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Abstract

To analyze the e1ects of mergers among 2rms facing capacity constraints, we develop a
numerical model of price-setting behavior among multi-product 2rms di1erentiated by location
and capacity. We perform a number of computational experiments designed to inform merger
policy, with speci2c reference to the Central Parking–Allright merger of 1999. The experiments
show that capacity constraints on merging 2rms attenuate merger e1ects by much more than
capacity constraints on non-merging 2rms amplify them. The experiments also highlight the
dependence of merger welfare e1ects on parking demand. In preparation for further industry
consolidation, we propose estimators of parking demand to more precisely estimate the costs
and bene2ts of future mergers.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interest in the demand for parking has been driven by the public policy interest
in reducing tra<c congestion. A number of empirical studies, appearing in economics,
transportation, and urban studies journals, have found that the availability, convenience,
and price of parking are major determinants of the decision to drive to work and where
to park (see Feeney (1989) and Young et al. (1991) for surveys).
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Interest in the supply side of the parking industry is more recent, motivated by a
merger between the two largest parking companies in the United States. In March 1999,
the Antitrust Division of the U.S. Department of Justice approved Central Parking’s
$585 million acquisition of Allright after the companies agreed to divest 74 o1-street
parking facilities in 18 cities (United States vs. Central Parking Corp., 99-0652, D.D.C.
2led March 23, 1999). From the Division’s press release, “Without these divestitures,
Central would have been given a dominant market share of o1-street parking facilities
in certain areas of each of the cities, and would have had the ability to control the
prices and the type of services o1ered to motorists” (U.S. Department of Justice, 1999).
In similar cases (Werden, 2000), the Justice Department has begun using numerical

models of Bertrand competition, calibrated to observable industry characteristics, to
assess the welfare e1ects of mergers. A numerical approach to economic modeling in
general (Judd, 1998) and to merger policy in particular (Werden and Froeb, 1996)
has several advantages. First, it allows greater realism than is a1orded by an analytic
approach. Second, it permits inference not only about the signs, but also about the
magnitudes of welfare e1ects, which is crucial for designing policy. Most importantly,
a numerical approach permits the enforcement agencies to replace simple market share
heuristics with formal bene2t–cost analysis.
While some characteristics of the parking industry, like product di1erentiation and

price-setting behavior, are captured by existing numerical models of competition, ca-
pacity constraints are not. When one product is capacity-constrained, it drops out of
consumers choice set, and this shifts demand to the remaining unconstrained products.
To account for the e1ects of capacity constraints, we develop an algorithm to compute
Nash equilibrium and apply the methodology to the parking industry. Following the
empirical literature, consumers choose to park at the lot with the lowest total cost (price
plus walking cost). The demand for any individual lot is an integral over all possible
driver destinations, which yields a functional form for the potential demand similar to
the mixed logit models of Berry et al. (1995) and Brownstone and Train (1999). It
di1ers from these models in that observed quantity is the minimum of potential demand
and lot capacity.
To inform antitrust policy in this area, we perform a number of computational ex-

periments in which merger e1ects are computed as the di1erence between pre- and
post-merger Nash equilibrium. The most striking result from the experiments is that
capacity constraints on merging 2rms attenuate merger price e1ects by much more
than capacity constraints on non-merging 2rms amplify them. This result suggests
criticism of the parking merger divestitures and of the Horizontal Merger Guidelines
(U.S. Department of Justice and Federal Trade Commission, 1992) which recognize
the latter e1ect, but not the former.
In any given case, the welfare e1ects depend on the cost of walking, variation in the

random component of demand, locations and capacities of the merging lots, locations
and capacities of the non-merging lots, locations of desired destinations, and unob-
served lot quality. The estimators of Berry (1994) and Berry et al. (1995) can be used
to recover model parameters despite the confounding e1ects of capacity constraints
because, for capacity-constrained lots, price is set where expected demand equals ca-
pacity. Thus, in equilibrium, observed demand is equal to potential demand. In other
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words, the e1ects of capacity constraints can be safely ignored for estimation purposes.
Capacity does play a role in constructing instruments for endogenous prices.
In what follows, we present a model of Bertrand competition between multi-

product 2rms facing capacity constraints and an algorithm for computing equilibrium
that “smoothes” the kink in the 2rst-order conditions caused by capacity constraints.
We review the issues raised by the Central Parking–Allright merger, and use the
model to critique the Justice Department’s divestiture as a remedy for the parking
lot merger. In preparation for future industry consolidation, we propose estimation
strategies to recover the parameters that would permit formal bene2t–cost analysis of
mergers.

2. Bertrand competition with capacity constraints

In this section, we characterize Bertrand equilibrium behavior in di1erentiated prod-
ucts industry subject to capacity constraints. The bulk of the literature in this area
has been theoretical (for an exception see Bresnahan and Suslow, 1989) and focused
on homogenous goods industries (Edgeworth, 1897). In modern applications, capacity
constraints have been used to address the question of whether above-cost pricing is
pro- or counter-cyclical (e.g., Staiger and Wolak, 1992), and to investigate long-run
equilibrium in two-stage games where 2rms 2rst invest in capacity, then compete in
either price or quantity (e.g., Kreps and Scheinkmam, 1983).
In this paper, we focus on the short-run where industry structure, i.e., product char-

acteristics and capacity, are 2xed for two reasons. First, it is the context of merger
enforcement as practiced by the enforcement agencies and articulated by the Merger
Guidelines (U.S. Department of Justice and FTC, 1992). In the long run, without barri-
ers to entry, product re-positioning and entry into the industry are presumed to mitigate
merger e1ects (e.g., Werden and Froeb, 1998), so the policy concern is about the short
run. Second, equilibrium models of competition where 2rms choose both structure and
price are not well developed (see Crawford and Shum, 2001 on the intractability of
the simpler monopoly problem).
In equilibrium, we assume all consumers receive their 2rst choices according to a

qualitative-choice demand model. Speci2cally, if one product was priced so that poten-
tial demand exceeded capacity, then its price would rise until excess demand disappears.
Actual demand will di1er slightly from this speci2cation in that a constrained product
with excess demand means that some consumers move to their second choices. This
shifts demand to the remaining products and puts a kink in the pro2t function of the
unconstrained products. The result is that a pure strategy equilibrium need not exist.
The numerical importance of this e1ect is small if demand is su<ciently smooth and
may disappear altogether if products near capacity become less desirable due to search
costs, for example, when searching for a parking space in a nearly full lot.
In a multi-product setting, let I index the set of products, and suppose I1; I2; I3; : : : ; IM

partitions the set I into disjoint subsets according to ownership, i.e., take In to be the
subset of products controlled by the nth supplier. Take pi to be the price of the ith
good, that price being set by supplier n if i is in In, and let Kp denote the vector of all
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prices. Take the quantity demanded of the ith good to be

qi = qi( Kp) = min(q∗i ( Kp); ki);

where q∗i is the potential demand for the good, and ki is the capacity.
We assume q∗i is a decreasing function of pi and an increasing function of pj for

j �= i. Let ci(qi) be the cost of producing qi units of the ith good, a non-decreasing
function of qi (but for simplicity independent of the other qj even for i and j in the
same In). The derivative of the cost function is denoted c′i(qi) =mci(qi), the marginal
cost. The pro2t of the nth supplier is then given by


n =
∑
i∈In

(piqi − ci(qi( Kp))):

Each supplier n sets prices pi for i∈ In so as to maximize his own pro2t subject
to the capacity constraint. For now, we assume that the demand and cost functions
are such that the pro2t functions are convex and consistent with the existence of
(usually a unique) Nash equilibrium. When the model is used empirically, existence
and uniqueness of pure strategy equilibrium cannot be assumed. For example, as one
good becomes capacity-constrained, it drops out of consumers’ choice set, and shifts
demand to the remaining lots. This shift in demand introduces a kink into the 2rst-order
conditions of the unconstrained products. If there are a number of consumers on the
“border” between two products, prices tend to bounce between two levels. If two lots
are located near a large building, one lot would reduce price to “capture” demand at
the building. This would induce the second lot to “concede” demand in the building
by raising its price. But once the second lot raised price, the 2rst lot would 2nd room
to raise price as well. And once the 2rst lot raised price, the second lot would try to
capture demand, and the cycle would repeat.
Because there is no point in leaving any constrained lot with excess demand, the

equilibrium conditions are analogous to the familiar Kuhn–Tucker 2rst-order conditions,
where the “slack” variable is the potential demand minus capacity, q∗i ( Kp)− ki.
If the product is not constrained, i.e., q∗i ( Kp)¡ki, the pro2t of the nth supplier is

maximized with respect to the setting of the price pi, i∈ In when
@
n

@pi
= qi( Kp) +

∑
j∈In

(pj − mcj(qj( Kp)))
@qj( Kp)
@pi

= 0 (2.1)

which is the usual 2rst-order condition for a multi-product pro2t-maximizing 2rm. Note
that when product j is capacity-constrained, its derivative with respect to price is zero.
In other words, all the terms that correspond to capacity-constrained products drop out
of Eq. (2.1). In the case of a single-product 2rm, this reduces to the familiar mark-up
equation

pi − mci
pi

=
1
|eii|

where eii is the own-price elasticity of demand for product i.
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Fig. 1. Pro2t, its derivative, and slack.

If the product constraint is binding, then the slack variable is zero, and the 2rm
prices where the derivative of the (unconstrained) pro2t function is less than zero:

@
n

@pi
6 0: (2.2)

The complementarity of the slack variable and the pro2t derivative (if one is zero, then
other is negative, and vice versa) will form the basis of our algorithm for computing
equilibrium.

2.1. Algorithm for computing equilibrium

Since the 2rst-order conditions of a monopolist are analogous to those of a single-
product 2rm in a Bertrand equilibrium, we use the monopoly case to illustrate the
computational algorithm.
In Fig. 1, we plot a short-run pro2t function based on a logit demand curve, a

zero marginal cost, and a capacity constraint of 10. The unconstrained pro2t function
(dashed) has its maximum at a price of $3:6, where the derivative of the unconstrained
pro2t function crosses the x-axis (solid). At this price, potential demand is greater than
capacity, so the actual pro2ts (solid) lie below the unconstrained pro2ts (dashed).
Note that at a price of $3:6, the slack variable (dotted) is positive, illustrating the
complementarity of the slack variable and the pro2t derivative.
The price of $3:6 is not an equilibrium because the 2rm has room to raise price

without reducing quantity. Equilibrium occurs at the point where demand just equals
capacity, at a price of $4 in Fig. 1. At this price the slack variable is equal to zero. If
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Fig. 2. Maximum and Fischer’s smoothing function.

the 2rm sets a price below $4, it foregoes pro2t on every unit it sells; and if it sets a
price above $4, it foregoes pro2ts on the unused capacity.
It is interesting to note the di1erence in the “peaks” of the unconstrained pro2t func-

tion (dashed) and the observed pro2t function (solid) in Fig. 1. The pro2t consequences
of a mistaken pricing decision are relatively small for an unconstrained 2rm because the
unconstrained pro2t function is relatively Nat near the optimum. A mistaken price has a
much bigger opportunity cost for a capacity-constrained 2rm. Consequently, managers
of capacity-constrained 2rms have relatively large incentives to collect information that
would help them make better pricing decisions. This will be important for estimation
because it implies that managers probably have better information about demand than
econometricians, which induces a correlation between price and unobserved demand
components.
To 2nd equilibrium, we exploit the complementarity of the slack variable and the

derivative of the pro2t function. As seen in Fig. 1, either the product is capacity-
constrained (the slack variable is zero), or the 2rm is not capacity-constrained, and
the derivative of the pro2t function is zero. The complementarity suggests using the
maximum of the two to compute Nash equilibrium

max
(
@
n

@pi
; q∗i − ki

)
= 0; i = 1; 2; : : : ; N; (2.3)

where we take n, the index of ownership, to be a function of i that returns the 2rm
that owns product i, and sets the price for it.
Steepest-decent root-2nding algorithms will sometimes fail to 2nd the equilibrium

price due to the kinks in the 2rst-order conditions, as can be seen in Fig. 2. One way
to deal with the kinks is to replace the maximum function with a function that has
the same roots, but is smoother and therefore less prone to numerical di<culties. One
function that has proven very e1ective for solving this type of problem in practical
applications is Fischer’s smoothing function f(u; v)=u+v+

√
u2 + v2 where u=@
n=@pi

and v= q∗i − ki (Miranda and Fackler, 2001).
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The maximum function and Fischer’s smoothing function are both plotted in
Fig. 2. The built-in root-2nding command in Mathematica is able to 2nd a pure-
strategy equilibrium (when it exists) with a few exceptions. Sometimes, for large
starting values, the algorithm shoots o1 towards an in2nite price. And sometimes,
di1erences in scale between the pro2t derivative and the slack variable leads to con-
vergence problems. Choosing di1erent starting values, or re-scaling the expressions, by
multiplying by a positive constant, solves these problems.

3. Competition between parking lots

In this section we present a model of competition between parking lots di1erentiated
by location and capacity. We imagine a rectangular downtown city area, as in Fig. 3,
and assign x and y coordinates to each point in the rectangle. The distance from a
point (x1; y1) to a point (x2; y2) is given by the taxi-cab metric as

d((x1; y1); (x2; y2)) = |x1 − x2|+ |y1 − y2|;
that is the distance following horizontal and vertical routes only. We take the goods
indexed from 1 to N , with each lot associated with a speci2c location (xi; yi) in the
city grid, with price pi and capacity ki. An outside alternative good will be indexed
by 0 but have no speci2c location and 2xed price p0. The outside good includes a
no-purchase option and other location-independent options, like public transportation.

0 1 2 3 4
0

1

2

3

4

Fig. 3. Isodistance lines around three parking lots.
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The taxi-cab distance metric yields isodistance “diamonds” instead of circles derived
from Euclidean distance. In Fig. 3, we plot isodistance lines around three lots, located
at points (2,2), (2,4), (4,2). In this plot, the left and bottom areas are blank because
customers who have to walk more than two blocks prefer the “no-purchase” option,
e.g., public transportation. The isodistance contours are drawn around the nearest lot,
so it is possible to visualize the areas served by each lot. Boldface lines are drawn on
the “boundary” between the areas in which consumers always choose the closest lot.
Below, we show how these areas can be used to construct instruments for endogenous
prices.
There are two reasons why consumers would not always make the minimum distance

choice. First, closer lots may charge higher prices, and second, choices are somewhat
“noisy”. If a consumer at location (xi; yi) chooses to park at lot j then she receives
indirect utility:

Vij = �j − �d((xi; yi); (xj; yj))− pj + �ij;

where � is the opportunity cost of travel from the customer’s location to the lot and pj
is the price charged by lot j. The �j parameter captures consumer’s preferences among
the alternatives due to factors other than the distance from his location. Without loss
of generality, we set �0 = 0 and p0 = 0.
The random component of indirect utility, �ij, is distributed according to an inde-

pendent extreme-value distribution (Gumbel) with a common spread parameter �. The
Gumbel has the cumulative distribution function

F(t) = e−e
−�(t−�)

: (3.1)

The distribution is characterized by a location and spread parameter (�; �), which are
related to its 2rst two moments as follows:

E(X ) = �+
"
�
; (3.2)

Var(X ) =
#2

6�2
: (3.3)

A small � means that choice is relatively noisy, or that competition is relatively global,
i.e., for a given price vector, consumers travel farther, and market shares are closer to
1=n, (e.g., Brannman and Froeb, 2000). A large � corresponds to a small variance, and
more localized competition, similar to the deterministic model of Braid (1999) where
consumers always make the minimum-distance choice. This discussion highlights the
confounding e1ects of � and �. Localized competition could be due to either the high
cost of walking or the low variance of the random component of utility.
We are assuming that income e1ects are negligible and that consumers are similar

except for their desired destinations, i. We say that consumers are “located” at their
desired destinations i, which are chosen independent of the travel cost. For example,
this implies that if the price of parking increases, commuters will not take a job in a
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di1erent location. Depending on the available data, it might be bene2cial to generalize
the model by allowing for random coe<cients, for example, consumers who di1er
in their taste for walking. At this point, we 2nd it convenient to re-parameterize the
indirect utility. For a consumer i choosing lot j,

Ṽ ij = �Vij = ($j + %pj + "cij) + &ij

= 'ij + &ij; (3.4)

where $j=��j, %=�, "=��, cij=d((xi; yi); (xj; yj)), &ij=��ij and 'ij=$j+%pj+"cij.
The coe<cients % and " determine the (negative) contribution to utility of the price of
parking and walking, respectively, and $j reNects the lot-speci2c quality contribution
to utility.
The random component of utility is now a standardized Gumbel variate which implies

that the probability that consumer located at i would choose lot j has the logistic
form

qij =
(exp'ij)∑N
k=1 exp 'ik

: (3.5)

The demand for parking at lot j is a sum over all possible consumer locations
i is

qj =
∑
i

niqij =
∑
i

ni (exp 'ij)∑N
k=1 exp 'ik

; (3.6)

where ni is the number of consumers at location i.
When a particular lot is 2lled to capacity, the remaining consumers choose from

among the remaining unconstrained alternatives. By the IIA Property for the logit
demand, the consumers at a particular location shift from the unavailable option to the
remaining available options in proportion to the original choice probabilities. However,
integrating over the distribution of consumer destinations, this property will not hold.
That is, the IIA property does not apply to the average of IIA choice functions (e.g.,
Davis, 1999). Geographically close lots will of course be better substitutes than widely
separated ones.
Nash equilibrium is computed using the algorithm of Section 2.1 and is illustrated

in Fig. 4 for a 16-square-block downtown area. Three parking lots, labelled A, B, and
C, are located at points (2,2), (2,4), and (4,2) with capacities 2500, 3000, and 1200
represented by the areas of the circles. There are 16 consumer destinations represented
by buildings where the height of each building is proportional to the number of con-
sumers at each location, which varies from 100 to 800. The buildings are subdivided by
shades of gray according to the number of consumers in the building who park in the
corresponding lot. The no-purchase or outside option is denoted by the color white. We
assume that marginal costs are zero. The Nash equilibrium price vector for the three
lots is ($1:27; $1:19; $1:39) and the equilibrium quantity vector is (2058; 1562; 1200).
For each lot, realized demand relative to capacity is represented by the shaded areas of
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Fig. 4. Three parking lots in Nash equilibrium.

the circles at the top of the 2gure. Only lot C, located at (4; 2), is capacity constrained.
As one would expect, it also has a higher price.

3.1. Modeling mergers

A merger is modeled as a change in the ownership partition. Suppose 2rms number
1 and 2 merge. Before the merger, products are partitioned as I1; I2; I3; : : : ; IM and after
the merger they are partitioned as I0; I3; : : : ; IM with I0 = I1∪ I2. In general, the changed
pro2t calculus changes the price. Let Kp0 denote the before-merger equilibrium price
vector and Kp1 the after-merger equilibrium price vector. The e1ect of the merger is to
move the industry from Kp0 to Kp1.
The consumer welfare e1ect of a change in prices from Kp0 to Kp1 is computed as

the change in expected maximum utility for consumer i:

QCSi( Kp0; Kp1) = Vmax i( Kp1)− Vmax i( Kp0); (3.7)



L. Froeb et al. / Journal of Econometrics 113 (2003) 49–67 59

where

Vmax i( Kp) = log


 N∑

j=0

exp($j + %pj + "cij)


 : (3.8)

The aggregate change in consumer surplus is computed as the sum over all consumers

QCS( Kp0; Kp1) =
∑
i=1

niQCSi( Kp0; Kp1): (3.9)

4. Analyzing merger e�ects

4.1. Policy motivation

As a condition for not challenging the Central Parking–Allright merger, the U.S.
Department of Justice asked for divestitures in 2ve-square-block areas where the sum
of the shares of the merging 2rms exceeded 35 percent. In essence, the Department was
using shares in a 2ve-square-block area as a proxy for the loss of localized competition
between the merging 2rms.
Criticisms of merger policy based on market shares in di1erentiated products in-

dustries are well known. There are two basic problems: market boundaries represent
bright lines where there are only shades of gray; and shares within a market may be
poor proxies for the loss in competition following a merger (Werden and Froeb, 1996).
In the parking application, these two problems are easy to illustrate. For example, if
walking costs are low, distant lots outside a 2ve-block square may compete with merg-
ing lots, and if walking costs are high, competition may be more localized than in a
2ve-block square. Certainly, the diamond-shaped isodistance contours of Fig. 3 suggest
that diamonds have more economic justi2cation than squares. The second problem is
that an analysis based on shares ignores the location of products within a delineated
market. In particular, non-merging lots in between the merging lots attenuate the price
e1ects of mergers.
What we want to focus on in this paper is the particular issues raised by capacity

constraints. It has long been understood that capacity constraints on the non-merging
2rms prevent share-stealing quantity responses, and thus lead to larger merger price
e1ects. The policy approach embodied in the Horizontal Merger Guidelines (U.S. De-
partment of Justice and FTC, 1992) explicitly recognizes the diminished ability of
capacity-constrained 2rms to discipline merger price e1ects.
What has been less appreciated is the e1ect of capacity constraints on the pro2t

calculus of merging 2rms. If 2rms are capacity-constrained, they are pricing where
potential demand equals capacity. This pricing calculus is less likely to be changed by
merger. In the case where the merged 2rm is capacity-constrained, there is no merger
price e1ect. The intuition behind this result is the same as that behind a trick question
that has appeared on numerous microeconomics exams: “For a vertical supply curve,
what is the di1erence between monopoly and competition?” If the capacity constraint
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Table 1
Computational experiments

Abbreviation Experiment

Base case None of the 2rms are capacity-constrained
One M One merging 2rm is capacity-constrained
Both M Both merging 2rms are capacity-constrained
One NM One non-merging 2rm is capacity-constrained
Both NM Both non-merging 2rms are capacity-constrained
Duopoly Both non-merging 2rms are capacity-constrained at zero

binds on the monopolist, the answer is “none”. The movement from competition to
monopoly is analogous to the e1ect of a merger.

4.2. Computational experiments

It is clear how capacity constraints matter, but to inform policy, we need to know by
how much. Although the e1ects depend on the particulars of a given case, the following
computational experiments are designed to shed light on the relative magnitudes of the
e1ects of capacity constraints on mergers. In this section, we present the results of
computational experiments designed to isolate the e1ects of capacity constraints on
mergers. To do this, we posit an industry of four one-lot 2rms on a 10-square-block
grid, located at points (3,3), (7,7), (6,4) and (2,8) and consider a merger of the 2rst
two 2rms. We chose this particular array of 2rms for its ability to illustrate the e1ects
of capacity constraints on the magnitude of merger e1ects. In particular, we place the
two non-merging lots in between the merging lots. This makes it more likely that they
will be able to constrain the post-merger price rise.
We specify a uniform distribution of 4000 consumers over the grid for several rea-

sons. First, the uniform distribution means that demand is not “lumpy”, so pro2t func-
tions are smooth and a pure-strategy equilibrium can be easily computed. Second,
the uniform distribution means that we can easily illustrate merger e1ects in two di-
mensions with contour plots. The welfare e1ects of the merger are computed as the
expected loss in consumer surplus, as in Eq. (3.7).
We set the price coe<cient % = 1, the attractiveness parameter of the outside, or

no-purchase alternative, $0 = −2, and the attractiveness of the four other choices
$1 = $2 = $3 = $4 = 0. We compare a walking cost " of 0:6/block to a walking cost
of 0:3/block. A higher walking cost gives each 2rm greater local market power and
leads to higher prices. For example, with walking cost of "= 0:6/block, on average, a
consumer would be willing to walk $0="= 3:33 blocks before the attractiveness of the
average no-purchase alternative exceeded the attractiveness of purchasing from one of
the lots.
To isolate the e1ects of constraints, we compute six di1erent equilibria which are

described in Table 1. Our base case, where none of the lots are capacity-constrained, is
reported in column 2 of Table 2 (high travel cost) and Table 3 (low travel cost).
We compare the base case to equilibria where one or more of the lots are capacity-
constrained, in columns 3–7 of Tables 2 and 3.
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Table 2
E1ects of capacity constraints on mergers: high travel cost

Variable Base case One M Both M One NM Both NM Duopoly
(%) (%) (%) (%) (%) (%)

Q Industry price 1:40 0:72 0:00 1:55 1:66 3:99
Q Industry quantity −1:09 −0:57 0:00 −1:29 −1:21 −3:76
Q Consumer surplus −1:30 −0:68 0:00 −1:54 −1:45 −3:57
Q Total welfare −0:98 −0:51 0:00 −1:16 −1:08 −3:47

Table 3
E1ects of capacity constraints on mergers: low travel cost

Variable Base case One M Both M One NM Both NM Duopoly
(%) (%) (%) (%) (%) (%)

Q Industry price 5:88 3:24 0:00 6:97 8:29 16:2
Q Industry quantity −2:76 −1:59 0:00 −3:36 −3:94 −12:5
Q Consumer surplus −5:51 −3:08 0:00 −6:64 −7:82 −14:3
Q Total welfare −2:77 −1:56 0:00 −3:27 −3:83 −12:6

In Table 3, the travel cost is half of what it is in Table 2 which puts the two merging
2rms in closer competition with one another. When this competition is lost via merger,
the merger e1ects increase by a factor of three over the base case merger in Table 2.
Summary performance statistics for each experiment are presented in the rows of

Tables 2 and 3. The price e1ect is computed as the change in a Laspeyres price index.
The change in consumer surplus is the change in expected maximum utility de2ned
by Eq. (3.7). The change in total welfare is computed by adding the change in pro2ts
to the change in consumer welfare. Both of the welfare measures are expressed as a
percentage of pre-merger revenue.
In both tables, we see similar quantitative e1ects of the constraints. Putting capacity

constraints on one merging 2rm (“One M”) cuts the merger e1ects in half; constraints
on both merging 2rms (“Both M”) cut the e1ects to zero.
It is interesting to look at the last two columns of Table 3. The e1ect of a merger

facing two constrained non-merging 2rms (“Both NM”) is about half of what it is when
facing no competition (“Duopoly”). In the former case, the existence of non-merging
2rms, albeit constrained at the pre-merger quantities, forces the merged 2rm to attract
customers from greater distances. These customers have more elastic demands because
the no-purchase alternative is a closer substitute and this reduces the post-merger
price rise. From a policy perspective, this means that the existence of constrained
non-merging lots, even though they have no ability to expand output, can attenuate
merger e1ects.

4.3. Contour plots of experiments

In this section, we illustrate the merger experiments with contour plots showing
the reduction in consumer surplus from pre- to post-merger measured as a percentage
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Fig. 5. Consumer surplus loss.

of pre-merger revenue. The key on the right-hand side of the graph shows the con-
sumer welfare loss. Parking lots are represented as circles, the size of which repre-
sents the capacity. The shaded area of the circle represents demand for the lot. A
capacity-constrained lot is entirely shaded. An arrow is draw between the two merging
lots.
In Fig. 5, we plot the base case in Table 3 ("= 0:3=block). We see that consumer

surplus losses are concentrated around the merging 2rms because the merged lots raise
price by more than the non-merging lots, and because customers located near the lots
are likely to choose one of the merging lots. The lack of good substitutes for these
consumers means that they lose more from the merger than do consumers located
farther away.
In Fig. 6, we illustrate merger e1ects in the case where one capacity constraint

binds post-merger. Following the merger, the unconstrained merged lot raises price
substantially, while the constrained lot raises price by a smaller amount. Consumer
surplus losses are concentrated around the unconstrained product.
In Figs. 7 and 8, we plot the welfare losses for mergers with constraints on one

and both non-merging 2rms, respectively. In Fig. 7, welfare losses are small around
the lot in the northeast corner because the probability of choosing one of the merging
lots is small, and price does not change very much on the non-merging lots. The
intricate pattern of welfare losses in the Southeast corner of Fig. 8 is more complex.
Welfare losses are small around the non-merging lots, and small where the probability
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Fig. 6. Consumer surplus loss: one merging 2rm constrained.
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Fig. 7. Consumer surplus loss: one non-merging 2rm constrained.
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Fig. 8. Consumer surplus loss: both non-merging 2rms constrained.

of choosing a merging lot is low. But near the corner, welfare losses rise as the
probability of choosing one of the merging lots rises.

5. Estimation strategies

The experiments above show that the size and pattern of merger e1ects are quite
complex and depend on the particulars of each case. For example, in our experiments,
a low travel cost puts the merging lots into closer competition with one another, which
raises the merger-induced welfare loss. To answer the policy question whether the
merger synergies outweigh the welfare loss requires a demand estimator.
The time constraints of the merger statutes (Section 7A Clayton Act, 15 U.S.C.

Section 18a.) would make it di<cult to conduct estimation in the context of an ac-
tual case. If the agencies expect future consolidation, an alternative is to estimate the
relevant parameters ahead of time, and then apply them to the speci2c facts of a
case. In this section, we show how to recover the demand parameters from observed
data.
The insight that allows us to recover demand from observed data comes from the

characterization of equilibrium in Section 2.1. Recall that optimization implies that
either the lot is unconstrained, or that the constraint binds and price is set at the point
where q∗i (p) = ki. In either case, potential demand is equal to observed quantity at
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every lot, i.e., q∗i ( Kp)= qi( Kp). Potential demand has the familiar mixed logit format, so
the estimators described in Nevo (2000) can be applied to this industry. Various kinds
of data are illustrated in Fig. 4. Aggregate data would correspond to data observed at
each lot (price and quantity), while individual data would correspond to information
available from each building (who parks where).
The only di<culty comes in 2nding instruments for endogenous prices. From the

discussion in Section 2.1 we know that opportunity cost of suboptimal pricing is rela-
tively large, and it is likely that lot owners or managers have private information about
unobserved lot characteristics that a1ects price. Econometrically, this means that price
will be correlated with unobserved lot characteristics, e.g., Cov(pj; $j)¿ 0 so that an
instrumental variables estimator is required. Following Berry (1994) and Berry et al.
(1995), we use our competitive model to identify instruments.
Gaynor and Vogt (1999) face a similar problem in estimating hospital demand. They

construct instruments from the number of rival hospitals within a 5-mile radius of a
given hospital. The more the local competition is, the more the elastic demand becomes
and the lower the price will be. In our application, competition is on a much 2ner
scale, so we propose di1erent instruments. Going back to Fig. 3, 2rst construct market
“areas” using the isodistance contours. The bold-faced lines in the 2gure represent the
boundaries of the three areas. A 2rm with many nearby rivals will have a smaller
market area. An important part of the construction is to guess the attractiveness of
the no-purchase option. This will determine how far consumers will walk before they
prefer to take public transportation. For example, the blank area south and west of the
parking lot located at (2,2) is more than two blocks away from the nearest lot. One
instrument can be constructed as the number of consumers in the area relative to lot
capacity. Large net demand will be positively correlated with price.
Another instrument is the average distance to the desired destinations within each

area. Consumers who must walk farther have more elastic demands because the outside
alternative is a closer substitute than for those who do not have to walk so far. For
example, the lot located at (2,2) in Fig. 3 has a much lower price than the other
two because it is far away from any large buildings. It must attract consumers from
farther away, and these consumers have more elastic demands. Consequently, the lot
maximizes pro2ts with a relatively low price.
If panel data are available, and changes in demand or supply induce equilibrium

changes in price and quantity, e.g., o<ce buildings or lots being constructed or torn
down, we could use a 2xed e1ects estimator instead (see Nevo (2000) for estimation
details).

6. Discussion

Structural oligopoly models can be used to answer the counterfactual policy ques-
tion “are the bene2ts of this merger larger than its costs?” A model must be speci2ed,
estimated, and then used to compute the e1ects of mergers. Practically, this approach
shifts the focus of merger investigations away from tangential issues like market delin-
eation, and towards factors that determine merger e1ects. This kind of analysis gives



66 L. Froeb et al. / Journal of Econometrics 113 (2003) 49–67

enforcement agencies a methodology for weighing merger synergies against the loss in
competition.
In the parking application, this kind of analysis highlights the important role played

by capacity constraints. The computational experiments suggest that constraints on
merging lots are likely to be more important than constraints on non-merging lots in
determining the merger e1ects. In addition, captive non-merging capacity can attenuate
merger e1ects by making demand for the merging lots more elastic. The magnitude
of merger e1ects depends on the speci2cs of demand and supply, and we propose a
demand estimator to recover model parameters from available data.
Further research in this area is suggested by the non-existence of pure strategy

equilibrium for lumpy demand. If we do not observe lots using mixed strategy pricing,
which would be implied by a mixed strategy equilibrium, the model is missing some
important feature of demand or competition.
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