
Software architectures: Blueprint, Literature,

Language or Decision?

Kari Smolander1,
Matti Rossi2 and
Sandeep Purao3

1Department of Information Technology,

Lappeenranta University of Technology,
Lappeenranta, Finland; 2Department of Business

Technology, Helsinki School of Economics,

Finland; 3College of Information Sciences and

Technology, Penn State University University
Park, PA, U.S.A.

Correspondence: Matti Rossi, Department of
Business Technology, Helsinki School of
Economics, PO Box 1210, Helsinki FI-00101,
Finland.
Tel: þ358-9-43138996,
Fax: þ358-9-43138700
E-mail: Matti.Rossi@hse.fi

Received: 6 June 2008
Revised: 16 September 2008
2nd Revision: 29 September 2008
Accepted: 30 September 2008

Abstract
This study questions the traditional view of software architecture as a

specification that needs only be understood by software architects and

engineers. Based on an intensive study of three software-producing organiza-
tions, we identify multiple metaphors (‘Blueprint,’ ‘Literature,’ ‘Language’ and

‘Decision’) that stakeholders use to understand the term software architecture,

which in turn, allows them to effectively participate in its creation and use. Our
results point to new research directions that may better encompass a broader

view of software architecture.

European Journal of Information Systems (2008) 17, 575–588.

doi:10.1057/ejis.2008.48

Keywords: software architecture; stakeholders; metaphors

Introduction
An explicit understanding of the underlying architecture is a prerequisite
for the design, evolution and maintenance of modern information systems
that must complement today’s complex business processes spread across
internal divisions and external partners. With technologies such as
enterprise application integration (Linthicum, 2000), service-oriented
computing (Huhns & Singh, 2005), components for enterprise systems
(Fan et al., 2000) and service-oriented architectures (Erl, 2004), which
require significant cross-organizational collaboration and imply separating
interfaces from implementations, an understanding of architecture is
assuming an even more critical role. An important corollary to this
requirement is that this understanding should not be restricted only to
software developers, but must also be accessible to other stakeholders such
as users, customers and managers (Smolander & Päivärinta, 2002a). This is
especially important when we are moving to the era of utility, or service
computing, which relies on external service architectures (e.g., Google
Application Programmable Interfaces (APIs), trust and payment APIs) for
service composition (Huhns & Singh, 2005). In this new world all
developers, managers and other stakeholders must be able to understand
and use architectures (Rozanski & Woods, 2007).

Although recent articles talk about the maturation (Kruchten et al., 2006;
Taylor & van der Hoek, 2007) and even a ‘golden age’ (Shaw & Clements,
2006) of software architecture, approaches to representing, designing and
communicating software architectures continue to be narrowly focused,
with an emphasis on software architects and engineers as the key
stakeholders, and continue to employ highly technical representations
(Bosch, 2000). Research in this domain (e.g., Dashofy et al., 2005) has
therefore continued to build representation schemes for documenting
software architectures (Garlan, 2000; IEEE, 2000; Clements et al., 2002) as
technical blueprints in spite of calls for broadening the architecture

European Journal of Information Systems (2008) 17, 575–588

& 2008 Operational Research Society Ltd. All rights reserved 0960-085X/08

www.palgrave-journals.com/ejis/



perspective to non-technical uses (Smolander & Päivär-
inta, 2002b; Medvidovic et al., 2007; Rozanski & Woods,
2007). This focus tends to downplay and discourage the
necessary and often important roles (Carlile, 2002 ) that
different stakeholders play in the creation and use of
software architecture (Grinter, 1999; Smolander & Päivär-
inta, 2002b; Rozanski & Woods, 2007).

Ongoing research elsewhere (Medvidovic et al., 2007)
outlines multiple perspectives or concerns (Rozanski &
Woods, 2007) that are necessary to facilitate participation
from different stakeholders in the creation and use of
software architecture. Empirical studies to back the
arguments made in these works are, however, not
available. As a result, Medvidovic et al. (2007) multi-
perspective view on software architecture languages
reflects an internally focused argument that is derived
from the slow adoption of research contribution to
industrial practice. An example of such research con-
tributions to the field is architecture description lan-
guages (ADLs) (Medvidovic & Taylor, 2000) that were
widely researched, but rarely adopted in practice.

The study we describe in this paper provides an
important complement. We describe the results of an
intensive study of three software-producing organiza-
tions over a period of 1 year, tracking the process of
software architecture development with a particular focus
on understanding how different stakeholders generated,
represented, used and shared knowledge regarding soft-
ware architectures. The broad research question that
drove this investigation was the following: How is
software architecture developed and used in an organization?

Our results provide an empirically derived argument that
complements the one provided by Medvidovic et al.
(2007). To arrive at our research outcomes, we followed
an immersive research methodology in the tradition
of Curtis et al. (1988), characterized as grounded theory
development (Strauss & Corbin, 1990). The primary
mode of data gathering was interviews with organiza-
tional actors that belonged to different stakeholder
groups.

Content analysis of the data gathered (19 interviews,
12 h, 310 pages of transcribed pages) was performed as a
part of grounded theory building (Strauss & Corbin,
1990). In this paper, we present and discuss outcomes
of this analysis as different ‘metaphors’ that exemplify
how different stakeholder groups participate in the
creation and use of software architecture. A key contribu-
tion of our research, therefore, is providing an
empirical grounding for a multi-faceted understanding
of the concept of software architecture. Together with
the recent work by Medvidovic et al. (2007) and Rozanski
& Woods (2007), findings from this study call for
intensified efforts to develop architectural languages
and methods that allow more varied representations
that may be accessible to different stakeholder groups
and more effective communication across these groups.

In what follows, we first summarize prior research on
software architectures with a view to showing their

current dominant focus on structural/technical specifica-
tions, and highlighting the need for expanding this
understanding to encompass additional dimensions
(mirroring the arguments made by Medvidovic et al.
(2007)). The next section outlines the research method
and describes the setting for the current study. In the
subsequent section, we describe the results as metaphors
that exemplify the stakeholders’ perspectives of the
concept of software architecture and extend the analysis
to describe how this understanding can tell us how
each stakeholder group may participate in its creation
and use. The final section ties the results back to current
research on software architecture representations, juxta-
posing results from our empirical work against recent
evolution of ADLs to derive implications for future
research and practice.

Prior research
This section reviews prior research related to ADLs
contrasting it against findings from research related to
processes in the creation and use of software architecture.

Software architecture
The commonly accepted understanding of the term
‘software architecture’ among researchers is that of a
structure that describes the system in terms of its
components, their basic operational principles and their
interconnections (e.g., IEEE, 2000; Bass et al., 2003;
Kruchten et al., 2006). In many cases the term ‘architec-
ture’ implicitly includes physical elements such as hard-
ware constellations or network layouts and traces of
physical entities such as files and executables. In this
sense, the term ‘software architecture’ strongly resembles
‘system architecture’ that includes hardware, software
and system environment (Rechtin, 1992; O’Neil et al.,
2000; Maier & Rechtin, 2002). Table 1 shows selected
definitions of the terms ‘software architecture’ and
‘system architecture.’

The definitions proposed for software architecture
(many available at Software Engineering Institute, 2006)
reflect this structural perspective, exemplified as compo-
nents and their arrangement. Several of these definitions
have been criticized as oversimplifications (e.g., Baragry
& Reed, 2001). For example, the definition by IEEE (2000)
emphasizes the structural aspect by defining architecture
as ‘the fundamental organization of a system embodied
in its components, their relationships to each other
and to the environment, and the principles guiding its
design and evolution.’ The emphasis on arrangement of
components into a configuration is evident in many
more definitions (Garlan & Shaw, 1993; Shaw & Garlan,
1996; Hofmeister et al., 1999; Bosch, 2000; Dashofy et al.,
2005). Typically, the definitions focus on a single
software system, unlike the terms ‘information systems
architecture’ and ‘enterprise architecture,’ which refer to
the architecture and infrastructure that encompasses
information technology, employees, procedures and
objectives among other things (IBM Corporation, 1975;

Software architectures Kari Smolander et al576

European Journal of Information Systems



Zachman, 1987; Karimi, 1988; Sowa & Zachman, 1992).
The term ‘system infrastructure’ inherits this emphasis
and identifies different layers of an organizational
infrastructure including components such as network,
databases, servers and people (e.g., Monteiro & Hanseth,
1995; Weill & Broadbent, 1998; Maier & Rechtin, 2002).

Tracing the genealogy of the general term ‘architecture’
(Merriam-Webster, 2002), we see that it embraces several
meanings including: (1) the art or science of building;
specifically, the art or practice of designing and building
structures, particularly habitable ones; (2) formation or
construction as or as if as the result of conscious act; (3) a
unifying or coherent form or structure; (4) architectural
product or work; (5) a method or style of building; and (6)
the manner in which the components of a computer or
computer system are organized and integrated. This
ambiguity of meanings and lack of consensus is visible
also in the software architecture field as also expressed by
Kruchten et al. (2006). One response to this ambiguity by
the IFIP WG2.10 on software architecture is to define
software architecture through its usage and sub-areas
(Kruchten et al., 2006): (a) architectural design, or how
the architecture is produced; (b) architecture analysis, or
how we interpret and analyze the architecture and final
product; (c) realization, or how to produce a working
system from architecture descriptions; (d) representation,
or how to produce design artifacts that are durable over
time; and (e) economics, particularly the economics of

architectural decisions. Although useful for focusing
efforts for different sub-groups of professionals, these
sub-areas do not provide clear definitions, nor do they
claim to provide a non-overlapping set of categories. To
understand concerns related to architecture representa-
tion better, we review this stream next.

‘Representing’ software architecture
Researchers from a number of disciplines have focused on
clarifying the nomenclature for components that may be
part of software architecture and enumerating ways of
specifying interconnections among these components.
Research efforts in this direction have resulted in several
architectural models and ADLs such as MetaH (Binns
et al., 1996), UniCon (Shaw et al., 1995), Rapide
(Luckham et al., 1995), ACME (Garlan et al., 1997) and
AML (Wile, 1999). To handle the large number of
components and allow different partitioning of the
models, architectural viewpoints (Zachman, 1987;
Kruchten, 1995; IEEE, 2000) have been introduced. The
proposals for ADLs have ranged from informal boxes and
arrows diagrams (Hevner & Mills, 1993) and adaptations
of software modeling formalisms (Medvidovic & Taylor,
2000) to identification of common architectural patterns
and styles (Monroe et al., 1997) and specific ADLs aimed
at different domains (Medvidovic et al., 2002; Dashofy
et al., 2005). There are also a number of industrial
approaches (Soni et al., 1995; Hofmeister et al., 1999;

Table 1 Definitions of software architecture and system architecture

Term Definition Source

Software architecture The fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its

design and evolution.

IEEE (2000)

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements and the relationships between them.

Bass et al. (2003)

Software architecture involves the structure and organization by which modern

system components and sub-systems interact to form systems, and the properties

of systems that can best be designed and analyzed at the system level.

Kruchten et al. (2006)

Structural issues include overall organization and global control structure;

protocols for communication, synchronization and data access; assignment of

functionality to design elements; physical distribution; composition of design

elements; scaling and performance; and selection among design alternatives.

Garlan & Shaw (1993)

Architecture descriptions of software systems are generally composed of at least

three key entities: components, connectors and configurations.

Dashofy et al. (2005)

The software architecture should define and describe the elements of the system at

a relatively coarse granularity. It should describe how the elements fulfil the system

requirements, including which elements are responsible for which functionality,

how they interact with each other, how they interact with the outside world, and

their dependencies on the execution platform.

Hofmeister et al. (1999)

System architecture The underlying structure of a system, such as a communication network, a neural

network, a spacecraft, a computer, major software or an organization.

Rechtin (1992)

A system’s fundamental, abstract structure that determines its behavior defined in

terms of components, connections and constraints, along with the system’s

interactions with its environment.

O’Neil et al. (2000)

Software architectures Kari Smolander et al 577

European Journal of Information Systems



Kruchten, 1999; Bass et al., 2003) and an attempt to build
a general model of software architecture design based on
these approaches (Hofmeister et al., 2007).

As expected, academic research related to architecture
representation has emphasized correctness, consistency
and coherence (Simpson et al., 1998; O’Neil et al., 2000)
of structural representation, a concern that is important
to specialists who deal with implementation (i.e., soft-
ware architects and designers). An unintended by-
product of this emphasis (Bichler et al., 1998) has been
the exclusion of other stakeholders (such as managers
and customers) from the process even though they are
likely to engage in the creation and use of software
architecture. As a result, although considerable progress
has been made in understanding and representing
structural properties of software, the outcomes have
remained largely limited to academia. Sustained benefits
from academia to practice are still difficult to identify,
and investments of time and effort are considered
unacceptable for software projects unless they represent
very large undertakings. The bulk of research in archi-
tecture representation and ADLs has, therefore, not
found widespread acceptance (Dashofy et al., 2005). This
lack of acceptance raises questions regarding whether the
concept of software architecture, and the research
trajectory suggested by a focus on structure, can lead to
breakthrough results that can significantly influence
software engineering practice. Dashofy et al. (2005) in
their early work make a similar observation, but stop
short of asking for alternative research trajectories.
Instead, they call for faster ways of describing architec-
tures that continue to use ADLs. In their later work
(Medvidovic et al., 2007), they part ways with this stance,
and instead, explicitly recognize multiple stakeholders
for software architecture with what they call a lamppost
model. The often-cited study by Wynekoop & Russo
(1995) raised similar concerns about use of software
development methods, such as whether they are really
used, how they are selected, and whether they work in
practice or are only researcher tools. The recent Medvi-
dovic et al.’s study (2007) is different from the Wynekoop
and Russo’s study (1995) in that the latter presents
empirical evidence for their arguments. The lamppost
model presented by Medvidovic et al. (2007) appears
to have substantial face validity. The arguments, how-
ever, lack empirical foundation. In this paper, we extend
this academic research based on findings from an
empirical study.

Design and use of software architecture
Contrary to the assumption that underlies research on
representing software architectures (i.e., that users,
managers and customers are seen as passive participants),
other streams of research acknowledge a stronger and
more active role for these stakeholders in the design and
use of software architecture (Bass et al., 2003; Kruchten
et al., 2006). For example, Kazman implicitly accounts for
multiple organizational stakeholders and their needs

when designing or analyzing architecture (Kazman
et al., 1999). Bosch (2000) describes possibilities for
stakeholder involvement in the production of software
product lines, although he does not fully account for
the needs of different stakeholders. Jazayeri et al. (2000)
also recognize the need to expand the scope of the
term, when they suggest that software architecture
includes a set of concepts and design decisions about
the structure and texture of software that enables
effective satisfaction of explicit functional and quality
requirements as well as implicit requirements of the
product family, the problem and the solution domains
(Jazayeri et al., 2000). Their definition implicitly accounts
for multiple stakeholders, who must participate in the
design and use of software architecture. Instead of
making singular representations of the overriding
concern, they suggest multiple concrete perspectives that
may enable negotiations, and hence, consensus and
coherence.

Few researchers have developed these ideas further.
Grinter (1999) observes that the role of an architect in an
organization was more diverse than merely the specifier
of the structure of a system. Smolander & Päivärinta
(2002a) find a large set of stakeholders, including
external customers, managers and eventual users, who
must participate in the development of software archi-
tecture. Both studies suggest that software architects are
engaged not only in designing a solution, but also in
significant communication with other stakeholders who
contribute to the design process. Grinter (1999) also finds
that architects need to coordinate with problem owners
to devise architecture descriptions to ensure that
resources are earmarked in response to the project
schedule. Smolander & Päivärinta (2002a) identify more
than 20 stakeholder groups involved in producing
architectural descriptions. Smolander & Rossi (2008)
outline how design techniques could support these
groups. Findings from these studies illustrate the myriad
roles that a software architect must play, including those
with social and political overtones, and confirm that
other stakeholders must also have significant participa-
tion in the architecture development process. Finally and
more recently, Medvidovic et al. (2007) acknowledge
multiple perspectives – technology, domain and business
– that must be acknowledged to ‘illuminate’ software
architectural descriptions. They also notice the process-
and decision-oriented nature of much of the use of
software architecture in practice. Taylor & van der Hoek
(2007) also recognize the importance of decisions and
evolution management. Findings from this stream of
research suggest a possible reason for the problem
observed in the previous section: lack of sustained
acceptance of ADLs in practice.

Together, this brief review of research provides the
underpinning for our research question: How is software
architecture developed and used in an organization? Specifi-
cally, we focus on arriving at an empirical understanding
of the many meanings that stakeholders attach to the

Software architectures Kari Smolander et al578

European Journal of Information Systems



term ‘software architecture,’ and how they work with
these meanings through its creation and use.

Research method
We followed an immersive research approach similar to
that followed by Curtis et al. (1988). As the review of prior
work shows, no overarching theories are available about
our phenomenon of interest (although many assertions
have been made about possible uses of architecture in
practice (e.g., Garlan, 2000; IEEE, 2000; Bass et al., 2003)).
As a result, no a priori theoretical position was assumed
nor were any hypotheses stated for testing. The research,
instead, proceeded as an exploratory study (Yin, 1994)
with the objective of generating preliminary theoretical
constructs about the phenomenon of interest based on
empirical observations. The research method, therefore,
followed the grounded theory development approach
(Glaser & Strauss, 1967; Strauss & Corbin, 1990).

Grounded theory development uses qualitative con-
tent analysis of data about the phenomenon under study
to construct a theory. Grounded theory approaches have
been shown to be useful when dealing with phenomena
that are new or not well understood. The meanings of
architecture in practice exemplify such an area. Because
theory creation following this approach is strongly
grounded to the data (instead of researcher’s intuition),
the resulting theory is more credible and the research
tends to produce useful and practically valid results
(Orlikowski, 1993). Information systems research offers
many examples of the application of grounded theory
(for instance, Calloway & Ariav, 1991; Orlikowski, 1993;
Volkoff et al., 2005). Software engineering research also
recognizes the need for qualitative approaches in the
areas related to human behavior (Seaman, 1999; Shaw,
2003; Sjöberg et al., 2007).

The setting for the study consisted of three software-
producing organizations (Table 2). The first organization
was a telecom service developer; the second, a software
developer for handheld devices; the third, a developer of
tailored IT solutions. They described themselves as
advanced users of state-of-the-art techniques and meth-
ods for software development practices. This claim was
supported in that they all made extensive use of Unified
Modeling Language for design and of Java and compo-
nents during implementation.

Data collection, analysis and validation
A pre-study was conducted with each organization
with the intent of gathering background information.
This was done as informal interviews and served as the
basis for interpretations of later data collection efforts
(Smolander et al., 2002). Following the pre-study, the
research proceeded in four broad phases: (a) data
collection in the form of interviews, (b) initial data
analysis following open coding, (c) qualitative analysis
of the codes and identification of theoretical constructs
and (d) confirmatory interviews and focus groups (see
Figure 1).

During the first phase, one of the researchers conducted
interviews in each organization using a theoretical
sampling strategy (Strauss & Corbin, 1990). The inter-
views were accompanied by questionnaires and prepared
presentations by the chief architects working in these
organizations. The data gathering followed a dynamic
strategy, where the sample was extended and focused
according to emerging needs (Glaser & Strauss, 1967).
Table 3 outlines the number of individuals interviewed in
each organization and their roles.

The second phase, which was intertwined with the first,
included transcription and data analysis, that is, open
coding. The open coding thus proceeded in parallel,
which allowed treating each interview as confirmation or
further development of results from earlier interviews.
Open coding (Strauss & Corbin, 1990) was done using
ATLAS.ti (Scientific Software, 2005) (see Figure 2) by
seeding it with high-level categories (Miles & Huberman,
1984) derived from the research question. These in-
cluded: stakeholders, problems in architecture design and
description, and rationale for architecture description.
The seed categories were extended, and existing ones
were merged as new evidence and interpretations
emerged from the analysis.

The open coding resulted in 179 categories. These were
grouped to simplify further analysis. This grouping
resulted in eight super-categories named ‘communica-
tion,’ ‘general features,’ ‘problems,’ ‘rationales,’ ‘solu-
tions,’ ‘stakeholders,’ ‘tools’ and ‘viewpoints.’ Each super-
category consisted of multiple (4–36) specific categories.
The third phase, axial and selective coding, involved
analysis of the categories and super-categories, including
their values, with a view to building linkages among
them. A significant output of this analysis was identifica-

Table 2 Study setting

Organization Business Description of operations Employeesa

Organization A Telecom service developer Development of software-based telecom services and

platforms for in-house use

200

Organization B Handheld software producer Software and tool development for mobile terminals and

handheld devices

200

Organization C IT solution provider Development of tailored information systems as dictated

by customers

400 in one division,

600 in another

a
Number engaged in software development.

Software architectures Kari Smolander et al 579

European Journal of Information Systems



tion of multiple dimensions that would allow greater
understanding of the concept of software architecture.
For instance, the super-category ‘viewpoints’ was lever-
aged along with the super-categories ‘stakeholders’ and
‘rationale’ to identify how different stakeholders used
different perspectives to achieve their objectives. A
specific example of this described how the ‘stakeholder’
manager used the ‘perspective’ of selecting from among
available alternatives when the ‘rationale’ for architecture
description was making strategic decisions about tech-
nology. This process included comparative analysis
(Glaser & Strauss, 1967) to determine relationships
among code categories. For example, the researchers
compared how ‘rationales’ provided by different ‘stake-
holders’ emphasized different ‘viewpoints,’ and how this
related to different ‘problems’ they perceived. This
detailed analysis (Smolander & Päivärinta, 2002b) re-
sulted in discovery of important descriptive attributes
(dimensions) that underlie the concept of software
architecture (see Table 4).

Phase 2: Initial data analysis with 
open coding 

Phase 1: Initial interviews following 
theoretical sampling 

Phase 4: Presentations to focus groups 
for validations 

Phase 3: Axial and selective coding to 
identify dimensions and metaphors 

Figure 1 The research process.

Table 3 Interviews conducted during Phase 1

Organization Personnel interviewed

Organization A 2 architects, 2 designers, 2 managers, 1 manager of an in-house customer

Organization B 1 architect, 1 designer, 4 managers

Organization C 3 architects, 1 designer, 2 managers

...
Q: Do you mean that you can describe [architecture] better with PowerPoint?

A: You can do it much better with it. You can draw empty boxes with Rational Rose,
but it isn't as visual.

Q: Is it a problem of looking good?

A: When you are presenting it to salesmen and customers, yes it is.

Q: Is it important that you show pretty pictures to customers?

A: Yes. Especially when you can tell with that picture what you have been thinking.
In addition, many times when we are making requirements documents, the customer
wants architecture documentation as a PowerPoint presentation. They present
the architecture also to other possible suppliers and they do not want to redraw the
pictures. It is little like giving a tool to the customer too.

Problem: tool constraints

Problem: visual appearance
Stakeholder: customer management & marketing
Stakeholder: customer

Problem: communicating meanings
Rationale: communicating
Stakeholder: customer
Stakeholder: other suppliers

Figure 2 An example of open coding during Phase 2.

Table 4 Dimensions discovered during Phase 3

Dimensions Description

Time-orientation Descriptions of past architectural solutions vs

current design situation vs prescriptions about

future implementations

Formality Descriptions for enabling understanding vs

those meant for generating executables

Detail Descriptions of technical details or descriptions

that purposefully constrain the level of detail

Activity Nature of typical activities associated with the

descriptions such as recording vs negotiating vs

sense-making

Objective The objective of architectural design and

description

Customer focus Frequency and strength of interaction between

the development organization and customers

utilizing the software architecture

Business focus Extent of reasoning the development group

must make about the business area of the

system

Software architectures Kari Smolander et al580

European Journal of Information Systems



Careful analysis of the results followed to ensure that
the dimensions were not overlapping. The dimensions
were finally used to characterize several metaphors that
the stakeholders use to understand software architecture.
As one may expect, the overall research process, however,
did not unfold as smoothly as outlined above. Significant
iterations were part of the process, which lend further
credibility to the analysis and results obtained following
the grounded theory development strategy (Strauss &
Corbin, 1990).

As the fourth and final phase of the analysis process, a
specific validation step was used to further corroborate
the results. This included returning to the research
participants to share with them the analysis results. This
took the form of presentations of findings to each
organization as part of a 1-day workshop and eliciting
comments in response. The findings were endorsed by
the participants during these workshops. The discussions
resulted in only minor adjustments to the dimensions
and their eventual synthesis into different metaphors.

The multiple meanings of software architecture
Unlike prior research on ADLs (Dashofy et al., 2005) that
assumes software architecture to be a unified objective
construct, our analysis provides empirical grounding to
the claim that the term is ambiguous with varying
purposes and interpretations. We report the findings
as different metaphors that exemplify how software
architecture is perceived in practice. The general idea of
a metaphor is useful to appreciate and describe human
understanding of complex concepts. Prior research shows
that concepts that are not concrete are easier understood
with the help of metaphors. Lakoff & Johnson (1980)
provide a useful explication of this idea, describing how
individuals grasp new concepts they encounter by means
of other concepts they know in clearer terms. In fact, the
term ‘software architecture’ itself represents a metaphor
that the software engineering community borrows
from other fields that describe buildings, landscape
and so on (i.e., more concrete elements) – which we
can grasp more easily.

Our explication builds on the premise that ‘software
architecture’ is a concept that needs to be understood

with the help of metaphors. The use of metaphors in this
manner to understand a complex concept is seen in
many areas, including organizations (Morgan, 1986),
information systems (Kendall & Kendall, 1993; Gallupe,
2000) and workflow management (Carlsen & Gjersvik,
1997). Our choice of metaphors to report and discuss the
findings thus reflects an established tradition. Following
the analysis described in the previous section, we identify
four metaphors that govern the participation of different
stakeholder communities in the process of creation and
use of software architecture. The dimensions identified
during the analysis were largely influential in arriving
at these metaphors and provided a clear sense of the
different metaphors. Table 5 summarizes the four meta-
phors with reference to values of these dimensions.

Architecture as Blueprint
The Blueprint metaphor is strongest among individuals
involved in implementing or programming the system.
For these stakeholders, architecture means a high-level
description of the system, directly guiding more detailed
implementation aimed at the production of individual
components. Architecture descriptions are thus used for
transferring explicit information from architects to
designers and other software engineers. The complete
specification of architecture, then, resides in and can be
observed from the working implementation of the
system. This metaphor is directly associated with ADLs
(see Medvidovic & Taylor, 2000; Dashofy et al., 2005), and
is clearly oriented towards the future. The following
excerpts show archetypal uses of this metaphor:

Our development is organized so that we first describe the

architecture and from that comes the DLL descriptions and

then possibly different persons make the individual DLLs.

In a way it [the architecture] is the basis for the next phase,

which is the DLL design. (Jack, Software Engineer)

The [architecture] is usually made from the viewpoint of a

programmer. [y] They usually consist of lists of various

source code files and instructions of how to build the system

that is run in a server. (Tim, Product Manager)

[Architecture includes] the components, the communica-

tion between the components, the protocols we were using,

the message format itself, the inputs and outputs, what we

should y produce and get from the user, the error

Table 5 The multiple meanings of software architecture

Dimensions

(see Table 4)

Blueprint: Specification

of the system to be

implemented

Language: Medium of

communication for

achieving common

understanding

Decision: Choices about the

system to be implemented

and rationale

Literature: Documentation

for current and future

generations of users and

developers

Time Future Present/future Future Past

Formality High Low Usually low Varies

Detail High Low Usually low Usually high

Activity Implementing Negotiating Evaluating choices Reading, analyzing

Customer focus Low Possibly high High Usually low

Business focus Low Possibly high High Usually low

Software architectures Kari Smolander et al 581

European Journal of Information Systems



handlings or how the errors should be handled, y and of

course for each of the modules, y the functions of the

modules and their place inside the whole system, and y the

communications inside the module. (George, Designer)

As might be expected, a typical activity associated with
this metaphor is implementation of software artifacts
that requires both high formality and high level of detail.
As a result, the metaphor clearly responds to the needs of
designers and technically oriented architects but scores
lower on the dimensions of customer and business focus.

Architecture as Language
The Language metaphor suggests that architecture enables
common understanding about the system among stake-
holders. The role of architecture is not providing a basis
for creation of artifacts; instead, it acts as a facilitator of
communication across stakeholder groups. This role of
architecture is acknowledged in most new works (Bass
et al., 2003; Medvidovic et al., 2007; Rozanski & Woods,
2007), but it has not been operationalized to any degree.
The metaphor emphasizes understanding between people
about the situation at hand. The time dimension for
this metaphor focuses both on describing the present
situation and on discussing alternative future scenarios.
The following excerpts exemplify how the metaphor is
used:

Usually our projects use quite new technologies and you

need to know at a coarse level what our gurus have

designed. Therefore, it should not just be in the heads of

programmers and architects. The project manager and the

project steering group must also know and follow where

you are going. (Harry, Project Manager)

The purpose of architecture y is that you must be able to

tell the customer and the team what is your idea. (John,

Architect)

You should not drown in papers. y From the perspective of

a project manager the y[architecture] should be con-

densed. It should have the main points, the core points

clearly described so that you don’t need to invite the

architect or the chief designer to the project steering group

meeting to explain it (Harry, Project Manager)

Stakeholders use architecture to communicate and
negotiate, that is, according to this metaphor, architec-
ture requires minimal formality and detail. Too much
formality or detail can, in fact, lead to a breakdown in
communication because the language must be under-
stood by a diverse set of stakeholders with varying
backgrounds and experiences. The metaphor is empha-
sized by stakeholders with high customer or business
focus, such as managers and marketing experts. As the
examples above demonstrate, including these stake-
holders also means that architecture needs to be concise
and easy to understand. Increased diversity among
stakeholders also contributes to a greater emphasis on
thinking of architecture as language. For instance, in one
of the organizations in our study, when customer
participation was intense the marketing group was
closely involved in the process. The metaphor of

architecture as language directly corresponds to the idea
of a boundary object (Star, 1989) that serves to facilitate
interaction between stakeholder groups.

Architecture as Decision
The third metaphor suggests that architecture represents
decision(s) about design trade-offs among properties such
as cost, usability, maintainability and performance that
have consequences for resources needed for building the
system, including work force, special skills and monetary
resources. Architecture thus becomes the process and
product of decision-making concerning design tactics,
strategies and associated resources (Bass et al., 2003;
Dashofy et al., 2005; Rozanski & Woods, 2007). The
following excerpts demonstrate use of this metaphor:

One architectural choice looked technically quite good but

its price could rise so high that they must think about

business premises. If it costs 10 million then how much it

must have usagey (Arthur, Architect)

If the expected lifetime of the system is three years and we

have only 2 Euros and 50 cents money, then it is useless to

pursue highest quality. y If we have other objectives, like if

the expected lifetime is ten years or more, or if the usability

must be top class, then I know where to put the stakes and

what problems must be solved. (Richard, Architect)

We must get as quickly as possible an understanding of the

environment and the system that we are offering into. [y]

With y [the architecture] y organizational decisions are

put across [and]ythe construction of next systems is

guided so that they are obeying the same architecture.

(Tom, Sales Manager)

What choices are possible, what do we have now, what do

we have after five years or after two years? yrequirements

are defined, that is features, usability, and other things that

lead to certain technological choice y (Thomas, Quality

Manager)

The metaphor is clearly oriented towards the future and
uses architecture as a vehicle to decide attributes of a
future solution based on expected resource commitments
and strategies. Typical activities associated with this
metaphor include evaluating alternatives and making
choices about the technical solutions.

As with the Language metaphor, too much formality
and detail is not desirable, particularly for resource
commitment decisions. On the other hand, for technical
trade-off situations, higher levels of detail may be
necessary. This metaphor suggests that for stakeholders
such as managers and resource planners (like project
managers), architecture represents decisions that are
used not only for earmarking resources but also as the
basis for division of work between working units. As a
decision, architecture represents the explicit commit-
ment of a group of individuals to a course of action and
enforces participation of all stakeholders to downstream
processes, such as division of tasks, their required
execution order and even the structure of the develop-
ment organization (cf. Conway, 1968).

Software architectures Kari Smolander et al582

European Journal of Information Systems



Architecture as Literature
The Literature metaphor is closely related to the doc-
umentation of technical structures that aid in transfer-
ring knowledge over time. Following this metaphor,
architecture is seen as documentation of solutions
constructed in the past, meant for future readers. In the
current software architecture research, the terms analo-
gous to this metaphor (although broader in intent)
include ‘reference architectures’ (e.g., Batory et al.,
1995), ‘product line architectures’ (Clements & Northrop,
1999) and ‘architectural frameworks’ (Fayad & Johnson,
2000). The following excerpts exemplify this metaphor:

I think the purpose of architecture y is to keep the

knowledge of what kind of a system we have. y It is nice to

have such a document y that you can take a view and see

ythose who will possibly make further development or

maintenance can learn the system easily with it. (Michael,

Software Engineer)

Later they [architecture] are good just when the mainte-

nance is switched to the next team, which can be brought

in with these pictures showing that we have this and that

kind of building blocks in these computers and they are

doing this and that in this case. (Hannah, Software

Engineer)

There is this time perspective that when people change,

even organizations can change y Therefore we must be

able to pass over the essential things about the systems fast.

y It is very important that you can have such descriptions

that you can quickly get a grasp on the system from. (Tom,

Sales Manager)

As expected, typical activities associated with this
metaphor include reading and analyzing (from the
recipients of this ‘literature’), because it supports not
only construction of artifacts but also the transfer of
explicit knowledge between designers and maintainers.
Bass et al. (2003) point out that in fact most development
work is maintenance, and thus this metaphor is vital for
longevity of the architecture. This also dictates the level
of detail that tends to be high although the formality
of descriptions varies. An interesting variation of the use

of this metaphor was also related to the concern of reuse
of components and designs. As literature, the metaphor
focuses on the past and tends to have an internal focus
(i.e., less of a customer or business focus).

Using the metaphors
The metaphors described above do overlap and are
sometimes used simultaneously by different stakeholders.
A stakeholder may also use multiple metaphors although
the emphasis varies across stakeholders and over time.
For example, among the participants we interviewed,
the role of an architect often meant simultaneous and
balanced use of all four metaphors. The metaphors clearly
show how each stakeholder group perceives and uses
software architecture for satisfying its own informational
requirements that differ from the requirements of other
groups. These requirements relate to concerns such
as buying or selling the system, running the system,
understanding its operation, understanding the project
scope and estimating its progress, designing the high-
level structure of the system or programming the
components of the system. The metaphors thus serve to
highlight multiple uses of architecture by the different
stakeholders. Medvidovic et al. (2007) suggest a useful
perspective to think about different stakeholders using
the lampposts analogy. Specifically, they suggest three
lampposts: technology (that deals with providing
pointers to software engineers for implementation),
domain (that illuminates problems faced by users in
specific domains) and business (that is concerned with
fulfilling a market need and responding to complemen-
tary functionality elsewhere). The metaphors that result
from our analysis can be mapped against these three
lampposts to describe how each addresses the needs
articulated by Medvidovic et al. (2007) (see Table 6).

As the table demonstrates, each metaphor not only
captures a set of properties but also provides a clue to
what it enables, that is, its eventual ‘use.’ For example,
consider the Language metaphor that facilitates commu-
nication and understanding. A language follows a

Table 6 Mapping the metaphors against the lampposts of Medvidovic et al. (2007)

Lamppost Metaphors

Blueprint Language Decision Literature

Technology Captures layers, systems

and dependencies among

components

Includes detailed structural

descriptions that are used for

maintaining and refining the

architecture

Domain Utilizes application domain

concepts to communicate across

the stakeholder groups

Used to learn about software

architecture as implemented

and deployed

Business Includes user- and customer-

focused terms to communicate

intent with executives and users

Allows evaluation of

alternatives, recording of

rationale and building

commitment to the chosen

architecture

Software architectures Kari Smolander et al 583

European Journal of Information Systems



structure and has a vocabulary, making expression
and composition possible. On the other hand, the
Literature metaphor suggests exposition of style, intent
and narrative as it allows transfer of knowledge to future
generations. The key use of architecture following the
Literature metaphor is, then, the enabling of learning
in the future. The Blueprint metaphor requires under-
standing of representation techniques and rules for
applying these techniques. Representation techniques
must allow dealing with multiple levels of detail, and
blueprints constructed with these techniques must
provide clear prescriptions for implementations. Finally,
the Decision metaphor suggests that choices must be
apparent from the architecture that should also permit
analysis of choices by reflecting their consequences.

A process perspective on the design and use of software
architecture provides another window into how the
metaphors may be useful. Software architecture develop-
ment can be described as a process, where informal
initial descriptions aimed at understanding and objec-
tive-setting give way to formal and detailed specifications
as the process moves from conceptualization to imple-
mentation. The emphasis on the four metaphors
varies through the process. At the beginning of a project,
the Language and Decision metaphors are more promi-
nent as internal and external stakeholders negotiate
to achieve a common understanding and assess the
consequences of choices. As the project proceeds to
implementation, technically oriented stakeholders such
as architects, designers and programmers take over, and
the emphasis shifts to the Blueprint metaphor. After the
system is deployed, the Literature metaphor gains more
emphasis as new participants (users and maintainers)
must operate or maintain the system, which requires
understanding its structure and principles through
documentation.

All four metaphors endure through the lifecycle: the
system structure is constantly communicated and under-
stood (Language), new choices are made and implications
of old choices are understood (Decision), implementa-
tion with existing and new components is guided (Blue-
print) and documents are updated to enable learning
(Literature). Architecture, thus serves as a shared bound-
ary object (Star, 1989; Star & Griesemer, 1989; Bowker &
Star, 1999) between various stakeholder groups engaged
in systems development, satisfying their varying infor-
mational needs during the systems development process.

Discussion and implications
An obvious implication of our work is that there are
multiple perspectives on software architecture. This is
hardly a surprising finding in itself. The value of our work
is that it provides empirical grounding for this assertion
and suggests specific metaphors that can be useful to
interpret prior research and provide directions for future
work. Our goal was to find how architecture is used in
organizations. The identification of the four metaphors
and suggestions for their use extend the current under-

standing of software architecture by explicitly recogniz-
ing the information needs of business users and
customers.

Whereas much prior work on software architecture is
focused on a view of architecture as a Blueprint or
Literature, more research is needed to support the view of
architecture as Decision (Kazman et al., 2001; Rozanski &
Woods, 2007). There is scant research that views
architecture as Language, a key metaphor to facilitate
interaction among stakeholder groups. Writings such as
that by Medvidovic et al. (2007) and Rozanski & Woods
(2007) are beginning to realize that there are multiple
areas that architecture should illuminate (see Table 6).
Our findings are orthogonal to their arguments and
extend this stream of research by proposing four
metaphors that may define how areas under lampposts
of Medvidovic et al. (2007) can be illuminated. The
lampposts then present different aspects of architecture,
whereas the metaphors provide an answer to the views
needed for each aspect. We now outline implications of
these findings for research and practice.

Implications for research
We may speculate that the current, narrowly focused
vision of ADLs may be traced to the emergent nature of
the discipline, or because current research on architecture
is dominated by certain perspectives at the expense of
others. Although debatable, one argument holds that
ADLs are beginning to respond to this challenge, and as a
result, are beginning to find greater acceptance with
practitioners (Medvidovic et al., 2007). If true, the results
reported in this paper may provide a possible explanation
for this trajectory. The early and exclusive focus in
software architecture (as a Blueprint) may have served
the technical audience well, but it resulted in lack of
openness needed by other stakeholders (similar to
arguments about boundary objects suggested by Bowker
& Star (1999)). As the discipline is maturing (Shaw &
Clements, 2006), software architecture representations
are moving towards greater recognition of domain
concepts and business needs (Bass et al., 2003; Hofmann,
2003). This bodes well for a progression towards addres-
sing other stakeholders, such as users and managers
(Rozanski & Woods, 2007). In this view software
architecture emerges from the cooperation of different
stakeholders while recognizing the situational con-
straints such as legacy systems, available technology,
organizational conflicts, resource constraints, skills and
experience.

Ensuring that architecture plays a role as an enabler
of communication between a diverse set of participants
(including various levels of management and technical
experts) will, however, require informal and expressive
approaches, which are non-existent so far. Although
approaches such as the 4þ1 architectural view (Kruchten,
1995) are available, they represent a forced compromise
with a primary focus on technological requirements
without squarely addressing these communication needs.

Software architectures Kari Smolander et al584

European Journal of Information Systems



Research on software architecture may, therefore, benefit
from work in related fields such as CSCW and informa-
tion systems planning (e.g., Tellioglu et al., 1998; Ward &
Peppard, 2002), which suggest reconciling different
perspectives, and the work by Weill & Broadbent
(1998), which suggests viewing architectures and invest-
ments as digital options that organizations can exercise
which form the scaffolding of the current architecture
(Orlikowski, 2006). In addition, architectural thinking
is at the core of many recent advances in information
systems development, such as service-orientation
(Papazoglou & Georgakopoulos, 2003), enterprise re-
source planning (Kumar & Hillegersberg, 2000), business
process management (van der Aalst et al., 2003) and
enterprise architectures (Ross et al., 2006) and therefore
we must invent new and better ways to design, represent
and develop architectures. We believe that the results
presented here enable researchers to better structure the
concept of architecture.

Other, specific responses to the results we have out-
lined can include techniques that allow architecture
specifications to be used in ways that can cross bound-
aries across stakeholders without sacrificing the need to
help downstream activities such as implementation and
deployment (e.g., the conformance between architecture
and code (Bass et al., 2003; Shaw & Clements, 2006)). For
a more managerial perspective the business and strategy
development methods suggested by Eden & Ackerman
(1998) may provide additional avenues to create a
common understanding and vision of business strategy.
Finally, the work by Ciborra (2000) may provide another
pointer to deriving architectural specifications that take
into account their emergent and improvized nature as
opposed to carefully planned common road maps (i.e.,
maintaining multiple and even conflicting views of
architecture simultaneously).

Implications for practice
Architectural specifications should be able to span the
spectrum from vague and noble ideals to stringent
decisions about technical platforms and data interchange
formats. A useful adjunct to this requirement would be the
ability to use these representations to make explicit the
consequences, conflicts and problems that the stake-
holders are likely to face. A significant challenge that this
presents to the research community and practitioners is
how to combine the two, sometimes conflicting require-
ments for architectural descriptions: (a) they should
support development at a concrete level, (b) they should
be intelligible to various stakeholders participating in the
process and (c) they should allow reasoning following
technological as well as political concerns.

Our observations also revealed preliminary patterns of
emphasis over the four metaphors based on organiza-
tional characteristics (Smolander & Päivärinta, 2002a, b).
When the organization was homogenous, the Blueprint
metaphor prevailed as exemplified by Organization A
(the handheld software producer), where developers were

mostly engineers with similar education and required
little contact with external stakeholders such as custo-
mers. On the other hand, the role of customers and
other external stakeholders highlighted the use of the
Language metaphor that we observed in Organization C
(the IT solution provider). Their diverse set of customers
and other external partners emphasized the use of
architecture descriptions as communication tools instead
of tools for detailed design and implementation.

These observations of organizational differences sug-
gest that no generic model is likely to fit the needs for
architecture design languages. The notion of goodness of
models for a homogenous group of engineers would not
be the same as that for a heterogeneous set of developers,
customers and other external partners with diverse
backgrounds. The practice of architecture development
should, therefore, reflect the needs of the organization
and its development practices. We speculate that
techniques such as sketching and a succession of
more detailed specifications, similar to those used by
architects in the early phases of building planning
(Morris, 2006), may provide a useful alternative to
current prescriptions.

The recent developments in information systems design
towards higher level and more business-oriented specifica-
tion languages and approaches (e.g., SOA, BPM, etc.) could
benefit from our metaphors by providing different
perspectives for different stakeholders. With notations
that follow (for example) the Decision metaphor, these
technologies could be more immediately accessible to
managers, customers and other stakeholders.

Concluding remarks
In this paper, we have explored the concept of software
architecture in three real-life organizations engaged in
software development. We used a research method
intended to produce empirically grounded constructs
that describe different meanings of software architecture
as perceived by various actors, who participate in its
creation and use. The analysis we have described follows
the tradition of reporting results as metaphors that distill
the findings into evocative phrases. Specifically, the study
resulted in four metaphors for architecture: Blueprint,
Literature, Language and Decision. The results support
and extend recent work that has argued for multiple areas
that architecture must illuminate with a lamppost
analogy (Medvidovic et al., 2007). In doing so, we hope
that we have provided a first step towards understanding
key meanings different stakeholders attach to software
architecture and providing evidence for these. We hope
that the metaphors and the corresponding discussion will
spur further research to refine our understanding of
software architecture as well as developing additional
architectural representations that reflect this understanding.

Acknowledgements
We would like to acknowledge feedback on an early version

of the manuscript from Shawn Clark.

Software architectures Kari Smolander et al 585

European Journal of Information Systems



About the authors

Kari Smolander is a Professor of Software Engineering in
the Department of Information Technology, Lappeenranta
University of Technology, Finland. He has a Ph.D. (2003)
in Computer Science from Lappeenranta University of
Technology and a Licentiate (1993) and Master (1988)
degree from University of Jyväskylä, Finland. In addition
to his long teaching experience, he has worked for several
years in the industry and in the 1990s he was the main
architect in the development of the MetaEdit CASE tool.
He has published more than 50 refereed research papers
in international journals and conferences. His current
research interests include the architectural aspects of
systems development and the organizational view of
software development.
Matti Rossi is a Professor of Information Systems at
Helsinki School of Economics. He has worked as research
fellow at Erasmus University Rotterdam, visiting assistant
professor at Georgia State University, Atlanta and visiting
professor at Claremont Graduate University. He received
his Ph.D. degree in Business Administration from the
University of Jyväskylä in 1998. He has been the principal
investigator in several major research projects funded by

the Technological Development Center of Finland and
Academy of Finland. He is the coordinating editor of
Scandinavian Journal of Information Systems. His research
papers have appeared in journals such as CACM, Journal of
AIS, Information and Management and Information Systems,
and over 30 of them have appeared in conferences such
as ICIS, HICSS and CAiSE.
Sandeep Purao is an Associate Professor at the College
of Information Sciences and Technology and part of
the Enterprise Informatics and Integration Center at
Penn State University, University Park. His research
focuses on the design, evolution and management
of techno-organizational systems, blending research
methods from social science and software engineering.
Outcomes from these efforts include publications in
archival journals such as Information Systems Research,
papers in conference proceedings such as WITS, and
the design and implementation of software artifacts
such as APSARA, tied to empirical assessments. He
also enjoys reflecting on the craft of teaching in this
domain, and has published on pedagogical aspects of
organizational informatics.

References
BARAGRY J and REED K (2001) Why we need a different view of software

architecture. In Proceedings of the Working IFIP/IEEE Conference on
Software Architecture (WICSA 2001), pp 125–134, IEEE Computer
Society, Amsterdam, The Netherlands.

BASS L, CLEMENTS P and KAZMAN R (2003) Software Architecture in Practice
2nd edn. Addison-Wesley, Boston.

BATORY D, COGLIANESE L, GOODWIN M and SHAFER S (1995) Creating
reference architectures: an example from avionics. In Proceedings
of the Symposium on Software Reusability, pp 27–37 ACM, Seattle,
Washington, April 1995.

BICHLER M, SEGEV A and ZHAO JL (1998) Component-based e-commerce:
assessment of current practices and future directions. SIGMOD Record
27(4), 7–14.

BINNS P, ENGLEHART M, JACKSON M and VESTAL S (1996) Domain-specific
software architectures for guidance, navigation, and control. Journal of
Software Engineering and Knowledge Engineering 6(2), 201–227.

BOSCH J (2000) Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. Addison-Wesley, Harlow.

BOWKER GC and STAR SL (1999) Sorting Things Out: Classification and its
Consequences. MIT Press, Cambridge, MA.

CALLOWAY LJ and ARIAV G (1991) Developing and using a qualitative
method to study relationships among designers and tools. In
Information Systems Research: Contemporary Approaches and Emergent
Traditions (NISSEN HE, KLEIN HK and HIRSCHHEIM R, Eds), pp 175–193,
North-Holland, Amsterdam.

CARLILE PR (2002) A pragmatic view of knowledge and boundaries:
boundary objects in new product development. Organization Science
13(4), 442–455.

CARLSEN S and GJERSVIK R (1997) Organizational metaphors as lenses for
analyzing workflow technology. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work: The Integration
Challenge, pp 261–270, ACM Press, Phoenix, AZ, USA.

CIBORRA C (2000) Drifting: from control to drift. In Planet Internet (BRAA K,
SORENSEN C and DAHLBOM B, Eds), Studentlitteratur, Lund.

CLEMENTS P, BACHMANN F, BASS L, GARLAN D, IVERS J, LITTLE R, NORD R and
STAFFORD J (2002) Documenting Software Architectures: Views and
Beyond. Addison-Wesley, Boston.

CLEMENTS P and NORTHROP LM (1999) A Framework for Software Product
Line Practice – Version 2.0. Software Engineering Institute, Pittsburgh.

CONWAY ME (1968) How do committees invent? Datamation 14(4),
28–31.

CURTIS B, KRASNER H and ISCOE N (1988) A field study of the software
design process for large systems. Communications of the ACM 31(11),
1268–1287.

DASHOFY EM, VAN DER HOEK A and TAYLOR RN (2005) A comprehensive
approach for the development of modular software architecture
description languages. ACM Transactions on Software Engineering and
Methodology 14(2), 199–245.

EDEN C and ACKERMAN F (1998) Making Strategy: The Journey of Strategic
Management. Sage Publications, London.

ERL T (2004) Service-Oriented Architecture: A Field Guide to Integrating Xml
and Web Services. Prentice-Hall, Upper Saddle River.

FAN M, STALLAERT J and WHINSTON AB (2000) The adoption and design
methodologies of component-based enterprise systems. European
Journal of Information Systems 9(1), 25–35.

FAYAD EM and JOHNSON ER (2000) Domain-specific Application Frameworks.
John Wiley & Sons, New York.

GALLUPE RB (2000) Images of information systems in the early 21st
century. Communications of the AIS 3(1), 1–16.

GARLAN D (2000) Software architecture: a roadmap. In The Future of
Software Engineering (FINKELSTEIN A, Ed.), ACM Press, New York.

GARLAN D, MONROE RT and WILE D (1997) Acme: an architecture
description interchange language. In Proceedings of CASCON’97,
pp 169–183, Toronto, Canada.

GARLAN D and SHAW M (1993) An introduction to software architecture. In
Advances in Software Engineering and Knowledge Engineering, Series on
Software Engineering and Knowledge Engineering, (AMBRIOLA V and TORTORA

G, Eds), Vol. 2, pp 1–39, World Scientific Publishing Co., Singapore.
GLASER B and STRAUSS AL (1967) The Discovery of Grounded Theory:

Strategies for Qualitative Research. Aldine, Chicago.
GRINTER RE (1999) Systems architecture: product designing and social

engineering. ACM SIGSOFT Software Engineering Notes 24(2), 11–18.
HEVNER AR and MILLS HD (1993) Box-structured methods for systems

development with objects. IBM Systems Journal 32(2), 232–251.

Software architectures Kari Smolander et al586

European Journal of Information Systems



HOFMANN L (2003) Beyond Software Architecture – Creating and Sustaining
Winning Solutions. Addison-Wesley, Boston.

HOFMEISTER C, KRUCHTEN P, NORD RL, OBBINK H and AMERICA P (2007) A
general model of software architecture design derived from five
industrial approaches. Journal of Systems and Software 80(1), 106–126.

HOFMEISTER C, NORD R and SONI D (1999) Applied Software Architecture.
Addison-Wesley, Reading, MA.

HUHNS MN and SINGH MP (2005) Service-oriented computing: key
concepts and principles. IEEE Internet Computing 9(1), 75–81.

IBM CORPORATION (1975) Business Systems Planning: Information Systems
Planning Guide. IBM, #GE20-0527-4, New York.

IEEE (2000) IEEE Std 1471-2000: IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems. IEEE, New York.

JAZAYERI M, RAN A and LINDEN F (2000) Software Architecture for
Product Families: Principles and Practice. Addison-Wesley, Upper Saddle
River.

KARIMI J (1988) Strategic planning for information systems: requirements
and information engineering methods. Journal of Management
Information Systems 4(4), 5–24.

KAZMAN R, ASUNDI J and KLEIN M (2001) Quantifying the costs and
benefits of architectural decisions. In Proceedings of 23rd International
Conference on Software Engineering (ICSE 2001), pp 297–306, IEEE
Computer Society.

KAZMAN R, BARBACCI M, KLEIN M, CARRIèRE SJ and WOODS SG (1999)
Experience with performing architecture tradeoff analysis. In Proceed-
ings of the 1999 International Conference on Software Engineering,
pp 54–63, IEEE Computer Society Press.

KENDALL JE and KENDALL KE (1993) Metaphors and methodologies: living
beyond the systems machine. MIS Quarterly 17(2), 149–171.

KRUCHTEN P, OBBINK H and STAFFORD J (2006) The past, present, and
future for software architecture. IEEE Software 23(2), 22–30.

KRUCHTEN PB (1995) The 4+1 view model of architecture. IEEE Software
12(6), 42–50.

KRUCHTEN PB (1999) Rational Unified Process: An Introduction. Addison-
Wesley, Upper Saddle River.

KUMAR K and HILLEGERSBERG JV (2000) Enterprise resource planning:
introduction. Communications of the ACM 43(4), 22–26.

LAKOFF G and JOHNSON M (1980) Metaphors We Live by. The University of
Chicago Press, Chicago.

LINTHICUM D (2000) Enterprise Application Integration. Addison-Wesley,
Upper Saddle River.

LUCKHAM DC, KENNEY JC, AUGUSTIN LM, VERA J, BRYAN D and MANN W
(1995) Specification and analysis of system architecture using rapide.
IEEE Transactions on Software Engineering 21(4), 336–355.

MAIER MW and RECHTIN E (2002) The Art of Systems Architecting, 2nd edn.
CRC Press, Boca Raton.

MEDVIDOVIC N, DASHOFY EM and TAYLOR RN (2007) Moving architectural
description from under the technology lamppost. Information and
Software Technology 49(1), 12–31.

MEDVIDOVIC N, ROSENBLUM DS, REDMILES DF and ROBBINS JE (2002)
Modeling software architectures in the unified modeling language.
ACM Transactions on Software Engineering and Methodology 11(1),
2–57.

MEDVIDOVIC N and TAYLOR RN (2000) A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering 26(1), 70–93.

MERRIAM-WEBSTER (2002) Merriam Webster’s Collegiate Dictionary 10th
edn (accessed 12 October 2002).

MILES MB and HUBERMAN AM (1984) Qualitative Data Analysis:
A Sourcebook of New Methods. Sage, Beverly Hills.

MONROE RT, KOMPANEK A, MELTON R and GARLAN D (1997) Architectural
styles, design patterns, and objects. IEEE Software 14(1), 43–52.

MONTEIRO E and HANSETH O (1995) Social shaping of information
infrastructure: on being specific about the technology. In Information
Technology and Changes in Organizational Work (ORLIKOWSKI WJ,
WALSHAM G, JONES MR and Degross JI, Eds), pp 325–343, Chapman
& Hall, London.

MORGAN G (1986) Images of Organization. Sage, Beverly Hills.
MORRIS M (2006) Models: Architecture and the Miniature (Architecture in

Practice. Academy Press, Wiley, New York.

O’NEIL T, LEANEY J, ROWE D, SIMPSON H, RANGARAJAN M, WEISS J, PAPP Z,
BAPTY T, PURVES B, HORVATH G and DE JONG E (2000) IEEE ECBS’99 TC

Architecture Working Group (AWG) Report. In Proceedings of the
Seventh IEEE International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS). pp 383–389.

ORLIKOWSKI WJ (1993) Case tools as organizational change: investigating
incremental and radical changes in systems development. MIS
Quarterly 17(3), 309–340.

ORLIKOWSKI WJ (2006) Material knowing: the scaffolding of human
knowledgeability. European Journal of Information Systems 15,
460–466.

PAPAZOGLOU MP and GEORGAKOPOULOS D (2003) Service-oriented
computing. Communications of the ACM 46(10), 25–28.

RECHTIN E (1992) The art of systems architecting. IEEE Spectrum 29(10),
66–69.

ROSS JW, WEILL P and ROBERTSON DC (2006) Enterprise Architecture as
Strategy: Creating a Foundation for Business Execution. Harvard Business
School Press, Boston.

ROZANSKI N and WOODS E (2007) Software Systems Architecture – Working
with Stakeholders using Viewpoints and Perspectives. Addison-Wesley,
Upper Saddle River.

SCIENTIFIC SOFTWARE (2005) Atlas.Ti – The Knowledge Workbench. Scientific
Software Development, Berlin, Germany.

SEAMAN CB (1999) Qualitative methods in empirical studies of
software engineering. IEEE Transactions on Software Engineering
25(4), 557–572.

SHAW M (2003) Writing good software engineering research papers:
minitutorial. In Proceedings of the 25th International Conference on
Software Engineering (ICSE’03), pp 726–736, IEEE Computer Society,
Portland, Oregon.

SHAW M and CLEMENTS P (2006) The golden age of software architecture.
IEEE Software 23(2), 31–39.

SHAW M, DELINE R, KLEIN DV, ROSS TL, YOUNG DM and ZELESNIK G (1995)
Abstractions for software architecture and tools to support them. IEEE
Transactions on Software Engineering 21(4), 314–335.

SHAW M and GARLAN D (1996) Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Upper Saddle River.

SIMPSON H, ROSSAK W, SCHAFFER C, HAMMER D, ROZENBLIT J, BOASSON M,
ROWE D, LEANEY J, KIROVA V, KRADJEL H and LAWSON B (1998) IEEE ECBS
TC Architecture Focus Group Discussion Paper. (accessed 6 September
2002).

SJöBERG DIK, DYBå T and JORGENSEN M (2007) The future of empirical
methods in software engineering research. In FOSE’07: 2007 Future of
Software Engineering, (BRIAND L and WOLF A, Eds), pp 358–378, IEEE
Computer Society.

SMOLANDER K, HOIKKA K, ISOKALLIO J, KATAIKKO M and MäKELä T (2002)
What is included in software architecture? A case study in three
software organizations. In Proceedings of 9th Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS), pp 131–138 IEEE Computer Society, Lund, Sweden, 8–11 April
2002.

SMOLANDER K and PäIVäRINTA T (2002a) Describing and communicating
software architecture in practice: observations on stakeholders and
rationale. In Proceedings of CaiSE’02 – The Fourteenth International
Conference on Advanced Information Systems Engineering (BANKS PIDDUCK

A, MYLOPOULOS J, WOO CC and OZSU MT, Eds), pp 117–133, Springer-
Verlag, Toronto, Canada 27–31 May 2002.

SMOLANDER K and PäIVäRINTA T (2002b) Practical rationale for describing
software architecture: beyond programming-in-the-large. In Software
Architecture: System Design, Development and Maintenance – IFIP 17th
World Computer Congress – TC2 Stream/3rd Working IEEE/IFIP Con-
ference on Software Architecture (WICSA3) (BOSCH J, GENTLEMAN M,
HOFMEISTER C and KUUSELA J, Eds), pp 113–126 Kluwer Academic
Publishers, Montréal, Québec, Canada, 25–30 August 2002.

SMOLANDER K and ROSSI M (2008) Conflicts, compromises, and
political decisions: methodological challenges of enterprise-wide
e-business architecture creation. Journal of Database Management
19(1), 19–40.

SOFTWARE ENGINEERING INSTITUTE (2006) How do you define software
architecture. (accessed 29 September 2006).

SONI D, NORD RL and HOFMEISTER C (1995) Software architecture
in industrial application. In Proceedings of the 17th International
Conference on Software Engineering, pp 196–207, ACM Press, Seattle,
WA, USA, 24–28 April 1995.

Software architectures Kari Smolander et al 587

European Journal of Information Systems



SOWA JF and ZACHMAN JA (1992) Extending and formalizing the
framework for information systems architecture. IBM Systems Journal
31(3), 590–616.

STAR SL (1989) The structure of ill-structured solutions: heterogeneous
problem-solving, boundary objects and distributed artificial intelli-
gence. In Distributed Artificial Intelligence (HUHNS M and GASSER L, Eds),
Vol. 2, pp 37–54, Morgan Kauffmann, Menlo Park, CA.

STAR SL and GRIESEMER JR (1989) Institutional ecology, ‘‘Translations’’ and
boundary objects: amateurs and professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907–39. Social Studies of Science 19, 387–420.

STRAUSS AL and CORBIN J (1990) Basics of Qualitative Research: Grounded
Theory Procedures and Applications. Sage Publications, Newbury Park,
CA.

TAYLOR RN and VAN DER HOEK A (2007) Software design and architecture
the once and future focus of software engineering. In Future of
Software Engineering, 2007. FOSE ’07, (BRIAND L and WOLF A, Eds),
pp 226–243.

TELLIOGLU H, WAGNER I and LAINER R (1998) Open design methodologies.
Exploring architectural practice for systems design. In Proceedings of
the Participatory Design Conference PDC’98, pp 19–28 Seattle, WA,
USA, 12–14 November 1998.

VAN DER AALST WMP, TER HOFSTEDE AHM and WESKE M (2003) Business
process management: a survey. In BPM’2003, (VAN DER AALST W, TER

HOFSTEDE A and WESKE M, Eds), pp 1–12, Springer, Berlin.
VOLKOFF O, STRONG DM and ELMES MB (2005) Understanding enterprise

systems-enabled integration. European Journal of Information Systems
14(2), 110–120.

WARD J and PEPPARD J (2002) Strategic Planning for Information Systems.
John Wiley & Sons, Chichester.

WEILL P and BROADBENT M (1998) Leveraging the New Infrastructure: How
Market Leaders Capitalize on Information Technology. Harvard Business
School Press, Boston, MA.

WILE D (1999) AML: an architecture meta-language. In Proceedings of the
14th International Conference on Automated Software Engineering,
pp 183–190.

WYNEKOOP JL and RUSSO NL (1995) Systems development methodologies:
unanswered questions. Journal of Information Technology 10,
65–73.

YIN RK (1994) Case Study Research: Design and Methods 2nd edn. Sage
Publications, Thousand Oaks.

ZACHMAN JA (1987) A framework for information systems architecture.
IBM Systems Journal 26(3), 276–292.

Software architectures Kari Smolander et al588

European Journal of Information Systems


