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ABSTRACT
In this paper, we propose estimation-based elimination strat-
egy, which improves sample efficiency of NeuroEvolution (NE)
algorithms. The fitness of new individuals was estimated us-
ing fitness of individuals evaluated in the past generations.
The estimation was achieved by taking average fitness of
individuals with high correlation with the new individual.
Estimation-based elimination strategy avoids evaluating in-
dividuals with low estimated fitness. We adapt estimation-
based elimination strategy for state-of-the-art NE algorithms:
CMA-NeuroES and CMA-TWEANN. From the experimen-
tal results of pole-balancing benchmark tasks, we show that
the proposed strategy improves sample efficiency of the NE
algorithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: LearningConnectionism and Neu-
ral Nets; I.2.6 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design, Experimentation

Keywords
Fitness Estimation, Neuroevolution, Evolutionaly Computation

1. INTRODUCTION
In this paper, we propose estimation-based elimination strat-

egy, which improves sample efficiency of NeuroEvolution (NE) al-
gorithms. In evolutionary computation including evolutionary al-
gorithms and NEs, the optimization of fitness function is achieved
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by random search that emulates natural evolution; first selecting
the surviving individuals, and then from those individuals some-
how generating the next generation. In nature, only part of the
population is used as parents of the next generation at the selec-
tion phase. Therefore, there are always unused individuals in the
population.

In this research, we focus on the correlation between the indi-
viduals to estimate the fitness of a newly created individual. Be-
cause the fitness between similar individuals is considered to be
close, the fitness is estimated by taking average of high correlation
individuals’ fitness. In order not to evaluate redundant individu-
als, we avoid evaluating individuals with low estimated fitness in
the generation. We apply our estimation-based elimination strat-
egy to two state-of-the-art NE algorithms: CMA-NeuroES [2] and
CMA-TWEANN [3]. The experimental results on pole balancing
problems showed that our estimation-based elimination strategy
significantly improves sample efficiency of each algorithm.

2. METHOD AND APPLICATION

2.1 Estimation-Based Elimination Strategy
We propose estimation-based elimination strategy. This strat-

egy based on two ideas. One is to reduce evaluation of redundant
individuals in the evolution process of NE. The other is that indi-
viduals with high correlation are prone to obtain similar fitness.

In this research, we use correlation as the metric to find neigh-
boring individuals and estimate the fitness of new individuals. We

define the correlation metric with
∑
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In this equation, n is the number of connection weights in ANNs,
and xi and yi are the connection weights of the same edge. And x̄

and ȳ are the average values of all parameters in vector x and y,
respectively. For a connection weight xi which has no counterpart
yi due to topology augmentation, we assign 0 to yi.

The estimation-based elimination strategy is summarized in
Algorithm 1. In this paper we only depict the evaluation part.
EvaluationRate (ER) stands for the rate of individuals who are
evaluated. Those evaluated individuals are put to an archive
along with its evaluated fitness. In “other operations” in Algo-
rithm 1 the evolutionary process of selection, mutation and aug-
mentation of topology is performed. In this strategy, k and ER
are user defined parameters.

We apply our strategy to two NE algorithms: CMA-NeuroES
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Table 1: The results of pole balancing problems. The number in each box stands for the average number of
episode cost to achieve each problem. If there is significant difference between with and without our strategy,
we marked ∗ (p < 0.03).

Algorithms Single, Full Single, Partial Dobule, Full Double, Partial
CMA-NeuroES 91 192 585 1141

CMA-NeuroES in our implemantation 36.1 (23.9) 52.2 (27.3) 521.4 (232.2) 902.9 (499.1)
CMA-NeuroES with proposed strategy 29.0∗ (20.9) 41.4∗ (20.4) 400.8∗ (178.3) 716.6∗ (333.8)

CMA-TWEANN 27.5 (21.5) 29.4 (19.4) 335.6 (189.6) 676.8 (863.3)
CMA-TWEANN in our implemantation 36.1 (23.6) 41.4 (17.2) 461.1 (269.8) 559.7 (1013.2)
CMA-TWEANN with proposed strategy 27.8∗ (19.1) 33.8∗ (12.5) 356.8∗ (212.9) 421.7 (340.0)

Algorithm 1 Estimation-Based Elimination Strategy

1: pi ∈ P(i = 1 · · ·λ)
2: repeat
3: for i = 1 → λ do
4: Calculate correlation between pi and

all individuals in archive
5: Sort individuals in archive according to correlation
6: for j = 1 → k do
7: EstimatedFitnessi = Fitness(arv j) /k
8: end for
9: end for
10: Sort individuals in P according to EstimatedFitness
11: for i = 1 → λ ∗ EvaluationRate (ER) do
12: Evaluate(pi)
13: AddIndividualToArchive(pi)
14: continue
15: end for
16: other operations
17: until a task is achieved

and CMA-TWEANN. These two algorithms are both based on
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [1].
In CMA-NeuroES, calculating correlation between individuals is
straightforward because the number of edges is fixed. In CMA-
TWEANN, the number of edges will eventually increase due to
the addEdge and the addNode operation. In such case, we assign
0 as a connection weight to calculate the correlation.

3. EXPERIMENTAL SETUP
In this paper, we use pole balancing problems [3] as benchmarks

to evaluate our correlation-based elimination strategy. We assign
the number of episodes required to solve the problem as the score
of each trial. The performance of each algorithm is measured by
the average score of 100 trials.

3.1 Parameters Settings
The parameters of CMA-NeuroES and CMA-TWEANN are

obey that of [1], except for initial step-size parameter (σinitial ).
The initial step-size parameter (σinitial ) and topological mutation
parameters obey that of [3].

In correlation-based elimination strategy, users have to decide
two parameters: k and ER. For them, we try following combina-
tions:

k = {1, · · · , 7},

ER = {0.6, 0.65, · · · , 0.95}.

We show the best parameter combination for each algorithm.

3.2 Results of Single Pole Balancing
In single pole balancing problems, it is known that they can be

solved within a small number of episodes. The fitness estimation

is likely to be inaccurate in early steps of episodes due to insuf-
ficient entries in the archive. Inaccurate fitness may mislead the
direction of evolution, and results in sample inefficiency. There-
fore, there is a possibility of our elimination strategy hindering
the performance in pole balancing problems.

The experimental results show, however, that the correlation-
based elimination strategy significantly improves the sample ef-
ficiency of both algorithms (p < 0.03), even in cases where the
archive is small. The results show that in average CMA-NeuroES
solved the problems with 29.0 for full information problem and
41.4 for partial information problem respectively, and CMA-TWEANN
did so with 27.8 and 33.8 respectively.

3.3 Results of Double Pole Balancing
Double pole balancing problems are much more challenging

than the single pole balancing problems. In full information prob-
lem, CMA-NeuroES and CMA-TWEANN with correlation-based
elimination strategy solved them in 400.8 and 356.8 respectively,
in average. The performance improvements are statistically sig-
nificant (p < 0.01).

In partial information problem, with our strategy, CMA-NeuroES
and CMA-TWEANN achieved the performances of 716.6 and
421.7. Because original algorithm has large standard deviation
at its performance, collected data was not enough to achieve a
statistic significance for CMA-TWEANN. Across all runs, the
maximum number of episodes required for CMA-TWEANN to
solve the task with and without our strategy are 2, 091 and 7, 955
respectively. This results in large average performance differ-
ence (137.0 episodes) between CMA-TWEANN with and without
our strategy. From the experimental results of all pole balancing
problems, estimation-based elimination strategy statistically im-
proves sample efficiency of CMA-NeuroES and CMA-TWEANN.

4. CONCLUSION
In this paper, we proposed estimation-based elimination strat-

egy, which improves sample efficiency of NE algorithms. From
the experimental results of pole balancing problems, the appli-
cation of our strategy to CMA-NeuroES and CMA-TWEANN
successfully outperformed the sample efficiency of original algo-
rithms. We conclude that estimation-based elimination strategy
can improve sample efficiency of NE algorithms.
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