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1. INTRODUCTION

1.1. GENERAL REMARKS. We shall use two main looks at results con-
cerning extensions of mappings. The first one is just historical — we shall go
through the original methods and divide them into three almost disjoint pro-
cedures. The second look goes into deeper analysis of the methods and tries
to deduce from them as much as possible. In several cases we shall see that
authors proved much more than they formulated and used (see, e.g. Theo-
rems 3’, 10°, 2.6). We shall also describe some elementary relations among
various extension results and some elementary procedures allowing to gener-
alize extension results for metric spaces to more general ones (see 2.5-2.7, 3.4,
Proposition 22, 4.1.3).

We shall consider those situations when all (uniformly) continuous map-
pings can be extended from closed subsets, excluding cases when extension
exists for some of them only or from some more special subsets only. Also we
shall not consider simultaneous or similar extensions. Including those other
situations into this text would make it too long.

A predecessor of the present article is [25] devoted to F. Hausdorff. Some
details were checked in the thesis [34] written under my supervision.

*The author acknowledges the support of the grants MSM 0021620839 and GAAV
TAA100190901.
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Let X and Y be topological-like structures and A be a substructure of
X. To extend a morphism f : A — Y to a morphism F' : X — Y means
to complete the next diagram on the left to the commutative diagram on the
right:

A » X A+ X
f completes to f F
Y Y

We shall call the problem described by diagrams as extension problem.
There are two basically different situations:

1. Ais dense in X;
2. Ais closed in X.

We shall be interested in the second case only (exceptionally we shall
use the first case, too). As for the structures, we shall restrict ourselves
to topological or to uniform spaces. Our morphisms will be continuous or
uniformly continuous mappings.

An extension was used and worked with already 200 hundred years ago,
e.g., in solving Dirichlet problem. In that case an extension of a continuous
function from a boundary to the whole set satisfied other conditions (solution
of a partial differential equation). Probably it was H. Lebesgue who was
the first who examined explicitly just a continuous extension in the Dirichlet
problem in the plane. Proving that he noticed he proved a more general result,
namely a positive answer to the above extension problem for X = R?Y =R,
A a closed subspace of X and continuous functions.

The extension problem was shown as very important in time flow and
several different methods were introduced to solve it. We shall be interested
in general methods and general results only.

Basic general methods can be roughly divided into three parts:

1. Using special covers and partitions of unity.
2. Using inbetween (insertion) results.
3. Using formulas in case of metric spaces.

It is interesting to state the theorems in their original appearance (except
symbols for structures and maps, where we use the notation from the above
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diagrams). In some cases not all assumptions for the spaces are given in the
original formulations (like metrizability) since they are given in the original
text somewhere before the theorems. In our citations those assumptions will
be clear from the context. In the next titles of subsections, the date in brackets
means the date of publication of the corresponding result.

2. EXTENSION OF CONTINUOUS FUNCTIONS

2.1. METHODS USING SPECIAL COVERS AND PARTITIONS OF UNITY. In
this section we touch results of four authors: H. Lebesgue (1907), H. Tietze
(1915), L. E. J. Brouwer (1918) and J. Dugundji (1951). Only bounded con-
tinuous functions on metric spaces are mostly examined. The method used
by Lebesgue, Tietze and Brouwer is a slight modification of a method used by
R. Baire in 1900 [4], but only Tietze mentioned that in a footnote added in
proofs. Baire was describing some functions in R being limits of sequences of
continuous functions. He used cubes with vertices having coordinates equal to
k/2P, assigned values to vertices and extended conveniently that assignment
to all points of cubes.

2.1.1. HENRI LEBESGUE 1875-1941 (1907). H. Lebesgue proved the
following theorem when studying Dirichlet problem in [29]:

THEOREM 1. Etant donnée une fonction continue f sur la frontiére A d’un
domaine fermé X, il existe une fonction F continue dans X qui est égale a f
sur A.

After proving the result he remarked the proof uses closedness of A only
and the resulting function F is defined on the whole plane R?. We can sketch
the Lebesgue’s proof:

Lebesgue defines a sequence of covers of the plane by squares as Baire
did. In the vertices of the largest squares disjoint with A he defines F(x) =
liminf. o, {f(a); d(z,a) < d(z, A) +¢} and extends the values to the remain-
ing points of the squares in a convenient way.

That Lebesgue’s work was almost never quoted in connection with exten-
sion of functions. Reasons might be that the result is hidden in his paper and,
also, the paper was addressed to a different group of mathematicians.

2.1.2. HEINRICH FRANZ FRIEDRICH TIETZE 1880-1964 (1915). The
famous Tietze’s work [38] (published in 1915, when he had a position at uni-
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versity of Brno) had its starting point in the Fejér’s problem on plane Jordan
curves (find conditions for a continuous function x = () on a closed interval
such that another such function 1) exists defining together with ¢ a Jordan
curve) — see [39]. That problem was solved by J. P4l using an easy solution of
the extension problem in R. Tietze’s feeling for abstraction led him to prove
a required extension result for any Euclidean space. He needed a special case
of an extension assertion of the following form:

THEOREM 2. Zu jeder in der Menge X C R definierten, beschrinkten
und beziiglich X in allen Punkten der abgeschlossenen Teilmenge A von X
stetigen Funktion f(x) gibt es eine auf X stetige Funtion F(x), die in A mit
f(z) tibereinstimmt und sonst durchwegs > f(z) ist.

The proof is analogous to the above Lebesgue’s proof with the exception of
using lim sup instead of lim inf (because of the needed property F(z) > f(z)).
Lebesgue is not quoted, the method is credited to Baire.

The last result is not yet the famous Tietze extension theorem. He sent
his result to H. Hahn and Hahn pointed out a similarity of the result and the
method with two questions:

1. Question on extension of continuous functions from closed subsets of
metric spaces to continuous functions defined on the whole space.

2. Question on a generalization from R™ to metric spaces of Baire theorem
(every upper semi-continuous function is a limit of a decreasing sequence of
continuous functions).

Tietze notes that his theorem above (reproved for metric spaces — see
the section on formulas) gives answer to the first question if he first extends
continuous f defined on A to a function f on X, that is continuous at all
points of A (in X, of course). It suffices to define (for z € X \ A, d is the
metric of X)

f(z) = Elir&_ sup{f(a); a € A, d(a,x) < d(z,A) +¢<}.

Also the second question was answered in the affirmative using the same
formula as for extension of functions (see the section on formulas).

In a footnote he discussed unbounded functions f. He says that for the
proof it suffices to assume local boundedness of f. If f is unbounded, the
procedure works but the extension is not defined at some points then.

2.1.3. LuiTzZeEN EGBERTUS JAN BROUWER 1881-1966 (1919). Brouwer
made a significant improvement of the previous described method. He quotes



EXTENSION OF MAPPINGS AND PSEUDOMETRICS 281

neither Baire nor Lebesgue in the paper. Only in the added remark at the
end of the same volume he mentions Tietze’s result and says the methods are
quite near.

He used triangulations and noticed one need not use an infinite process
in defining an extension (that was his motivation for the publication). Using
suprema or infima poses a bound for codomains of extended mappings. His
ingenious method remained unnoticed for decades.

He used a procedure from his proof of invariance of region from 1912: the
complement of A is triangulated in a convenient way and for vertices v of
the triangulation he defines F'(v) = f(ay,), where a, is any point of A with
d(v,a,) < 2d(v,A); F is then extended linearly on the simplices (in a unique
way). For x € X \ A and a vertex v let f,(z) be the barycentric coordinate of
x with respect to its support containing v (and zero if v is not a vertex of the
support of z). Then F(z) =), f(ay)fo(x). The family {f,} is a partition of
unity subordinated to the cover of stars of vertices in the triangulation.

His result was as follows.

THEOREM 3. Ist A eine abgeschlossene Punktmenge des n-dimensionalen
Raumes und f eine beschrankte Funktion, dia auf A definiert und in jedem
Haufungspunkte von A stetig is, so kann man eine im ganzen Raum stetig,
beschrankte Funktion F' finden, die in jedem Punkte von A gleich f ist.

His method gives the following result without any change of the proof
(notice that boundedness of f is not needed in the procedure):

THEOREM 3’. Every continuous mapping f from a closed subset A of R™
to a locally convex space can be extended continuously on R"™. The codomain
of the extension is contained in the convex hull of codomain of f.

Very probably, nobody became aware of the preceding reformulation for
several decades (of course, in the years around 1920 and 1930 not for locally
convex spaces as codomains but for special normed spaces only). In fact, there
was not a big interest in a topological study of mappings into such spaces.

2.1.4. JAMES DuGUNDJI 1919-1985 (1951). A generalization of the
Brouwer’s method (if known) needs a partition of unity that was not known
before 40’th and it was explicitly proved by A.H. Stone in [37] (although
P.S. Alexandrov knew that covers of separable metric spaces have locally
finite refinements already in 1922 — see [1]). Knowing Brouwer’s approach
and the fact that metric spaces are paracompact, it would be easy to prove
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the following result. But Dugundji in [15] was probably not aware of the
Brouwer’s paper.

THEOREM 4. Let X be an arbitrary metric space, A a closed subset of
X, Y alocally convex linear space, and f : A — Y a continuous map. Then
there exists an extension F' : X — Y of f; furthermore, F(X) C convex hull

of f(A).

The proof cannot be automatically carried over to paracompact spaces
instead of metric spaces. One needs that the complement of the closed set
A is paracompact. It was R. Arens who found a way how to go around that
restriction in [2]. He used extensions of pseudometrics and had to assume that
the codomain is complete. We shall come to his result in the section devoted
to extensions of pseudometrics.

2.2. INBETWEEN (INSERTION) THEOREMS. The insertion results were
proved directly for unbounded functions but their application to extension
uses upper and lower bounds (if we do not want to use the Hahn’s approach:
he used functions with values £00).

2.2.1. FELIX HAUSDORFF 1868-1942 (1919). F. Hausdorff (see [22])
gave a simpler proof of Hahn’s result ([18]):

THEOREM 5. Ist g(x) unterhalb, h(x) oberhalb stetig und iiberall g(x) >
h(zx), so gibt es eine stetige Funktion F(x) mit g(x) > F(x) > h(x).
His using of the above result for extension of maps is ingenious and has no

predecessor:

THEOREM 6. FEine in der abgeschossenen Menge A definierte, stetige Funk-
tion lasst sich zu einer in ganzen Raume stetigen Funktion erganzen.

For bounded f on A one takes

f(x), for x € A,
9(x) =
an upper bound of f, forz € X\ A.

h(z) = f(z), for x € A;
a lower bound of f, forx € X\ A.

The functions g, h satisfy the conditions of Theorem 5 and the resulting func-
tion F' extends f from Theorem 6.
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That gives extension for bounded functions. Hausdorff was the second
author considering extension for unbounded functions, too (after the consid-
eration in the book by Carathéodory [10]).

If f is unbounded, then the function f(x)/(1 4 |f(x)|) can be extended
to a continuous function G1(X) on X with values in [—1,1]. Taking G(z) =
Gi(z)/(1 4+ d(z, A)) one gets an extension with values in (—1,1). Now, the
function F(z) = G(z)/(1 — |G(x)]|) is the required continuous extension of f.

The method just described gives the following assertion: If Theorem 5
holds for a space X, also the extension Theorem 6 holds for X and bounded
functions (or mappings into convenient codomains). In 1944, such an insertion
result was proved by J. Dieudonné in [13] for paracompact spaces. For normal
spaces (as their characterization) it was shown by M. Katétov and H. Tong.

2.2.2. MIROSLAV KATETOV 1918-1995 (1951), HINnG TONG 1922-2007
(1952). Katétov and Tong proved independently the above Hahn’s insertion
theorem for normal spaces; the Katétov’s formulation:

THEOREM 7. If X is a normal space, g and h are functions in X, ¢ is
upper semi-continuous, h is lower semi-continuous, and g(x) < h(z) for any
x € X, then there exists a continuous function f in X such that, for any
e X, g(z) < flx) < h(x).

Tong announced his result in 1948 ([40]) and submitted it more than 3
years later ([41]). Katétov had a mistake in his basic Lemma in [27] and
corrected it in 1953. Both authors use an abstract approach via ordered sets
or lattices. In some sense, the procedures generalize the Urysohn’s idea how
to construct a continuous function in normal spaces (Urysohn lemma). It is
true that a simple direct proof of the insertion theorem for normal spaces can
be done using the Urysohn’s procedure.

It is clear that the insertion theorem, as stated, characterizes normal
spaces. Both Katétov and Tong (also Dieudonné, Dowker, Michael and oth-
ers) showed characterizations of certain special normal spaces using various
combinations of < and < in the theorem. But that has no consequences to
extension of functions we are interested in.

The insertion theorems are strong and can be generalized to other struc-
tures (we shall touch that later in uniformly continuous extensions). Of course,
they have disadvantage that the codomain must be ordered. That excludes
general normed linear spaces as codomains. But some generalizations with
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lattices as codomains can give a kind of extensions into lattices (see, e.g.,
[31]).

2.3. ForMuULAS. Formulas for the extended function can be given in
metric spaces. In addition to his proof using covers in R”, Tietze used a
formula for generalizing the result to metric spaces. Later on, more formulas
appeared looking optically simpler than the previous ones.

2.3.1. HEINRICH FRrRANZ FRIEDRICH TIETZE 1880-1964 (1915). To
prove Theorem 2 for metric spaces, Tietze first set

f(z), if 2 € A;
9(x) = sup { 1) - }, ifx ¢ A,
vex | (14 d(a ) =0

and then F(x) = g(z) + rd(z, A), where r is a positive real number. He
remarks that one can take supremum for accumulation points of X \ A only.
Another remark asserts that if f(z) < s and limsup,_,, f(y) < s, than one
may require F'(z) < s. Although the formula looks not nicely, the proof of
continuity is short and simple.

After generalizing Baire theorem ([5] — every bounded upper semi-con-
tinuous function in R”™ is a limit of non-increasing sequence of continuous
functions) to metric spaces, Tietze then proves:

THEOREM 8. FEine auf einer abgeschlossenen Menge A einer Fréchetschen
Klasse X definierte, beschréinkte und stetige Funktion f lasst sich zu einer in
allen Elementen x von X definierten und stetigen Funktion ergédnzen.

It is stated that the same proof as above works for the formula

f(z), if z € A;
9(x) = sup { 1) }, ifx ¢ A.

1
ver | (1 + d2(e, ) 7o

Then Tietze remarks that one can easily deduce Theorem 8 from Theorem 2
— see the part about Tietze in the section Methods using special covers and
decompositions of unit.
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2.3.2. CHARLES JEAN DE LA VALLEE-POUSSIN 1866-1962 (1916). In
his book on integration and Baire functions [43] Vallé-Poussin gave a very
interesting formula for continuous extensions of functions in Euclidean spaces.
It is almost clear he could not be aware of the Tietze’s result. He does not
mention Lebesgue’s paper [29)].

He first proves a result on extension of a-Baire functions for a@ > 0 on page
126:

THEOREM 9. Si f est de classe a > 0 sur A parfait, une fonction F', égale
a f sur A et a la constante a partout ailleurs, est de classe a sur le continu.

The nontrivial case is & = 1. For a = 0 the result is not true and Vallé-
Poussin proves the following result (there is no assumption on boundedness of
the function in the formulation, but the proof needs boundedness of f) (see
[43], p.127):

THEOREM 10. Si f est continu sur A, on peut définir une fonction F
partout continu et égale a f sur A.

To prove the result, Vallé-Poussin first takes a countable dense subset {ay }
in A and defines (B(z,r) = {y;d(x,y) <r})

r(x) = d(ak,R” — B(x, 2d(x,A))) ,

S (@) o) /K2
AL . ifzeR™\ A,
Fr) = > ri(z)/k?
k=1
f(x), if v € A.

Both the numerator and denominator are continuous functions on R™\ A since
ri(z) are continuous functions bounded on a neighborhood of x. Thus F' is
continuous on R™ \ A. If x; from R™\ A converge to a point a € A, then
the values of f(ay) for k with ri(z) # 0 converge to f(a) and, thus, F(x;)
converges to f(a).

For the formula to work one needs the codomain to be complete and linear.
For the domain one needs that A is separable. To prove continuity, one needs
local convexity of the codomain. Therefore, Vallé-Poussin proved the following
result:
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THEOREM 10°. If f is a continuous mapping on a separable subset A of a
metric space X into a complete locally convex space Y, it is possible to define
a continuous mapping F on X into Y coinciding with f on A.

2.3.3. HARALD AucGusT Bonr 1887-1951 (1918). Carathéodory in
his book [10] on real functions gives an interesting proof of the extension
theorem in R™. In Preface he expresses his thanks to H. Bohr for written
information about that result:

THEOREM 11. Ist auf einer abgeschlossenen Punktmenge A des n-dimen-
sionalen Raumes eine endliche Funktion f definiert, die in allen Haufungspunk-
ten von A stetig ist, so kann man eine in ganzen Raume endliche und stetige
Funktion F' finden, die in jedem Punkte von A gleich f ist.

For X =R" and 0 < f <1 one puts

o _{ 0, if ANB(z,r) =0,
| sup{f(y) iy € AN B(x,r)}, if AN B(x,r) # 0.

The function 1 is nondecreasing and bounded in the variable r and, thus, the
next integral converges.

1 2d(z,A)
/ W(z,r)dr, ifxd¢ A,

F(z) = d(z, A) d(z,A)

f($)7 if z € A.

Adding to F' the function d(z, A) one can assume that F' is everywhere
positive whenever f is.

Any continuous f > 0 can be written as fi/fa, where fi, fo are continuous
and have values in [0, 1]. Using the previous extensions Fi, Fy for those two
functions, one gets a continuous extension Fy/Fy for f.

Any continuous f can be written as fi — fs, where fi, fo are continuous
and have values in [0, 00). Using the extensions from the preceding paragraph
for f1, f2, one gets a continuous extension for f.

This method gives directly continuous extensions of maps into R from
closed subsets of metric spaces:
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2.3.4. FELIX HAUSDORFF 1868-1942 (1919). In his paper [22], Theo-
rem 6, Hausdorff gives, in addition to application of insertion result, a formula
for direct definition of the extended function F' for a bounded function f:

. d(z,y) .
Fla) = ;Ielzf‘l{f(y)—i_d(x,fl) —1}, ifx ¢ A,
f(x), ifze A

Later on, Hausdorff used modifications of that formula for extending met-
rics and extending continuous mappings into metric spaces.

He quotes Tietze, Bohr and Brouwer for their extension results. He prob-
ably noticed the Bohr’s procedure is valid not only in Euclidean spaces but in
metric spaces because he adds a remark to his quotation of Brouwer saying
his proof is for Euclidean spaces only. He also says the Bohr’s procedure is a
little artificial.

2.3.5. HANS HAHN 1879-1934 (1921). Hahn in his book [19] presents
a generalization of Tietze’s extension theorem in the following form (X is a
metric space):

THEOREM 12. Ist A ein in X abgeschlossener Teil von X, und f eine
Funktion auf A, so gibt es auf X eine Funktion F, die auf A mit f iibere-
instimmt, und stetig auf X ist in allem Punkten von X — A, sowie in allen
denjenigen Punkten von A, in denen f stetig ist auf A.

The proof goes as follows. Assume 0 < f < 1 and for z € X \ A define
a continuous function hg(r) on [0,00) having value 1 on [0,2d(z, A)), 0 on

[3d(z, A),00) and being linear on [2d(z, A), 3d(z, A)]. Then

sup{f(a)hy(d(z,a))}, ifx¢ A,
F(l’) — a€EA
f(@), if z € A.

Hahn quotes Tietze, Bohr (in Carathéodory’s book), Brouwer and Haus-
dorff (“with especially simple proof”). So, only Vallé-Poussin is missing.

As a consequence he gets the Tietze’s extension theorem. He also formu-
lates an extension theorem for functions f defined on general subsets A of
metric spaces — first he extends them to the closure, which is equivalent to

liminf, ,, f(a) = limsup,_,, f(a).
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After Hahn reproves his insertion theorem from [18] (he uses the Haus-
dorft’s proof now) he repeats the Hausdorff’s procedure for simple proof of
extension theorem. He allows functions to have infinite values, and takes (see
the paragraph following Theorem 6) +o0o for the value of g on X \ A and —oco
for the value of h on X \ A. It follows from the proof of the insertion theorem
that the resulting inbetween function has values in R in this case.

2.3.6. FrRIGYES FREDERIC RiESz 1880-1956 (1923). A similar situa-
tion as with the Bohr’s procedure happened with the F. Riesz’ one — it was
published in the Kerékjart’s book [28], p.75. His formula seems to be the sim-
plest one from optical point of view. As for its proof, it seems to be practically
at the same level as the other formulas.

The original formulation of the result is as follows:

THEOREM 13. Sei f eine eindeutige stetige Funktion auf einer beschrank-
ten abgeschlossenen Punktmegne A. Es lafit sich eine in der ganzen Ebene
stetige eindeutige Funktion F angeben, die in der Punkten von A mit der
gegebenen Funktion f tlibereinstimmt.

Assume that 1 < f < 2 on A. Then its continuous extension F' to X is
described as follows:

) d(x,y) .
v - { V0 TR) e

f(z), ifx € A.

The extended function is bounded again by 1 and by 2. The proof is valid in
any metric space.

2.4. URYSOHN’S PROCEDURE. The Urysohn’s extension theorem for nor-
mal spaces was a qualitative jump in extension results and his method does
not fit into the previous boxes. It is true that insertion theorem for normal
spaces (Katétov and Tong) gives the Urysohn’s extension theorem, but its
proofs usually use the Urysohn’s procedure.

For completeness we briefly describe the Urysohn’s method from [42]. First
he proves the result (known as Urysohn lemma nowadays) that every two dis-
joint closed subspace A, B of a normal space X can be functionally separated
(there is a continuous function X — [0, 1] with values 0 on A and 1 on B).
Repeating separation of disjoint closed sets by their neighborhoods one gets a
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dyadic system {G,; r=k/2", n € N, k=0,1,...,2"} of open sets such that
G, C Gswhenever r < s, Go D A,G1 = X\B. Defining f(z) = inf{r, » € G, }
one gets the required function (inf ) = 1 in our case). That procedure became
a standard in many constructions of continuous functions.

The extension theorem, e.g., for f : A — [—1,1], is then proved by using
Urysohn lemma to construct a sequence {f,} of continuous functions having
the properties fo(x) < 2"71/8", |f(z) = (fi(z) + - + fu(2))] < 27/3" (by
induction: the sets A = (f(z) — (fi(z) + -+ fn(x)))fl[—l, —1/3] and B =
(f(z) = (filz) + -+ fn(aﬂ)))fl[l/?), 1] are separated by a function g and
then fn4+1(x) = 2/3(g(z) — 1/2). The requesting extension is the sum of the
functions f,,.

What about a method using covers or formulas? If f is bounded continuous
on a closed subspace of a normal space X, then d(z,y) = |f(z) — f(y)] is a
continuous pseudometric on A. If we know that d can be extended to a
continuous pseudometric e on X (such that (A,d) is closed in (X, e)), and
we know an extension theorem for metric spaces, then f can be extended
continuously on (X, e), thus on X. For the needed extension of continuous
pseudometrics see the corresponding section.

2.5. EXTENSION THEOREM FOR NORMAL SPACES USING COVERS. The
extension theorem for normal spaces follows easily from metrization theorem
for uniformities. One must know that in normal spaces every finite open
cover is uniformizable (normal in another terminology), i.e., belongs to the
fine uniformity of the space — that is a characterization of normal spaces in
the realm of completely regular spaces.

The weak uniformity on A generated by bounded f (in fact, the uniformity
of the pseudometric d(x,y) = |f(z) — f(y)|) has for its base finite open covers
and, thus, is a uniform subspace of a uniformity on X (since every finite open
cover of A extends to a finite open cover of X') with a countable base, therefore
is pseudometrizable by a pseudometric e. The restriction of e to A is uniformly
equivalent to d and f is uniformly continuous on (A, d). Consequently, f can
be extended to a uniformly continuous function on the closure of A in (X, e)
and, using an extension result for metric spaces, to a continuous function on
(X, e), thus continuous on X.

So, knowing the metrization for uniform spaces, extension of uniformly
continuous maps to completions and extension theorem for metric spaces,

OBSERVATION. One can prove Urysohn extension theorem for normal
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spaces using the extension result for metric spaces.

If one realizes that instead of finite open covers one can use countable
locally finite open covers (a completely regular space is normal iff every lo-
cally finite open cover is uniformizable) then the preceding procedure (using
Dugundji theorem now) gives directly the following result for normal spaces
(see [14], [20] and [3] for different proofs):

OBSERVATION. Every continuous mapping f from a closed subspace of a
normal space into a separable metric subspace of a complete locally convex
space Y can be continuously extended to X — Y (with its image contained
in the closed convex hull of the image of f).

It follows from a result by C.H. Dowker (see the last but one section) that
one cannot remove separability from the previous result.

2.6. EQUICONTINUOUS FAMILIES. As mentioned above, the previous re-
sult does not hold for all normal spaces X and all locally convex spaces.
Nevertheless, it follows from Brouwer’s procedure for Euclidean spaces and
from Dugundji’s result for metric spaces that the result holds for Euclidean or
for metric spaces X without assuming separability of the image. Both authors
used partitions of unity. Can that result be proved without using partitions
of unity?

Some introductory observations: Every locally convex (Hausdorff) space
can be embedded in a product of Banach spaces as a topological linear sub-
space. Every Banach space can be embedded into some C*(Z) (endowed with
the supremum norm) as a closed linear subspace (Z can be chosen compact).

A mapping f : A — C(Z) is a continuous iff the corresponding family
{fs; z € Z} is equicontinuous (here f, is the composition of f with the z-
projection of C(Z) c RZ into R). So, to prove Dugundji’s extension theorem
it suffices to show that every equicontinuous family of functions on a closed
subspace A of a metric space X can be extended to an equicontinuous family
of functions on X, and also that the image of extensions is contained in linear
hulls of the images of the original maps.

A look at formulas used for proving extension result for metric spaces (like
those of Tietze, Hausdorff, Riesz) shows that the “equicontinuous” extension
is possible. To get equicontinuity from the insertion results is not possible.

So, we are able to deduce a special case of Theorem 4 from extension
procedure for metric spaces into function spaces C'(Z):
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OBSERVATION. Every continuous mapping from a closed subspace of a

metric space X into a function space C'(Z) can be continuously extended to
X.

To show that the extension preserves linearity does not follow from the
formulas. So, to get Dugundji theorem, one cannot use just insertion results
or the formulas.

2.7. SUMMARY. Using Tietze theorem for extension of continuous func-
tions in metric spaces, one can show in an elementary way the extension
remains true in normal spaces.

Using formulas for extension of continuous functions in metric spaces one
can show in an elementary way the extension remains valid for mappings into
function spaces.

Using Dugundji theorem for extension of continuous functions in metric
spaces into locally convex spaces one can show elementarily the theorem is
valid for extension of continuous mappings from normal spaces into separable
metrizable complete locally convex spaces.

3. EXTENSION OF UNIFORMLY CONTINUOUS FUNCTIONS

At first we should recall the fact that extending uniformly real-valued
continuous functions from subspaces or from closed subspaces is the same task
(because a uniformly continuous map from a subspace A of a uniform space X
into a complete space Y can always be extended to a uniformly continuous map
on the closure of A in X'). Secondly, not all unbounded uniformly continuous
functions can be extended to uniformly continuous functions; we shall omit
results showing special cases when such extensions exist.

For a long time, there was no interest to extend uniformly continuous func-
tions to uniformly continuous functions. Even Hausdorff in his famous book
[21] or Hahn in [19] were not interested in such extensions even to completions
of metric spaces. They state that every uniformly continuous mapping into a
complete metric space defined on a subspace of a metric space A can be ex-
tended to a continuous function on the closure A (although their proofs give
uniform continuity of the extension). That result generalizes the results of sev-
eral authors for extension from dense subspaces of sets in R (e.g., L. Scheefer
in 1884, S. Pincherle in 1893, T. Brodén in 1897, E. Steinitz in 1899). In
case of dense subsets of a compact interval (like the Brodén’s case) one gets
uniformly continuous extension from continuity - that was noticed. In 1923
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Boulingand [8] again extended any uniformly continuous mapping defined on
the subset of polynomials in C[a,b] to a continuous function only. It was
M. Fréchet who noticed that those extensions to completions are uniformly
continuous, see [16].

3.1. MirosLav KATETOV 1918-1995 (1951). Before 1950, probably
nobody was interested in extension of uniformly continuous functions from
subspaces of metric spaces or, after introducing uniformities, of uniform spaces.
Katétov was the first who proved the next result in his paper [27] in the most
general setting.

THEOREM 14. Let X be a uniform space and let f be a bounded uniformly
continuous function in a subspace A C X. Then there exists a bounded
uniformly continuous function F' on X which coincide with f on A.

The construction of F' follows from his procedure for insertion theorem. A
direct proof may be given using the Urysohn procedure. Instead of Urysohn
lemma one must use the functional separation of far sets due to J. M. Smirnov:
If A, B are subsets of a uniform space (X,U) and U[A]NB = {) for some U € U
then there is a uniformly continuous function f : X — [0,1] with the value 0
on A and 1 on B.

3.2. SOME GENERALITIES. We shall now look at other approaches re-
lated to those from the preceding section. Do some of the previous methods
for extension of continuos functions in metric spaces give a uniformly contin-
uous extension when one starts with a uniformly continuous function? That
was not noticed probably till 1990 when Mandelkern showed in [30] that the
Riesz’ formula gives uniformly continuous F' in case f is uniformly continuous.

We shall use the following characterization of uniform continuity:

PROPOSITION 15. Let (X,U) be a uniform space (defined by means of
neighborhoods of diagonal), A its subspace and F : X — R. The mapping F
is uniformly continuous iff it has the following property:

F' is uniformly continuous on any X \ U[A], U € U, and for every € > 0
thereisU € U such that ifz € A,y € U[A], (z,y) € U, then |F(z)—F(y)| < e.

Proof. At first we observe that one can require also x € UJ[A] in the
condition. Indeed, take U from the condition and take V' € U such that
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VoVoV CcU. For z,y € V[A], (x,y) € V, there are a,b € A such that
(x,a) € V, (y,b) € V and, thus (a,b) € U. Consequently, |F(x) — F(y)| < 3e.

The necessity is clear. Assume that F satisfies our condition and take
e>0and WV eld, W CV, VoV CU (where U is from our generalized
condition for € U[A]) such that |F(z)— F(y)| < € whenever z,y € X\ V[A4],
(x,y) € W. Taking now z,y € X, (x,y) € W we have either (z,y) € U[A] or
(z,y) € X \ V[A], which both imply |F(z) — F(y)| <e. 1

It is not difficult to reformulate Theorem 14 for mappings into uniform
spaces instead of into R. In metric spaces the result has the following form:

COROLLARY 16. Let (X, d) be a metric space, A its subspace and F' : X —
R. The mapping F' is uniformly continuous iff it has the following property:

For any € > 0, F is uniformly continuous on {x € X; d(x,A) > ¢} and
there is 6 > 0 such that if x € A,y € X, d(x,y) < 0, then |F(z) — F(y)| < e.

3.3. METHODS USING SPECIAL COVERS AND PARTITIONS OF UNITY. Does
the “Baire method” give a uniform function on R™ when one starts with a
bounded uniform function on closed A C R"? From the procedures described
earlier (Lebesgue, Tietze, Brouwer) it is convenient to consider the Brouwer’s
one. In the corresponding partition of unity described just before Theorem 3
all the functions f, are uniformly continuous because they have compact sup-
ports. The question is, whether the function F(z) = >, f(ay)fo(x) is uni-
formly continuous provided f is uniformly continuous.

The triangulation used in the Brouwer’s proof has the following properties:

1. The simplices with vertices not belonging to a uniform neighborhood
of A have diameters bigger than a fixed positive number.

2. There is a nondecreasing function ¢ on (0,00) with lim;_o, ¢(t) = 0
such that if s is a simplex of the triangulation having distance to A less than
t > 0 then its diameter is less than ¢(?).

We shall check the condition from Corollary 16. Take € > 0. Because
of the previous property 1, the partition of unity f, forms an equi-uniformly
continuous family outside any uniform neighborhood of A. Consequently, the
function F' is uniformly continuous on the complement of the e-neighborhood
of A.

For z € A and y € X we have |F(z) — F(y)| = |f(z) — >_, f(av) fu(y)] <
ool f(x)—=f(ay)|fu(y). Take 6 such that | f(x)—f(a)| < e whenever d(z,a) < §
and n > 0 such that n + ¢(n) < §/3. If d(z,y) < n and f,(y) # O then
d(z,ay) < d(z,y) + d(y,v) + d(v,a,) < n+ p(n) + 2d(v, A). Since d(v, A) <
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n+(n) we get that d(x, a,) < 3n+3p(n) < 6. Consequently, |f(z)—f(ay)| < e
and Y |f(z) — flau)|fu(y) <, fuly) =€

OBSERVATION. The method for extensions of mappings using partitions of
unity (or special covers) works for uniformly continuous mappings in metric
spaces: it gives a uniformly continuous function F' provided that f is uniformly
continuous bounded.

The method will work in uniform spaces if we know that certain covers have
equi-uniformly continuous partition of unity (which is true for every uniform
cover but the partition of unity need not be locally finite).

3.4. INBETWEEN (INSERTION) THEOREMS. A corresponding insertion re-
sult for uniformly continuous functions was proved by D. Preis and J. Vilimovs-
ky in [35]:

THEOREM 17. If g > h are bounded functions on a uniform space X, the
following conditions are equivalent:

1. There exists f uniformly continuous on X such that g > f > h.

2. For eachr < s € R, the sets {x € X; g(z) <r}, {z € X; h(x) > s} are
proximally far.

If AC X and f: A — [a,b] is uniformly continuous, then the functions

f(z), forx e A
g9(x) =
b, for x € X \ A,

f A:
h(z) = f(x), forx € A;
a, forz € X \ A,

satisfy the condition (2) of the previous theorem, so that the resulting f is a
uniformly continuous extension of f.

Consequently, the method of insertion functions works in uniform spaces,
too.

The authors derived from their results also conditions for extension of un-
bounded uniformly continuous functions and some known insertion theorems
in topological spaces (including Katétov-Tong theorem). It would be inter-
esting to find out whether the original Katétov-Tong’s procedures work in
uniform spaces, too.
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3.5. ForMULAS. Going through the proofs of continuity of all the for-
mulas from the previous section, one can easily show that the condition of
Corollary 16 is satisfied. Consequently, all the formulas work in extending
uniformly continuous functions in metric spaces, too.

There are two different parts of the proof. The first one uses just the
definition of F(x) for z € X \ A and proves that F' is uniformly continuous
on complement of every uniform neighborhood of A (in fact, even Lipschitz
continuous). The proofs of continuity of F' at = € A gives for every € > 0 some
d > 0 such that |f(z) — f(y)| < e when d(z,y) < ¢, y € A; if there exists some
k (not depending on x) such that |f(x) — F(y)| < € whenever d(z,y) < §/k,
y € X, then also the second part of the condition of Proposition 16 is satisfied,
so that F' is uniformly continuous on X.

Details were checked in a thesis [34] written under my supervision.

3.6. FROM EXTENSIONS IN METRIC SPACES TO THOSE IN UNIFORM SPACES.
For uniformly continuous functions it is possible to repeat extension procedure
for continuous functions described just before this section.

Let X be a uniform space and A its subspace, f : A — [a,b] a uniformly
continuous function. Take the precompact pseudometric d(x,y) = |f(z) —
f(y)| on A. Every its e-neighborhood of diagonal can be extended to a member
of uniformity on X, thus determining a uniformly continuous pseudometric p
that is uniformly equivalent to d on A. The function f is uniformly continuous
on (A, pa). If we know an extension theorem for metric spaces (e.g. using
formulas), we know that f can be extended to a uniformly continuous function
F on (X, p), therefore uniformly continuous on X.

If we do not want to use extensions for metric spaces, it is possible to use
extensions from compact subspaces. The following result (again we state it in
its original formulation) was proved by E. Cech in his famous paper [11].

THEOREM 18. Let X be a completely regular space. Let A be a closed
subset of X; let A denote the closure of A in the space 3X. Then we have
A = BA if and only if every bounded continuous function in the domain A
admits of a continuous extension to the domain X.

The Cech’s proof uses the Urysohn’s extension result for normal spaces
that we cannot use in our situation. A completely different approach gives
Theorem 18 as an easy consequence of Stone-Weierstrass theorem. Then the
procedure for extension of uniformly continuous map from a subspace A of
a uniform space X is as follows: Take again the precompact pseudometric
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d(z,y) = |f(x) — f(y)| on A and extend f onto the completion of (A, pa),
which is a compact subspace of the completion of (X, p). Consequently, f
extends to a uniformly continuous function on that last completion, which
implies its uniform continuity on X.

One cannot prove an analogy of Dugundji’s theorem for uniformly contin-
uous mappings because not every closed convex subset of a Banach space is
its uniform retract, as was shown by Lindenstrauss.

4. EXTENSIONS OF PSEUDOMETRICS.

In the preceding parts we dealt with (uniformly) continuous extensions
of (uniformly) continuous mappings. Metrics are special functions but one
cannot expect that the methods used for extension of functions preserve the
axioms for metrics.

It is clear that extending mappings into Hausdorff spaces from metrizable
spaces is the same task as extending mappings from pseudometrizable spaces
into Hausdorff spaces. The situation for extending metrics is similar: extend-
ing metrics from metric spaces is the same task as extending pseudometrics
from pseudometric spaces.

There are two problems related to such extension. We recall that (uniform)
continuity of a pseudometric d on a topological (or uniform) space X means
(uniform) continuity of d on X x X or, equivalently, the topology (or the
uniformity) of d is coarser than that of X.

QUESTIONS.

1. We have a metric space (X, d) and a metric e on its subspace A topo-
logically (or uniformly) equivalent to d4. Does there exist a metric F
on X extending e and topologically (or uniformly, resp.) equivalent to
d?

2. We have a pseudometric d that is (uniformly) continuous on a subspace
A of a space X. Does there exist a pseudometric D on X extending d
that is (uniformly) continuous on X?

As we mentioned above, it is equivalent to speak about pseudometrics and
pseudometric spaces in the above questions.

Notice that the first question has a sense for pseudometrizable spaces X
and the second question has a sense for any topological (or uniform) space X.

As in the previous sections we shall first deal with continuous pseudomet-
rics and then with uniformly continuous pseudometrics.
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4.1. CONTINUOUS PSEUDOMETRICS. For continuous case, the above
Questions should be formulated for closed subsets of A. If X is assumed
to be metric in (2), then both questions are equivalent in the sense that a
positive answer to one of them gives a positive answer to the other. I do not
know who was the first to consider that equivalence. The idea of the next
proof was used in the book [12] and is a modification of that in [33].

PrOPOSITION 19. Every metric on a closed subset A of a metric space
(X,d) that is equivalent to d4 can be extended to a metric on X equivalent
to d iff every continuous pseudometric on A can be extended to a continuous
metric on (X, d).

Proof. Necessity: If e is a continuous pseudometric on A, then sup{e,d4}
is a metric equivalent to d4. Our condition implies existence of a metric
M on X extending sup{e,d4} and equivalent to d. Denote by h(z,y) the
function on X x X having values e(z,y) on A x A and M(z,y) elsewhere.
The pseudometric

E(x,y) = sup{p; p is a pseudometric on X, p(z,y) < h(z,y)}

is the required one.

Sufficiency: Let e be a metric on A equivalent to d4. Our condition implies
existence of a pseudometric M extending e and continuous on (X, d). We may
assume that A is closed in (X, M) (otherwise we add |d(x, A) — d(y, A)| to
M (z,y)). Let u be a canonical isometric embedding of (X, d) into C*(X,d)
(endowed with sup norm), i.e., u(z)(y) = d(z,y) — d(y, ag) where ag is a fixed
point of X. Using Dugundji extension theorem, take a continuous extension
v: (X, M)— C*"(X,d) of the restriction of u to A having the same supremum
on X as u has on A. The metric

B(z,y) = max {M(z,y), [[(u—v)(z) — (u—v) ()|}
is the required metric. i

For sufficiency we used Dugundji theorem for mappings into C*(X) en-
dowed with the supremum norm. Dugundji theorem in this case means that
an equicontinuous collection of bounded continuous maps A — R extends
to an equicontinuous collection of bounded continuous maps X — R. As
we mentioned in the preceding sections, such an implication follows from the
methods of the proofs of extending single functions. So, it is not necessary to
use Dugundji theorem for that special case of maps into C*(X).
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In [32] it is written that the remark in the previous paragraph for uniformly
continuous functions follows directly from the Katétov extension theorem —
that is not true since one may easily extend a uniformly equicontinuous col-
lection to a collection that is not uniformly equicontinuous.

We should mention that, as one would expect, existence of extensions of
continuous pseudometrics implies existence of extensions of continuous func-
tions. We shall see later that the converse is not true.

ProrosiTION 20. If every continuous pseudometric on a subspace A of a
topological space X can be extended to a continuous pseudometric on X, then

every continuous function on A can be extended to a continuous function on
X.

Proof. Let f be a continuous function on A. We may assume that f > 0
(otherwise we take fi, f_) and inf f(z) = 0. The mapping d(z,y) = |f(z) —
f(y)| is a continuous pseudometric on A. Suppose it can be extended to a
continuous pseudometric D on X. Take a, € A such that f(a,) converges
monotonically to 0 (a, = a provided a exists with f(a) = 0) and define
F(z) = infy{D(x,a,) + f(an)}. It is easy to show that F' is a continuous
extension of f to X. 1

The above result comes from [17].

4.1.1. FELIX HAUSDORFF 1868-1942 (1930). As far as I know, the
first one examining extensions of metrics was F. Hausdorff in [23]. He gave
no motivation for such a result (it may well be true that his motivation was
to find an easier proof for Niemytzki and Tikhonov result — se below).

Hausdorff solved positively the first question in the next result, where X
is a metric space:

THEOREM 21. Ist A in X abgeschlossen, so ldsst sich eine HomGomorphie
zwischen A and B zu einer HomGomorphie zwischen X und einem geigneten
Raum Y erweitern.

Another formulation given by Hausdorff is: Every metrizable topological space
X can be metrized by a metric, restriction of which is a given metric on A
determining its topology.

Hausdorff uses a modification of his formula for proving Tietze extension
theorem. Let d be a metric on X and e a metric on A equivalent to d4. He
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defines for z € X \ A, a € A, c is a fixed selected point in A:

=0 232}t~ 5

and then the required metric

E(z,y) = max { min{d(z, y),d(z, A) + d(y, A)}, sup{le(, @) = e (y, alt}.

The main role in the proof is played by the function . Unlike the proof for
extending functions, the proof of the above theorem is more complicated.

At the end of the paper, Hausdorff applies his result to a very simple
proof of the result by Niemytzki and Tikhonov (a metrizable space is com-
pact iff every its metric is complete) and shows another result of similar kind:
A metrizable space is compact iff every its metric is bounded. If X is not
compact, it contains a countable subset without accumulation point that is,
therefore, homeomorphic to both N and to {1,1/2,1/3,...,1/n,...} bearing
the usual metrics. Extending that homeomorphism to X one gets the asser-
tions.

F. Hausdorff generalized his previous result in his last published paper
[24]. We may notice that Theorem 21 together with the equivalent formulation
given in Proposition 19 implies the following result. Conversely, the following
result easily implies extension of continuous pseudometrics.

ProrosiTION 22. If f : A — B is a continuous mapping on a closed
subspace A of a metric space X onto a metric space B, then there exists a
metric space Y containing B as a closed subspace and a continuous mapping
F: X — Y that extends f and maps X \ A ontoY \ B. If f is a homeomor-
phism then F' is a homeomorphism.

Proof. Let the metrics on B, X be e, d resp. and denote by e; the con-
tinuous pseudometric e o (f x f) on (A,d4). Then f : (A,ef) — B is uni-
formly continuous and the metric modification A of (A, e ) is isometric to
(B,e). Now we extend e to a continuous pseudometric £ on (X, d) (adding
|d(x, A) — d(y, A)| to it we may assume that A is closed in (X, E)) and define
Y to be the metric modification of (X, F). Up to the mentioned isometry,
B is a closed metric subspace of Y and the required F' is the composition
of the identity mapping (X,d) — (X, E) and the metric modification map
(X,E) > Y.
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The second part of the assertion now follows from the above original Haus-
dorff’s formulation. N

Proposition 22 was proved (in a stronger formulation that cannot be easily
obtained by the above method) in Hausdorft’s last published paper [24]. The
proof uses again a modification of his formula for extension of function and
is complicated. Hausdorff in his paper reacted to a previous K. Kuratowski’s
paper from 1935 showing the above result for separable metric spaces (again
in a stronger formulation). After reading Hausdorff’s generalization, Kura-
towski gave a more elegant proof for separable spaces in the same volume
of Fund. Math., where the Hausdorft’s result was published (via maps into
function spaces). Later on, the Kuratowski’s proof was shown (after some
modifications) to work without assuming separability (see [2]).

I do not know who first used the above proof of Theorem 22 (maybe it was
a folklore) but it is very probable that J. Isbell had it in mind when he stated
without proof a modification of Theorem 22 for uniform spaces as a corollary
of his extension of uniformly continuous pseudometrics in uniform spaces.

F. Hausdorff proved the following result in [24]. The substantial improve-
ment in comparison with Proposition 22 is the second part of II.

THEOREM 23. 1. Eine stetige Abbildung der im metrischen Raum X
abgeschlossenen Menge A auf den metrischen Raum B ldsst sich zu einer
stetigen Abbildung von X auf einen geigneten metrischen Raum Y O B er-
weitern.

I1. Diese Erweiterung ist insbesondere so méglich, dass B in Y abgeschlossen
ist und X \ A topologisch auf' Y \ B abgebildt wird.

III. Eine topologische Abbildung von A ldsst sich zu einer topologischen
Abbildung von X erweitern.

4.1.2. R.H. BING 1914-1986 (1947). Another proof of Theorem 21
was given by R.H. Bing in [6] without quoting Hausdorff.

THEOREM 24. Suppose that A is a closed subset of a metrizable space X
and that d(x,y; A) is a metric on A. Then there is a metric d(x,y) on X that

preserves the metric d(xz,y; A) on A ; that is, if x and y are points of A, then
d(z,y) = d(z,y; A).

Bing assumes at first that d(x,y; A) is bounded and constructs a metric d’
on X such that d(z,y) < d'(z,y) whenever x,y € A. The required metric is
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then defined as follows:
. / . ! /
d(x,y) = min {d (x,y), a}l?efA {d (z,a) +d(a,b) +d (b,y)}} .

The metric d’ is constructed by means of sequence of covers from his modifi-
cation of Alexandrov-Urysohn metrization theorem (it follows easily from the
metrization procedure for uniform spaces, too). If d(z,y; A) is unbounded, X
can be expressed as a union of an increasing sequence of closed sets intersect-
ing A in balls with the same center and radiuses equal to n,n € N. Using the
first part of the proof, d(x,y; A) can be successively extended to X.

In [7] Bing used his previous method to show that some compact (e.g. all
finite-dimensional) compact locally connected continua have a convex metric.

The Bing’s method is simpler than those of Hausdorff and can be used in
extension of uniformly continuous pseudometrics, too.

4.1.3. INTERRELATIONS, RICHARD FRIEDERICH ARENS (1919-2000),
CLIFFORD HUuGH DOWKER (1912-1982). We have now results about ex-
tensions of continuous functions, extensions of continuous maps into locally
convex spaces and extensions of continuous pseudometrics. A deeper look
at their interrelations started around 1951 in the works by R. Arens, C.H.
Dowker, J. Dugundji and O. Hanner. Some special cases were know earlier
(e.g., Kuratowski in 1935, Kakutani in 1940), additions and various combina-
tions were done later, for instance by Alo and Shapiro. We shall describe the
situation without giving all the details and references.

Pseudometrics are in a close relation with uniformities. Dealing now with
topological spaces, we shall use fine uniformities on completely regular spaces
formed by the collection of all uniformizable covers (or normal covers, in
another terminology), and generated by all continuous pseudometrics. We
should know that a uniformity is pseudometrizable iff it has a countable base
and that pseudometrizable spaces are paracompact. Then it is easy to show
that all locally finite cozero covers of a space X form a base of all the uni-
formizable covers of X.

Clearly, if every continuous pseudometric on a subspace A of a completely
regular space X extends to a continuous pseudometric on X, then every uni-
formizable cover of A extends to a uniformizable cover of X. Conversely, it
follows from the metrization theorem for uniform spaces that if every uni-
formizable cover of A extends to a uniformizable cover of X, then every con-
tinuous pseudometric on A is equivalent to a restriction to A of a continuous
pseudometric on X. The above Bing’s construction gives even that instead
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of “equivalent” we may require “equal”. So we have the three equivalences
1 <> 2 < 3 in the following theorem.

THEOREM 25. If A is a subspace of a completely regular space X, then
the following conditions are equivalent:

1. Every continuous pseudometric on A extends to a a continuous pseudo-
metric on X.

2. Every uniformizable cover of A extends to a uniformizable cover of X.

3. Every locally finite cozero cover of A is refined by the trace on A of a
locally finite cozero cover of X.

4. Every continuous mapping on A into a Banach space Y (or into a com-
plete locally convex space) extends to a continuous mapping on X into
Y.

The implication 1 — 4 can be proved as follows: if f : A - Y, Y a
Banach space, is continuous, then d(z,y) = || f(z) — f(y)|| is a continuous
pseudometric, extend it to a continuous pseudometric D on X, completeness
of Y guaranties continuous extension of f to the closure of A in (X, D), and
Dugundji theorem finished the implication for Banach spaces Y (the case of
complete locally convex spaces follows from their embedding onto a closed
convex subspace of a product of Banach spaces).

Since fine uniformities are determined by continuous maps into metric
spaces (thus into Banach spaces since every metric space embeds isometrically
into some C*(X)), the implication 4 — 2 is an easy consequence of that
consideration.

As we know, completeness of the range in (4) is not necessary to assume
if X is metric and A is closed. The completeness is needed for extension of
functions to the closure of A in the constructed continuous pseudometric.

Since in paracompact spaces all open covers are uniformizable, it follows
(first stated by R. Arens in [2] for condition 4) that the conditions hold for X
paracompact and A closed. This result was strengthened by C.H. Dowker in
[14]; he showed that the condition (4) holds for every closed subset A of X iff
X is collectionwise normal. That means the condition (4) does not hold for
normal spaces that are not collectionwise normal. Consequently, Proposition
20 cannot be converted. Nevertheless, it follows from a result of O. Hanner
([20]) and J. Dugundji that the condition (4) with separable Banach spaces
holds for any closed subset A of X iff X is normal (see our second Observation
in 2.5). In [3] (without being aware of [14]) the above equivalent conditions
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were formulated when corresponding cardinalities of covers or of dense sets
are restricted. For countability case the result is as follows (Arens does not
mention the condition (2)).

THEOREM 26. If A is a subspace of a completely regular space X, then
the following conditions are equivalent:

1. Every (bounded) continuous separable pseudometric on A extends to a
(bounded) continuous pseudometric on X .

2. Every countable uniformizable cover of A extends to a countable uni-
formizable cover of X .

3. Every countable locally finite cozero cover of A is refined by the trace
on A of a countable locally finite cozero cover of X.

4. Every continuous mapping on A into a separable Banach space Y (or
into a separable complete locally convex space) extends to a continuous
mapping on X into Y.

Arens then proves that the conditions (for countable case) hold provided A
is a closed subspace of a normal space X, and without cardinality restriction,
they hold provided A is a closed subspace of a paracompact space X. In
case the space X is normal and A is closed, one can write “open” instead of
“cozero” in the condition (3) since a completely regular space is normal iff
every its finite (or locally finite) open cover is uniformizable.

4.2. UNIFORMLY CONTINUOUS PSEUDOMETRICS.

4.2.1. JouN R. IsBELL 1931-2005. A corresponding theorem for exten-
sion of uniformly continuous pseudometrics waited until 1959 when J. Isbell
proved the next result in [26]. He proved the result directly for general uniform
spaces without any predecessor with extension from metric spaces.

THEOREM 27. Every bounded uniformly continuous pseudometric on a
subspace of a uniform space may be extended to a bounded uniformly contin-
uous pseudometric on the whole space.

A basic idea of the Isbell’s procedure is that of Bing but using a simpler
metrization procedure for uniform spaces. For a bounded uniformly contin-
uous pseudometric e on a subspace A of a uniform space X he first finds a
uniformly continuous pseudometric d on X with d > e on A (the sequence
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of 27™-covers of (A,e) extends to a convenient sequence of uniform covers of
X — the corresponding uniformly continuous pseudometric d on X generated
by that sequence may be chosen having bigger values on A than e). The
requested pseudometric is then defined by the equality

E(z,y) = min {d(x, Y), a,il])ﬂefA {d(z,a) + e(a,b) + d(b, y)}} .

The following corollary is then stated without proof in [26] (equivalently,
one may assume both B and Y to be metric spaces). See also a discussion
about continuous case after Theorem 22.

COROLLARY 28. For every uniformly continuous mapping f of a subspace
A of a uniform space X into a uniform space B, there exist a uniform space
Y containing B and a mapping g : X — Y extending f.

The same proof as for the topological case shows that extension of uni-
formly continuous pseudometrics implies extension of uniformly continuous
functions ([17]. Unlike the topological case, here one can deduce the Isbell’s
result from the Katétov’s result on extension of maps (see [12] and [33]):

PrOPOSITION 29. Every bounded uniformly continuous pseudometric on
a subspace A of a uniform space X can be extended to a bounded uniformly
continuous pseudometric on X iff every bounded uniformly continuous func-
tion on A can be extended to a bounded uniformly continuous function on
X.

Proof. The proof of necessity is the same as in the proof of Proposition 20.
We shall prove the sufficiency. Assume that e is a bounded uniformly continu-
ous pseudometric on A. We can extend the function e : Ax A — [0,r] to a uni-
formly continuous function f: X x X — [0,7] and take a bounded uniformly
continuous pseudometric D(z,y) on X defined as sup,cx |f(z,2) — f(y, 2)|.
Then E(z,y) = sup{p; p is a pseudometric on X, p < D, p < don A} is a
bounded uniformly continuous pseudometric on X extending e. 1

The original Hausdorft’s version of extension of uniformly equivalent met-
rics was proved by Nhu in [33]:

THEOREM 30. Let A be a subset of a metric space (X,d). Then any
bounded metric p on A uniformly equivalent to ds can be extended to a
metric p on X which is uniformly equivalent to d on X.
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5. CHRONOLOGICAL TABLE AND INTERRELATIONS

The next diagram roughly corresponds to relations among various exten-
sion results. The arrows between boxes mean implications or equivalences,
resp., proved by an “elementary” way.

We shall use the following abbreviations:

M
N
CN
B

U
LCS
c

uc
c-p
uc-p

prefix s before a space
prefix ¢ before a space

«— >

>

metric space

normal space

collectionwise normal space
Banach space

uniform space

locally convex space
continuous mapping
uniformly continuous mapping
continuous pseudometric
uniformly continuous pseudometric
separable

complete

M 22 [a, b]
A
i
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The next table briefly summarizes development of extension of maps
f:A—Y from a closed subset A of a space X. The rows with empty cell for
author correspond to our consideration how to get more general results from
old ones.

Original result Proof gives
AUTHOR YEAR XY f | METHOD XY I RESULT
Legesgue 1907 R? - R ¢ | covers Th.1
Tietze 1915 | R" =R ¢ | covers Th.2
Tietze 1915 M — R ¢ | formula ctuc Th.8
Vallé-Poussin 1916 | R™ - R ¢ | formula || sM — ¢LCS | c+uc | Th.10, 10’
Bohr 1918 | R" =R ¢ | formula M — R ctuc Th.11
Brouwer 1919 | R" =R ¢ | covers R" - LCS | ct+uc| Th.3, 3
Hausdorff 1919 M — R ¢ | insertion Th.6
Hausdorff 1919 M — R ¢ | formula ctuc 2.34
Hahn 1921 M — R ¢ | formula ctuc Th.12
Riesz 1923 M — R ¢ | formula ctuc Th.13
Urysohn 1925 N —>R ¢ | Urysohn ctuc 24
Katétov, Tong 1951 N —-R ¢ | insertion Th.7
Dugundji 1951 | M —- LCS | c | covers Th.4
M —R ¢ |formulas || M — C(Z) 2.6
M — R c | covers N —-R 2.5
M — LCS| c |covers N — ¢sLCS 2.5
Katétov 1951 U—R uc | Urysohn Th.14
Preis,Vilimovsky | 1980 U—-R uc | insertion Th.17
M —R uc | formulas U—R 3.6
Hausdorff 1930 | M —R c-p | formula Th.21, 23
Bing 1947 | M —R c-p | covers Th.24
Isbell 1959 U—R uc-p | covers Th.27
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