of completely ab initio simulations of 

liquid water[18-21], it is now possible to predict the x-ray scattering from the distribution of 

electron density, ρ(r), generated from the condensed phase simulation trajectory[22] using Eq. 

(1) 
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This allows for the straight simulation of the true experimental observable, the intensity, without 

requiring the contrived and error-prone process of extracting radial distribution functions from 

intensity data over a finite Q-range. If the simulated intensity curve using Eq. (1) agrees well 

with experiment (with only moderately large Q-ranges), then we can analyze the corresponding 

real-space trajectory to ascertain the pair distribution function(s).  

In this study we consider the direct calculation of x-ray scattering spectra using ab-initio 

density functional theory with the LDA functional over the temperature range studied by 

experiment. The generation of the real-space “snapshots” could come from either a first 
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principles molecular dynamics calculation[18], that describes the time-evolution of the electronic 

structure, or a classical molecular dynamics simulation based on an empirical water model. Due 

to the current expense of simulating the full ab initio trajectory, we instead evaluate equation (1) 

by integrating over positions generated by the classical simulation of various water models.   

The combined experimental and theoretical benchmarks are applied to judging the quality 

of various TIP non-polarizable[23,24] and polarizable[25] water force fields over the range of 

temperature of 2-77°C that we have examined. We find that the TIP5P non-polarizable water 

model[24] and the TIP4P-Pol2[25] polarizable model, with DFT-LDA densities, show very good 

agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative 

agreement over the full temperature range. The resulting radial distribution functions from 

TIP4P-Pol2, and for TIP5P for temperatures greater than 25°C, provide the current best 

benchmarks for real-space water structure over the biologically relevant temperature range 

studied here. We also examine the relative error introduced by LDA electron densities vs. error 

in water force field configurations, using an independent analysis method described in [2,3]. 

 

Experimental Methods 

Experimental setup. The data collection was performed at the Advanced Light Source 

(ALS) at Lawrence Berkeley National Laboratory on beam line 7.3.3. Doubly distilled and 

degassed water was used in each experiment, and several data sets with independent fillings of 

the sample holder were collected at each temperature (2°C, 11°C, 22°C, 33°C, 44°C, 55°C, 

66°C, and 77°C). A silicon monochrometer was used to produce an x-ray beam with spot size on 

the order of 100µm, with 99% of the energy at 12.800 ± 0.001 keV or a wavelength of 0.9686Å. 

This wavelength provided the best compromise between sufficient flux and maximizing our 
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accessible Q-range. Data sets were collected with a flat slab water sample using a transmisson 

geometry, with the sample tilted with respect to the incoming x-ray beam by an angle of 30o.  

A Bruker Charge Coupled Device (CCD) area detector, mounted on a Huber 

diffractometer and with dimensions of 9.6cm x 9.6cm collected the diffracted x-rays. In order to 

realize the full range of 0.1Å-1 < Q <11.1Å-1 provided in this study, the data were collected with 

the detector in three different positions which were pieced together for the final result. The 

sample to detector positions were determined to 100µm precision while the angle between the x-

ray beam and the normal to detector face were characterized on the order of mrads. The 

geometries at each detector position were determined by collecting PbS powder patterns with the 

powder placed within the sample holder and fitting the resulting sharp Bragg rings to determine 

all the geometric parameters. A more detailed description of this procedure can be found in 

previous work[1]. The three sample to detector positions and collection times are detailed in 

Table 1. The lowest angles were limited by the beam stop at 0.8832o or a Q=0.1Å-1, the highest 

angles were limited by the monochrometer housing and sample holder aperture at 118o or at a Q 

=11.1Å-1. 

Our sample holder was based on a similar design of our previously described sample 

holder [1] with several additions in order to control the temperature of the sample, and is shown 

in Figure 2 and described in the figure caption. Temperature control of the sample relied on a 

Peltier device or thermoelectric cooler. A thermocouple placed within the sample chamber, 

monitored the temperature. An Alpha Omega Instruments Series 800 Controller acted as the 

thermostat. One face of the Peltier device was placed in thermal contact with the aluminum plate 

augmented by a zinc oxide thermal grease. In order to achieve temperatures below room 

temperature a water cooled aluminum block was placed on the other side of the Peltier device as 
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a heat sink. In order to prevent condensation below the dew point a helium shroud was built 

around the sample holder. The entrance and exit windows of the helium shroud were made of 

1µm thick Mylar purchased from Goodfellow Inc.  

Experimental corrections. The collected raw intensity data was transformed to a 

circularly integrated scattering cross-section on a per electron scale versus Q. The following 

divides the corrections into two parts. The first deals with corrections that must be applied 

generally to all detector positions such as absorption, geometric corrections, and polarization of 

the radiation. The second set of corrections deals with overlapping data from different panels and 

thus the contribution of background and sample holder scattering.  

Corrections to the intensities due to absorption by air, water, and window material are 

given by the form 
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where Io is the intensity if there were no absorption in the sample, I is the measured intensity, t is 

the thickness, τ is the angle between the plane of the sample and the incident x-ray beam, and ν 

has the form ν=cosθsinτ+sinθcosφcosτ. The absorption coefficients, µρ, can be obtained from 

http://www-cxro.lbl.gov/optical_constants using a tabulated format based on [26]. The 

absorption coefficient for water is 2.396 (cm2/g) for 1C water at our operating wavelength and 

varies proportionally with the density for different temperatures. Thickness of samples were 

determined by measuring the x-ray transmisson thorough the sample using a PIN diode. The 

error in the thickness was on the order of 0.02cm and did not contribute significantly to the error 

of the intensity curve.  
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When the incident radiation is plane-polarized as in our experiment, the in-plane and out-

of-plane polarization is treated separately, and the measured intensities must be rescaled by the 

factor 

( )[ ] ( )[ ]2
planeout

2
planein sincos1Psinsin1PP θφθφ −+−= −−    (3) 

where Pin-plane and Pout-plane are the fractional polarizations of the beam in the plane and out of the 

plane of the circulating electrons, respectively.  

The data were also corrected for the 1/r2 fall off of intensity, and correction for pixel 

orientation with respect to the incident radiation. We discovered that detector manufacturers 

attempt to provide a correction of this sort in their bundled software for data read-out. 

Corrections to the image collected by the CCD includes distortions introduced by the fiber optic 

tapers connecting the plate to the chip, a dark current correction that takes into account 

photoelectrons ejected by thermal motions in the CCDs and any low-level background radiation 

in the experimental hutch, and finally a flat field correction that provides a correction for 

variations in pixel sensitivity. This correction involves a calibration measurement that collects a 

reference image intensity using either a radioactive source or scattering from a fluorescent 

material at a set distance from the detector. The image is used to generate a scale factor for each 

pixel such that, when applied to the flat field image, each pixel measures the same intensity. The 

set distance with which this correction is calibrated varies among manufacturers. If the 

calibration experiment involves a relatively small source to detector distance, then the geometric 

corrections (1/r2 fall off, pixel orientation) are implicitly taken into account by the manufacturer 

in the flat field correction. This is the case for the Bruker detector, so we need to “uncorrect” the 

collected image for the manufacturers geometry, and reapply the correct geometric corrections 

for our experiment. This is an insidious problem since these detector corrections are applied 
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before the “raw image” is available to the experimentalist, and the correction is not documented 

in the manufacturer literature. 

We next turn to the procedure for the subtraction of background that is required in order 

to match segments of the intensity over the full range of Q in this experiment. Figure 3a shows 

the fully corrected, filled and empty sample holder data at one temperature, at a point before the 

three separate positions of the detector have been pieced together. We had intended to use the 

overlapping regions of the curves to determine an internal scale factor that would place all three 

segments of the data on the same scale. This is easily done for overlapping the second and third 

detector positions. However while the overlap between the first and second detector positions for 

the filled sample is quite good, the overlap between the first and second detector positions for the 

background is very poor. We attribute this mismatch to additional air-scattering by the x-ray 

beam once it exits the sample, something that is less of a problem for the filled sample because 

of its greater absorption cross-section. As a result, we could not simply overlap panels for the 

filled sample, overlap panels for the empty cell, and subtract the latter from the former to provide 

a correction for scattering background.  

Instead, the background can be subtracted from the first detector position by making use 

of the prominent kapton window peak at Q = 0.4Å-1 which occurs in a region where there are no 

sharp features in the liquid water scattering. The factor required for the background subtraction is 

found when the kapton peak is clearly removed and the intensity in the associated Q region is 

flat. This factor can be empirically fine-tuned by extrapolating the intensity to the value of the 

isothermal compressibility at Q=0, once the intensity is on an electron units scale. In order to 

overlap the second panel with the first panel, two scale factors need to be found; a factor related 
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to the flux over the exposure time (a1) and a scaling for the kapton subtraction (a2). This is 

summarized in Eq. (4) 

 )       (4) ()()( 1221 QIQIaQIa k =−

where I2(Q) is the intensity of the filled sample holder in the second detector position, Ik(Q) is 

the intensity of the background (empty cell), and I1(Q) is the intensity of the filled sample holder 

in the first detector position. These two factors are determined by standard least-squares fitting 

over the overlapping Q range. The third detector position that already overlapped in shape with 

the second detector position used the same kapton subtraction factor, a2. The resulting curve is 

shown in Figure 3b.  

Once we have the intensity curve over the full Q-range, we make a correction for 

inelastic or Compton scattering as discussed in [1] using a fit to CISD calculations available for 

water [27,28]. The Krogh-Moe [29], [[30] method was used to normalize the scattering intensity 

to an absolute scale.  

 

Theoretical Methods 

It is conventional in the analysis of the scattering from molecular liquids to separate the 

intensity into contributions from individual molecules (self-scattering), and that arising from 

intermolecular correlations defined by the structure factor, H(Q).  
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where the sums are over the atom types present in the sample, xi is the atomic fraction and fi(Q) 

the Q-dependent atomic scattering factor[31], for atom type i. The structure factor is 
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where ρ is the atomic density, rij are the intramolecular distances between atom centers, and gij(r) 

is the radial distribution function describing intermolecular correlations between atom types i and 

j. In the case of x-rays the assumption is commonly made that the scattering can be represented 

as arising from independent neutral atoms, each with a spherical electron density distribution. 

However, it is clear from our previous work that a superposition of spherical electron densities of 

free atoms centered on the individual atoms of chemically bonded water is not adequately 

representative of the true charge distribution[2]. 

We have recently introduced a modification of the atomic scattering factors for liquid 

water which rescales them properly at low Q where chemical bonding effects are known to be 

significant, while retaining their values at large Q where chemical bonding effects on the core 

electron distribution should be negligible[2]. The modified atomic form factors (MAFF) f′(Q) is 

of the form 

( ) ( ) ( )[ ] ( )Qf2/Qexp11Qf 22 δα −−+=′     (7) 

where f(Q) is the atomic scattering factor for the isolated atom, α is a scaling factor giving the 

redistribution of charge, and δ is a parameter to be fit, representing the extent of valence-electron 

delocalization induced by chemical bonding[2]. For liquid water we choose α to be 2.8D, and the 

unknown parameter δ was fit by requiring the Debye expression curve to agree with the ab initio 

CI results for gas phase water[28]. Figure 4 shows the difference in a simulated intensity when 

using the same partial structure factors (hOO(Q), hOH(Q), and hHH(Q)) but free atom form factors 

based on isolated atoms or the MAFFs that take into account chemical bonding. The difference 

 10 



arises because of chemical bonding effects, which now weight the O-O terms as ~85% of the 

signal, while O-H terms contribute ~15%, with negligible contribution from H-H correlations.  

Explicit quantum treatments of electronic structure in aqueous simulations have been 

reported, where all have relied on a local density approximation to density functional theory[18-

21,32]. The cost of these calculations rises as N3 where N is the number of basis functions or 

plane waves per atom, with a large coefficient relative to classical simulations that make these 

approaches computationally demanding, but potentially more predictive. Differences among 

functionals in the condensed phase have been investigated for liquid water in [19], and 

commonly used functionals include BLYP[33-35] and PBE[36]. In principle, these approaches 

provide the current best theoretical means for providing intensity curves directly. These 

calculations can also be corrected for quantum effects. 

As discussed in [22], a direct calculation of the coherent x-ray scattering spectrum of 

liquid water by means of DFT is feasible when using an implementation of the Gaussian 

augmented plane wave (GAPW) method[37], called Quickstep, which can perform all-electron 

ab-initio DFT calculations for periodic systems[38]. The evaluation of an intensity curve from a 

10-ps-long CPMD simulation of 64 water molecules with the gradient-corrected BLYP 

functional and with an average ionic temperature of 318K[20] using the full electronic charge 

distributions was compared to the ALS2000 experiment[1], which was conducted at room 

temperature. Overall these results are promising, but are not in themselves definitive because of 

the short timescale of the simulation and problems of large temperature fluctuations for these 

small system sizes, where differences of 10-20 degrees in temperature will affect the structural 

comparisons with room temperature experimental data[2]. 
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The computational cost of dynamics generated with CPMD and the evaluation of the full 

electronic charge distribution are too prohibitive for the present study. To make these 

calculations more feasible for the large number of experiments considered here, we have 

repeated the calculation using the 64-water CPMD trajectory and a superposition of DFT 

molecular densities as an approximation to the full electronic density. Figure 5a shows that this 

approximation is extremely good for liquid water, and provides significant computational 

savings for the analysis. 

Furthermore, there is no need to employ the computationally more expensive BLYP 

functional any longer since the charge distribution of an isolated water molecule is already well 

described by the LDA functional as shown in Figure 5b, where the DFT-BLYP and the DFT-

LDA results for an isolated water molecule are compared to recent accurate configuration 

interaction calculations that included single and double excitations (CISD)[27] which are also in 

good agreement with coupled cluster calculations (CCSD)[28]. All the Quickstep calculations 

presented in this work used a double-zeta valence plus p polarization (DZVP) and a triple-zeta 

plus d polarization basis set (TZVP) for H and O, respectively. 

We also provide an alternative examination of classical water force fields by using them 

as the propagators of nuclear positions, and gathering snapshots of the condensed phase 

trajectories upon which we evaluate intensities based on molecular densities generated using 

DFT-LDA and Eq. (1). The classical force fields provide us with a much less expensive way to 

simulate much longer trajectories and larger system sizes while still simulating the intensity 

curve to make direct contact to the experimental observable.  

We calculated I(Q) reported in the Results section using 1-ns-long MD trajectories 

generated with the classical water models TIP4P[23] and TIP5P[24] for a liquid water model 
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system with 256 water molecules in a simple cubic box, and we used Ewald sums to treat long-

ranged electrostatics. 1,000 atomic configurations equally spaced by 1ps were extracted from 

each trajectory and the corresponding intensity curves were calculated for each atomic 

configuration. We also calculated I(Q) using Eq. (1) using Monte-Carlo (MC) simulations with 

the TIP4P-Pol1 and the TIP4P-Pol2 water models[25], which are polarizable versions of the 

TIP4P model. In total 1,000,000 MC cycles were performed during each MC simulation and 

after every 1,000 MC cycles an atomic configuration was obtained. Each MC cycle consisted of 

500 MC steps to ensure a comparable statistic with respect to the MD simulations.  

 

Results 

Figures 6a-6c show the experimental intensity, with error bars, for representative 

temperatures of 2°C, 25°C, and 77°C, compared to x-ray scattering data reported by Narten over 

30 years ago. The ALS data for these temperatures, and additional temperatures of 10°C, 44°C, 

55°C, and 66°C, are provided in tabular form in the appendix. It is apparent that the ALS x-ray 

scattering intensities are qualitatively different in trend with respect to maximum intensity (Imax) 

over this temperature range, compared to the older x-ray experiments, and the difference 

between them falls well outside of the ALS experimental error bars. Given the improvements in 

experimental design such as using a bright and highly monochromatic source, a well-

characterized polarization and Compton scattering correction, and more accurate intensities 

using a modern Charge Coupled Device (CCD) detector, we are confident that the ALS results 

are more correct. Considering only the ALS data, the features that most prominently change as a 

function of increasing temperature include decreasing Imax, the shifting of the position of the 
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main diffraction peak to higher Q, and the “melting” of the shoulder/peak in the region of 2.5Å-1 

< Q < 3.5Å-1.  

It is typical practice for water scattering experiments to report radial distributions in 

addition to the intensity profile, especially since experimental measures of water structure are 

very important in validating empirical water force fields that describe water structure in terms of 

real-space distribution functions. In our previous study, we introduced a procedure that combines 

real-space functions to find the optimal gOO(r) which best fits the experimental data[2]. While we 

believe the independent convergence to the same radial distribution function for ambient 

conditions by several techniques ensures that the reported ambient gOO(r) is sound (as shown 

later), we break from this tradition here because in actuality the gOO(r)’s extracted from the 

diffraction measurements are highly-derived functions, not necessarily unique, and there is no 

way of quantifying the errors introduced in their extraction based on finite Q data[3]. Therefore 

we only report experimental intensity curves in Q-space.  

However, we can provide some judgment of the quality of various classical force water 

models using Eq. (1), where DFT-LDA is used to evaluate the electron density of liquid water 

based on configurations generated with classical dynamics of a series of empirical water models 

at various state points. If the simulated intensity curve agrees well with experiment than we can 

analyze the corresponding real-space functions. In this work we judge the quality of various TIP 

non-polarizable and polarizable water force fields over the range of temperature of 2-77°C that 

we have examined experimentally.  

Figures 7-9 provides a comparison of the experimental intensity data at the state point of 

1bar/25°C (Figure 7), 1bar/2-4°C (Figure 8), and 1bar/75°C (Figure 9) with simulated intensities 

generated with Eq. (1) and DFT-LDA densities, using configurations generated with the non-
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polarizable TIP4P and TIP5P models, and the polarizable TIP4P-Pol1 and TIP4P-Pol2 water 

models. We begin by using the position of the main peak and shape of the shoulder region over 

the temperature range to qualitatively evaluate the models over the temperature range studied. 

In Figure 7 we see that TIP4P reproduces the position of the peak shoulder, but the 

shoulder is too soft. TIP5P and TIP4P-Pol1 shift the main peak slightly, with slightly better 

agreement in the shoulder. The best agreement with the experimental intensity is patently 

obvious for TIP4P-Pol2 model, and shows almost quantitative agreement over the whole curve. 

For the non-ambient state point at 1bar/2-4°C (Figure 8), close to the temperature of the density 

maximum of water, the primary feature to note is that the shoulder at room temperature has 

evolved to a well-defined peak in the experimental intensity. The TIP4P model does not capture 

the presence of the second peak, and moreover, the main peak height is underestimated. TIP5P 

and TIP4P-Pol1 show a shifted main peak, but the second peak is well reproduced by both 

models. TIP4P-Pol2 realizes better agreement with the position of the main peak and very good 

agreement over the whole intensity curve. At the higher temperature state point of 1bar/75°C 

(Figure 9), we see a melting of the shoulder/second peak as determined from experiment. All 

models capture this melting reasonably well, although TIP4P and TIP4P-Pol1 still show a small 

amount of over-structuring near the shoulder region. TIP5P and TIP4P-Pol2 show similar 

performance and good agreement with experiment over most of the curve.  

Quantitatively, we have defined experimental error bars as low as 1% for some regions of 

the intensity curve, and an average error of ~2.5% over the range of 0.1Å-1< Q <10.0Å-1. In 

Table 2 we report chi-squared values for measuring agreement between simulated and 

experimental intensities over this Q-range, and judge the quality of a model based on not 

exceeding the 2.5% upper bound in average error. We see from Table 2 that the TIP4P-Pol2 
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model is quantitatively accurate over the temperature range studied, and therefore we fully 

endorse its structural properties as being the best among the four models. TIP4P and TIP5P are 

quantitatively sound for 25°C and above, but falls outside our accepted error bars for the 4°C 

data, although small changes for the better would not be surprising if the simulation were rerun 

at 2°C at which the experimental data was collected. TIP4P-Pol1 seems to systematically fail by 

this quantitative measure throughout the entire temperature range.  

Given this level of performance of the simulated intensities using the TIP4P-Pol2 

trajectory and DFT-LDA intensities, we can analyze the radial distribution functions generated 

from the real-space trajectories themselves. Figures 10 shows the oxygen-oxygen radial 

distribution functions for TIP4P-Pol2 over the temperature range analyzed here. In our previous 

theoretical analysis, we concluded that peak position values of gOO(r) for 25°C should be 

reproducible to within 1%, and that a sharper first peak with a lower bound in height of 2.6-2.8, 

best reproduced our ALS2000 experimental data. The current experiments and theoretical 

models examined here continue to support those results, and further strengthen the finality of the 

results at room temperature. It is apparent that the trend in the radial distribution functions as a 

function of temperature is a very structured gOO(r), with sharp peaks and troughs at low 

temperatures, which melt at higher temperatures. Evidence of tetrahedral bonding at the highest 

temperatures is found in the still well-defined second peak. The rather good quantitative results 

between the TIP4P-Pol2 and experimental intensities make these gOO(r)’s the current best 

benchmark for real-space water structure.  

The direct calculation of x-ray scattering spectra using ab-initio density functional theory 

based on configurations generated from empirical water force fields provides an alternative way 

to realize real-space pair correlation functions from the experimental scattering. However, it is 
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important to quantify the relative error introduced by DFT-LDA electron densities vs. error in 

water force fields introduced through the water configurations. Another consideration is the 

considerable computational cost of evaluating the intensity using Eq. (1) for the ~40 known 

water models over the temperature range studied here.  

We can fortunately examine these questions by comparing to an alternative approach of 

generating intensities using the MAFFs discussed in the Methods Section and Eq. (5). Figure 11 

shows a comparison of intensities derived from DFT-LDA and MAFFs, based on nuclear 

positions generated with the TIP5P water model (and Ewald electrostatics), to see which 

approximation agrees better with experiment at 25°C. We conclude from Figure 11 that there are 

small errors in DFT-LDA densities for small Q with respect to experiment, although regions 

from 3.5Å-1< Q <5.0Å-1 are better using DFT-LDA. Therefore disagreement seen at low Q in 

Figures 6-8 may involve the LDA functional, DFT, or lack of nuclear quantum effects. Overall 

the densities by DFT-LDA are robust, with the primary error residing in the configurations 

generated using the underlying classical force fields. We should also emphasize that we have no 

evidence that configurations generated by DFT dynamics would improve upon this situation. 

Given the comparable quality of intensities generated with MAFFs vs. DFT-LDA, we can 

screen potentially worthwhile water models by first considering their simulated intensity curves 

using MAFFs against experiment, before proceeding to the more expensive DFT-LDA 

calculations. Table 3 uses the MAFF analysis to generate percentage error differences for the 

four models studied here, and various other models including CC[39], MCY[40], NCC-vib[41], 

SPC[42], SPC/E[43], TIP3P[23], TIP-FQ[44], ST2[45], and ST4[46]. The MAFF analysis 

provides an inexpensive filter to assess the promise of various empirical water force fields for 

reproducing experiment over the range of temperatures examined here. 
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Conclusion 

We have presented new x-ray scattering data for pure water over a temperature range 

from 2-77°C collected at ALS on beam line 7.3.3, which includes the important state point 

region near the temperature of the density maximum. The ALS x-ray scattering intensities are 

qualitatively different in trend over this temperature range compared to the older x-ray 

experiments, and falls well outside of the ALS experimental error bars. 

The common procedure in the field of water structure is to report both the intensity curve 

(or structure factor) and an “extraction” of the real-space pair correlation functions from the 

experimental scattering. While we have a good measure of error in the resulting intensity curve, 

we have no real definition of error in the resulting real-space functions due to uncertainty 

introduced in the experimental corrections, the proper weighting of OO, OH, and HH 

contributions, and numerical problems of Fourier transforming truncated data in Q-space. For the 

first time we report the direct calculation of x-ray scattering spectra using ab-initio density 

functional theory. The simulation of the experimental intensity is therefore definitive for 

determining radial distribution functions over a smaller Q-range.  

The ab initio simulations are still too expensive to generate adequate statistics for 

simulating the intensity, and no firm conclusions can yet be drawn as to the adequacy of DFT 

dynamics. Instead, DFT with the LDA functional was used to evaluate the electron density of 

liquid water based on configurations generated with classical dynamics of a series of empirical 

water models at various conditions, including TIP4P, TIP5P, TIP4P-Pol1 and TIP4P-Pol2.  

The experimental and theoretical benchmarks of intensity data provide a means for 

measuring the progress made in the modeling of water structure. The series of TIPnP non-

polarizable models have shown continuous improvement over the years, and the most recent 
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TIP5P model has exhibited excellent agreement with the experiment at room temperature 

reported in 2000[2,3], and which has been confirmed again here. Many research groups have 

actively acknowledged this progress by adopting TIP5P in application to the liquid-liquid phase 

transition in water[47,48] and disseminating the model in molecular mechanics programs[49,50]. 

We note that quantitative agreement is not adequate at 4°C, although further analysis may be 

required in regard to treatment of long-ranged electrostatics and simulating with the temperature 

fixed to the experimental value of 2°C. We do find that the TIP5P model simulated without 

Ewald, consistent with the Jorgensen protocol[24], does perform better than the model simulated 

with Ewald treatment of long-ranged electrostatics (see Table 3).  

We also focused on the TIP4P-Pol polarizable models developed by Chen and co-

workers[25] based on fluctuating charge models[25,44,51,52], which allow for significant shifts 

of electron density from one atom to surrounding atoms or bonds within the same molecule. The 

approach adopted in [25] fits to properties of the liquid phase at ambient conditions and to 

properties of gas-phase monomers and clusters, with the reasoning that fitting to two different 

thermodynamic states (with respect to density) should also yield a good description for other 

densities. We found impressive quantitative agreement with experiment over the whole 

temperature range from 2°C-77°C for the TIP4P-Pol2 model, and it provides the current best 

benchmark for radial distribution functions over this temperature range.  

Given the comparable quality of intensities generated with MAFFs vs. DFT-LDA, we can 

screen potentially worthwhile water models by first considering their simulated intensity curves 

using MAFFs against experiment, before proceeding to the more expensive DFT-LDA 

calculations. In fact, the TIP4P-Pol2 model was chosen for further study with DFT-LDA because 

of pre-screening with the MAFF approach. While it might be argued that the MAFF analysis 
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provides an equally good, but less expensive, approach to DFT-LDA (even with the further 

approximation of molecular superposition) for evaluating simulation intensities, we see these 

approaches as mutually beneficial. Ultimately first principles approaches will be more generally 

applicable, although expensive. MAFFs would be preferred based on reduced computational 

expense and comparable accuracy, but would require a refitting of parameters at greater extremes 

of temperature and pressure, and require extension to other molecules and heterogeneous 

solutions.  
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Tables 

 
Table I. Specification of data collection for three different positions of the detector relative to 
the sample.  
Position Collection time 

(seconds) 
Detector center to 

sample holder distance 
(cm) 

Angle between x-ray 
beam and detector face 

normal 

Q range 
(Å-1) 

1 200  9.523 21.654°  0.1 – 5.6 
2 300  8.532 53.501°  3.1 – 8.6 
3 400  7.717 86.893° 6.4 – 11.1 

 
 
Table II. Percentage difference between experimental and simulated intensities using DFT-LDA 
over the Q-range of 0.4-10.0 Å-1 at three different temperatures for different empirical water 
models. 

Temperature (°C) TIP4P TIP5P TIP4P-Pol1 TIP4P-Pol2 
2  3.3% 4.7% 5.8% 1.8% 
25 1.8% 2.2% 4.4% 1.0% 
75 2.2% 2.0% 5.5% 1.7% 

 
 
 
Table III. Percentage difference between experimental and simulated intensities using MAFFs 
over the Q-range of 0.4-10.0 Å-1 at three different temperatures for different empirical water 
models. 
 

Water Model 2°C 25°C 77°C 
CC  5.3%  

MCY  11.5%  
NCC-vib  6.2%  

SPC  2.0%  
SPC/E 2.8% 1.7% 1.8% 

TIP3P  4.2%  

TIP4P  1.0%  
TIP5P (no Ewald)  3.5%  

TIP5P (Ewald) 3.8% 5.8% 1.4% 
TIP4P-Pol1 3.7% 3.5% 3.2% 
TIP4P-Pol2 1.2% 0.9% 1.7% 

TIPAB  4.3%  

ST2 8.3% 7.9% 6.3% 
ST4  5.0%  
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Figure Captions 

Figure 1. Comparison of gOO(r) derived from r-space fitting using ALS experimental data 

[2](dashed line) and neutron experimental data and empirical potential structural refinement 

(black line)[14]. 

Figure 2. Details of sample holder design. The sample was held in a cavity between a disc shape 

transparent Lucite plate and a heat conducting rectangular aluminum plate, and sealed 

together by a fitted rubber gasket. Each plate had a 3.0mm hole drilled through them for the 

x-ray beam. The aluminum plate was fitted with inlet and outlet tubes so that water could fill 

the sample chamber after assembly, and a groove cut into it that allowed x-rays through the 

hole when the sample holder was tilted by 30o with respect to the x-ray beam. The Lucite 

plate had a 120° cone shaped tapered hole on its exiting face so as not to obstruct scattered 

x-rays. The 3mm holes were sealed with 38µm thick kapton (polyimide) window on the 

inward faces of the plates, in contact with the sample. The sample chamber was machined to 

nominally 500µm thickness but the actual thickness varied depending on the filling and was 

at times thicker, presumably due to the bowing of the kapton windows.  

Figure 3 (a). Fully corrected, filled and empty sample holder intensity data before the three 

separate positions of the detector have been pieced together. (b) The total intensity curve for 

filled and empty sample holder after piecing together.  

Figure 4. The difference in simulated intensity when using the same partial structure factors 

(hOO(Q), hOH(Q), and hHH(Q)) but free atom form factors based on isolated atoms (black 

line) or the MAFFs (gray line) that take into account chemical bonding. 

Figure 5. (a) Coherent x-ray scattering intensities for liquid water calculated with Quickstep 

from a CPMD simulation of 64 water molecules using the full electronic density (dashed 
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line) and a superposition of molecular densities (solid line). (b) Coherent x-ray scattering 

intensities of an isolated water molecule calculated with Quickstep using the functionals 

BLYP (solid line) and LDA (dashed line) compared with the intensities from a CISD 

calculation (squares). 

Figures 6. A comparison of ALS experiment (gray line) and older x-ray experiments (black line) 

(a) Narten 4°C, ALS 2°C . (b) Narten 50°C, ALS 44°C . (c) Narten 75°C , ALS 77°C. 

Figure 7.  Comparison of experimental spectrum at 27°C (black line) with simulated x-ray 

scattering intensities at 25°C calculated with QUICKSTEP and using trajectory data from a 

1-ns-long simulation of 256 water molecules (gray line). (a) TIP4P, (b) TIP5P, (c) TIP4P-

Pol1, and (d) TIP4P-Pol2. 

Figure 8. Comparison of experimental spectrum at 2°C (black line) with simulated x-ray 

scattering intensities at 4°C calculated with QUICKSTEP and using trajectory data from a 1-

ns-long simulation of 256 water molecules (gray line). (a) TIP4P, (b) TIP5P, (c) TIP4P-

Pol1, and (d) TIP4P-Pol2. 

Figure 9. Comparison of experimental spectrum at 75°C (black line) with simulated x-ray 

scattering intensities at 77°C calculated with QUICKSTEP and using trajectory data from a 

1-ns-long simulation of 256 water molecules (gray line). (a) TIP4P, (b) TIP5P, (c) TIP4P-

Pol1, and (d) TIP4P-Pol2. 

Figure 10. Real-space distribution functions from the TIP4P-Pol2 model that best reproduces the 

experimental intensity for 2°C (black), 25°C (gray), and 77°C (dashed). (a) gOO(r), and (b) 

gOH(r). 

Figure 11. Comparison of DFT-LDA and MAFF’s using the same underlying real-space 

trajectory for reproducing the experimental intensity.  
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Figure 1. Hura et al. 
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Figure 2. Hura et al. 
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Figure 3a. Hura et al. 
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Figure 3b. Hura et al. 
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Figure 4. Hura et al. 
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Figure 5a. Hura et al. 

 

Figure 5b. Hura et al. 
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Figure 6a. Hura et al. 
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Figure 6b. Hura et al. 
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Figure 6c. Hura et al. 
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Figure 7. Hura et al. 
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Figure 8. Hura et al. 
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Figure 9. Hura et al. 
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Figure 10. Hura et al.
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