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Abstract

In this paper we turn our attention to comparing the policy func-
tion obtained by Beck and Wieland (2002) to the one obtained with
adaptive control methods. It is an integral part of the optimal learning
method used by Beck and Wieland to obtain a policy function that
provides the optimal control as a feedback function of the state of the
system. However, computing this function is not necessary when doing
Monte Carlo experiments with adaptive control methods. Therefore,
we have modified our software in order to obtain the policy function
for comparison to the BW results.
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1 Preamble

It is a great pleasure for us to be able to contribute this paper to the special
issue of Computational Management Science honoring Berc Rustem. Berc
was one of the first control engineers to take an active interest in the possible
applications of optimal control methods to the stabilization of macroecono-
metric models. He was an enthusiastic member of a group pulled together
at Imperial College by Professor John Westcott with support from a mem-
ber of Parliament, Jeremy Bray. Jeremy and John had the novel idea that
one could develop small optimal control models to help in the stabilization
process for the large macro econometric models of the 1970’s. Berc was the
youngest member of this group and therefore the one who actually wrote
much of the computer code that was developed by this pioneering project.

From this auspicious beginning, Berc has gone on the become a major con-
tributor to the use of optimal control methods in economics — especially in
the field of robust control where his John Wiley and Princeton University
Press books are early and outstanding contributions to a subfield that has
gained widespread recognition and use in macroeconomics. Also, Berc has
generated enormous externalities of the type that are so valuable to all of us
in the academic community. He has not only made many important contri-
butions of his own but through his editorship for many years of the Journal
of Economic Dynamics and Control and more recently of Automatica and
Computational Management Science he has enable a very large community
of scholars to see their work improved while on the path to making it widely
available through publication.

2 Introduction

This paper is a continuation of work in the Methods Comparison Project!
to compare various methods of solving optimal experimentation, adaptive
(dual) control or optimal learning models, as the subject has been called by
various authors. In essence, the methods consider dynamic stochastic mod-
els in which the control variables can be used not only to guide the system
in desired directions but also to improve the accuracy of estimates of pa-
rameters in the models. Thus there is a tradeoff in which experimentation
or perturbation of the control variables early in time detracts from reaching
current goals but leads to learning or improved parameter estimates and thus
improved performance of the system later in time - hence the dual nature of
the control.

LCurrently there are three groups involved in this project (1) Volker Wieland and
Gunter Beck, (2) Thomas Cosimano and Michael Gapen and (3) Hans Amman, David
Kendrick and Marco Tucci.



The optimal experimentation approach uses perturbation methods, see Cosi-
mano (2008) and Cosimano and Gapen (2005a, 2005b), which are applied in
the neighborhood of the augmented linear regulator problems as discussed
by Hansen and Sargent (2004). The adaptive or dual control approach, see
Kendrick (1981, 2002), Amman (1996) and Tucci (2004), uses methods that
draw on earlier work in the engineering literature by Tse and Bar-Shalom
(1973). The optimal learning approach uses numerical approximation of the
optimal decision rule, see Wieland (2000a, 2000b), in methods that are re-
lated to earlier work by Prescott (1972), Taylor (1974) and Kiefer (1989).

In previous work in this project we have compared the mathematical results
from the adaptive control approach to those obtained by Beck and Wieland
(2002) in Kendrick and Tucci (2006). Also, we have examined the proper-
ties of the Beck and Wieland model using the DualPC software in Amman,
Kendrick and Tucci (2008) and the problems caused by nonconvexities in
this model in Tucci, Kendrick and Amman (2007).

In this paper we turn our attention to comparing the policy function ob-
tained by Beck and Wieland 2002) to the one obtained with adaptive control
methods. It is an integral part of the optimal learning method used by Beck
and Wieland (BW) to obtain a policy function that provides the optimal
control as a feedback function of the state of the system. However, comput-
ing this function is not necessary when doing Monte Carlo experiments with
adaptive control methods. Therefore, we have modified our software in order
to obtain the policy function for comparison to the BW results. To facilitate
the description of our procedures we provide here a description of the BW
model first in their notation and then in the adaptive control notation. This
is done in the following two sections.

In doing the comparison we have employed two variants of adaptive control
methods — the first based on the DualPC software, Amman and Kendrick
(1999b), and the second using a MATLAB program with a parameterized
cost-to-go function for adaptive control following the method outlined in the
Amman and Ken—drick (1995) paper and the extension of these results in
Tucci, Kendrick and Amman (2007). After describing both of these methods
we will present in Section 7 of the paper a comparison of the policy function
results obtained with (1) these two methods and (2) the Beck and Wieland
method.

3 The Beck-Wieland Model in Wieland’s Notation

The Beck-Wieland model is a one-state, one-control model with a single time
varying parameter. The system equation is



Xt+1 =YXt + Brus + o + & (3.1)

where x; is a state variable, u; a control variable, 8; a stochastic time-
varying parameter, y and « are constant coefficients and the identically and
independently distributed (iid) random noise term &; ~ N(0, o).

The initial condition for the system equation is xg, where x¢ is the initial
state variable. The control variable in equation (3.1) in the Beck-Wieland
model has the time subscript ¢ + 1 rather than ¢; however, we follow here the
convention in the engineering literature in which the control variable action
in period ¢ affects the system in period ¢ + 1. Also, the idd noise term &;
here has the subscript ¢ rather than the r + 1 used in BW.

The time-varying parameter equation is

Bt+1 = Bt + n: (3.2)

where 7, is an idd additive noise term with n; ~ N(0, o) and with the initial
value B¢ of the time-varying parameter. Also, the idd noise term here has
the subscript ¢ rather than the f 4+ 1 used in BW.

The criterion function is a quadratic tracking equation where the goal is to
find the minimum over the controls {u,}iv:_ol of

N—-1
J=E{N oy -0+ Y ¢ [(x, T aﬂ} (3.3)
t=0

where J is the criterion value, E the expectations operator, § €< 0, 1] the
discount factor, X is the desired state variable, @ the (relative) weight on
deviations of control variables from targets, # the desired control variable.
The criterion function is over a finite horizon here in contrast to Beck and
Wieland where it is infinite horizon. Also, the tracking function for the last
time period Nis separated here to indicate that the control variables are
optimized only through period N — 1.

For their numerical experiments Beck and Wieland use the following values
y=1,0=0,x=0,u=0,0=0,86 =0.95, 0, =1, 0y =0, and the initial
conditions xo = 0, by = —0.5, v5 = 0.25.

The symbol b is used to indicate the estimates of the parameter 8;. Actually,
the initial condition x¢ € [-3, 3] in Figures 1 and 2 in the Beck and Wieland
paper and we will use those same ranges in doing the comparisons in this

paper.
4 The Beck and Wieland Model in Kendrick’s No-
tation

The model in Kendrick (2002) that most closely approximates the Beck and
Wieland model, is the one in Chapter 10 since that model includes time-



varying parameters. In addition, some use will be made of the notation in
Amman and Kendrick (1999a) because that paper includes the discounting
that is used in the BW model but is not present in the Ch. 10 model.

The systems equations in the Ch. 10 model in equation (10.7) are

Xe41 = At (01) Xt + By (0¢) ur + ¢1 (6¢) + v; (4.1)

where t € [0, N — 1] is the time index, x; € R the state vector, u; €
N1 the control vector, v; € R*D the idd vector of additive noise terms,
A;(6;) € MM the state vector coefficient matrix, B;(6;) € R@>*™ the
control vector coefficient matrix, c¢;(6;) € RO the exogenous coefficient
vector, 0; € ME*D vector containing the subset of the coefficients in A, (6;),
B:(6;) and c;(6;) that are treated as uncertain.

The matrix A;(6;) is a function of the subset of the uncertain coefficients in
0; which come from that matrix. The same applies to B;(6;) and c;(6;).
For the BW model there is a single state variable and a single control variable
so these two vectors each have a single element. Also there is single uncertain
coefficient so 6; is

91 == ,Bt (42)

Comparison of equation (4.1) to the BW model system equation equation(3.1)
yields

A=y =1 B; = B; c=a=0 Uy = &

Because this paper draws on mathematics from two different sources we will
occasionally encounter cases where the same symbol is used for different
purposes in the two sources. When this occurs we will rely on the context
to communicate the differences, for example in equation (4.1) and in the
equation above, vy is used to indicate the idd additive noise term for the
systems equations in the Kendrick framework. In contrast, v; is used in the
Beck and Wieland paper to indicate the variance of the estimate of the B;
parameter.

Also, we will be using equation numbers from multiple sources and, here
also, we rely on context rather than special fonts to distinguish the sources.
The measurement equation in the Ch. 10 model in equation (10.8) is

ye = Hixp + wy (4.3)

where y; € RUXD is a measurement vector, H; € R a measurement
coefficient matrix w; € RE*D an idd measurement noise vector.

Though Wieland has included measurement errors in one of his papers with
Coenen (viz. Coenen and Wieland (2001)) those errors are not included in
the BW model; therefore we have



H=1 Vtwt:O

The time-varying parameter equation in the Ch. 10 model, i.e. equation
(10.9), is

Or+1 = D6 + 1 (4.4)

where D; € RE*S) the parameter evolution matrix, n; € RE*D the idd
additive noise term of the time-varying parameter. For more general forms
of equation (4.4) in the adaptive control context, including the return to
normality model, see Tucci (2004) page 17.

In the BW model there is a single time-varying parameter, also the coefficient
D is one, thus

D=1
Also, the idd additive noise term in the time-varying parameter equation
(4.4) is distributed
e ~ N (0,04) with o, =0 (4.5)

The initial conditions for the systems equation (3.1) and the parameter evo-
lution equations (4.4) in the Ch. 10 model are

X0 ~ N ()%0|0, ﬁ:gf&) 00 ~N (00|0, igfo) (46)

Since there is no measurement error in the BW model and since the original
state is assumed to be zero in the base run we have

A _ XX
Xolo =0 0jo =

However, in this paper we will solve the BW model for values of the initial
condition Xo|o € [-3, 3].

Also in the BW model the initial value of the time-varying coefficient is set
to -0.5 and the initial variance of that coefficient is set to 0.25 so we have

Oojo =bo =—0.5 B8 =vb =025

The idd additive noise terms for the systems, measurement and parameter
evolution equations in the Ch. 10 model are distributed

u~N@©Q)  w~N@OR  n~NQOT) (4.7)
These terms in the BW model are

Q=0.=10 R=0 T =0,=0



Thus there is a variance of one for the idd additive noise term in the systems
equations, there is no measurement error and the additive noise term in
the parameter evolution equation is set to zero. This last assumption is
surprising so we may be misinterpreting the BW paper at this point.

The criterion function in the Ch. 10 model is for a finite horizon model.
That criterion with the addition of discounting as in Amman and Kendrick
(1999a) may be written as

N-1
J=ENLy (xn)+ Y 8'Le (xr.ur) (4.8)
t=0
where J € N is the criterion value, E the expectations operator, § €< 0, 1]
the discount factor, Ly € N the criterion function for the terminal period
N, xy € ROXD the state vector for the terminal period N, L; € N the
criterion function for period #, x; € RV the state vector for period ¢ and
u; € R the control vector for period 1.
The two terms on the right-hand side of equation (4.8) are defined as

Ly(xy) = %(XN —iN)WNn(xn —EN) (4.9)

and

Lo ur) = %[(xt — ) Wi — )+
(x¢ — %) Fr(ue — 6g) + (up —iig) Ag(ug — ﬁt)j| (4.10)

where ¥y € RO*D the desired state vector for terminal period N, Wy €
RO the symmetric state variable penalty matrix for terminal period N,
% € RO the desired state vector for period 7, #; € R the desired
control vector for period 1, Wy € R the symmetric state variable penalty
matrix for period t, F; € ™) the penalty matrix on state-control variable
deviations for period ¢, A; € WM the symmetric control variable penalty
matrix for period .

The comparison of equations (4.9) and (4.10) to the Beck and Wieland model
in equation (3.3) above and the use of the parameter values specified in Figure
1 of their article yields

Wy=1 VitWy=1 VtF,=0 VtAs=0=0 §=0095

Thus there is a weight of one on the state variable deviations, no weight
on the cross terms, and a weight of zero on the control variable deviations.
Also, the discount factor is set at 0.95 so the discount rate is 0.05.



This completes the description of the model in Wieland’s notation and in
Kendrick’s notation. This notation can now be used to discuss the two
procedures we have used in making comparisons of the policy functions.

5 Modification of the DualPC Software

In summary, from above the adaptive control problem is to find the control
variables (1o, u1,- -, U N—1)that minimize the criterion function

N—-1
J=E{"Ly (xn)+ Y 8" Ly (xup) (5.1)
=0

subject to the systems equations

Xe41 = Ar 0r) xt + By (0) us + ¢1 (6;) + vg (5.2)

the measurement equations

Ye = Hpxy + wy (5.3)

and the parameter evolution equations

041 = DO + 1y (5.4)

from the initial conditions

xo~ N (%00 £55) 60~ N (dopo. £55) (5.5)

This is the problem that we solve with the DualPC software. However, the
policy function in Figure 1 of the Beck and Wieland paper is a feedback
function of the form

uo = f (xo) (5.6)

where ug is the optimal control vector in period 0, xo the state vector in pe-
riod 0 and this function is not automatically calculated by previous versions
of the DualPC software.

Therefore to make the comparison it was necessary first to define a discrete
grid over the initial state vector, xo. In the BW model there is only one
state variable and the grid is defined in their Figure 1 over the range [—3, 3]
at roughly 45 points so the spacing between points is about 0.2. We used
the same range but with a finer grid of about 240 points with a spacing of
0.025 between points.

Next we created an outside for loop in DualPC over each of these 240 ele-
ments so that the problem in equations (5.1) - (5.5) is solved repeatedly. In
each pass through the loop we stored the optimal control for period zero,
ug, that corresponded to the grid value for x¢ in that pass through the loop.



Since the BW model has a single control variable it was necessary to store
only one value in each pass through the loop.

Since there is no measurement error in the BW model x¢ in that model is not
random and none of the other random elements in the model occur before
the computation of the zero period optimal control so it was necessary to
turn off all of the Monte Carlo capabilities of the DualPC software when
doing these calculations.

Table 1 below shows the parameter values that we used for the base run
and which correspond to the parameter values that we believe underlie the
results in Figure 1 of the Beck and Wieland paper.

Table 5.1:

Parameter Values Used in the Base Run

Beck & Wieland Nota- | Kendrick Notation Value of Parameter
tion

y A 1.0

bo B -0.5

o c 0.0
b P 0.50

1 w 1.00
w A 0.0001
X X 0.0

U U 0.0

O q 1.0

The results of our calculations are shown below in Figure 5.1. Our policy
function for the adaptive control case has the same characteristic S shape
as the optimal function in Figure 1 of BW though our function is somewhat
smoother than the one in BW in part because we used a finer grid for xg.
The values for the function in our Figure 5.1 above are close to those in
Figure 1 of the BW paper but are not identical.

Also, we have prepared a second plot that is shown below in Figure 5.2 which
compares the Dual solution, Cautionary solution and Certainty Equivalence
solution for the policy functions. The order and shape of all three of these
functions agrees with the results in Figure 1 of the Beck and Wieland paper.
We will return to the comparison of our results to the BW results later;
however, first it is useful to report on a second set of calculations which we
did as a check on the ones we made with the DualPC software.



Optimal control uO

Figure 5.1:

Policy Function for the BW Model from the DualPC Software

Optimal policy function for b=-0.3 and sigma sq b = 0.25

—— Dual solution
| | |

-1 0 1 2 3
State variable x0

10



Optimal control uO

Figure 5.2:

Dual, Cautionary and Certainty Equivalence Policy Functions
Optimal policy function for b=-0.3 and sigma sq b = 0.25

—— Dual solution
— - Cautionary solution
Certainty equivalence solution
I

-2 -1 0 1 2 3
State variable x0

11



6 A Parameterized Cost-To-Go Function for Adap-
tive Control

Since the Beck and Wieland model has a single control variable and a sin-
gle state variable it is simple enough that it is possible to take an entirely
different, and simpler, approach to calculating the policy function. This ap-
proach comes from earlier work we did in Amman and Kendrick (1995) when
we were analyzing the question of whether or not the cost-to-go function in
adaptive control problems was sometimes characterized by non-convexities.
In that paper we were able to use a set of parameters from the system equa-
tion (4.1) like “a” for the state variable matrix, “b” for the control variable
matrix, “c” of the constant vector in the systems equations and “x¢” for
the initial condition of the system equation. These parameters where then
substituted into the cost-to-go function and given a base set of values. This
enabled us to obtain the cost-to-go function

Iy = f (uo) (6.1)
where
JN = the cost-to-go with N periods to go
Uo = the initial period control variable

so that we could analyze its properties. Indeed when we did this we con-
firmed that non-convexities would occur in the function at times and it was
therefore necessary when solving adaptive control problems to employ global
optimization methods which searched over the various local optima.
Recently we have returned to this subject while trying to understand why we
had a substantial number of outliers when we did Monte Carlo experiments
with adaptive control on the Beck and Wieland model. In this work, which is
reported in Tucci, Kendrick and Amman (2007), we found that the outliers
were caused by non-convexities which occurred when some combinations of
parameter values were generated by the Monte Carlo procedures. A by-
product of this work was a spreadsheet that was developed by Marco Tucci
to compute the cost-to-go function for various set of parameter values.
When we began the present work on computing the policy function for the
Beck and Wieland model we realized that we could build on the spreadsheet
and add to it an optimization search over the cost-to-go function so as to
obtain the policy function

uo = f (xo) (6.2)

for the initial period optimal control. However before progressing far with
this we realized that these kinds of calculations could be done in a more

12



straightforward and easier-to-check manner in a MATLAB program than in
an Excel spreadsheet.

Therefore, we developed a MATLAB program that had an outside loop over
each of the grid points for x¢ as described in the previous section. This
was around an inside loop which was in turn across a set of grid points for
the control variable ug. This enabled us to search for local optima on each
pass through the inside loop while using the outside loop to get the points
one-by-one for the policy function (6.2). The details of these calculations are
described in Appendix A.

The result of this work was a very efficient way to compute the policy function
for the Beck and Wieland model with relatively transparent computations.
While we realized that this procedure would be difficult to generalize to
models with many state and control variables it worked well for a model
with a single state and a single control variable and thus provided a good
check on the results obtained from the much more elaborate calculations
done with the modified version of the DualPC program.

Indeed we were pleased when we discovered that this approach gave the same
values for the policy function of the BW model as the results obtained from
the modified DualPC program. This left us free with some confidence to
move on to a comparison of these results to those in Figure 1 of the Beck
and Wieland paper.

7 Comparison of the DualPC and Beck and Wieland
Policy Functions

In order to make a comparison between our results and those of Beck and
Wieland we went to Volker Wieland’s web site at
http://www.volkerwieland.com

and downloaded his Fortran code “A Numerical Dynamic Programming Algo-
rithm for Solving the Optimal Learning Problem”. We then ran this program
with the parameter values shown in Table 2.

Table 2 Parameter Values Used in Wieland’s Program

These values all correspond to those used in the base run as described in
Table 1 except for (1) the initial value of the Bparameter, by, which is set at
-0.3 here instead of -0.5 and (2) the variance of the estimate of that parameter
which is set at 0.25 here instead of 0.50.

We used the same grid for x¢ as was used in the Wieland program namely

[-5-3-2-1.8-1.6-1.4-1.2-1.0 -0.8 -0.6 -0.4 -0.2 -0.0001
0.0001 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 5.0]

Notice that this grid is not uniform but rather is less widely spaced around
zero than at the lower and upper extremes.

13



Beck & Wieland Nota- | Kendrick Notation Value of Parameter
tion

y A 1.0

bo B -0.3

o c 0.0

b xg? 0.25

1 w 1.00
w A 0.0001
X X 0.0

U U 0.0

O q 1.0

We put the parameter values from Table 2 into our MATLAB program for
the second of the two methods described above, namely the parameterized
cost-to-go function approach. We also imported the results from running
Wieland’s Fortran code into the MATLAB program and then plotted the
results from the Dual and BW methods as shown in Figure 7.1 below.

The two solutions are close for values of x¢ below -2 and for values above 2.
In the range for xo between -2 and 2 the BW solution has more aggressive
control values than the ones in the Dual solution. We do not yet know why
this occurs but are exploring several possible explanations. So, in summary,
the Dual and BW methods yield very similar policy functions for the BW
model except in the range of values of x¢ around zero.

8 Conclusions

We have developed two methods for using our adaptive control software to
compute the policy function for the Beck and Wieland model. These two
methods give identical values for the function so they check against one
another. The shape of the policy function they yield is closely similar to
the BW policy function and the numerical values of the function are close
for values of xg below -2 and above 2 but differ somewhat for values of
Xo € [-2,2]. We are investigating why the differences occur in this range.

14
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Appendix A
Calculations for the Parameterized Cost-To-Go Approach

As is discussed in Tucci, Kendrick and Amman (2007) the cost-to-go in
adaptive control problems can be divided into three terms, i.e.

JN =JpnN+Jc,N + TP N (A-1)

where Jy is the the cost-to-go with N periods remaining, Jp y the deter-
ministic component of the cost-to-go, J¢,n the cautionary component of the
cost-to-go and Jp n the probing component of the cost-to-go. Furthermore,

Jp2 = Y1ud + Youo + ¥3 (A-2)
Jco = S1up + 8auo + 83 (A-3)
072991\ (pauo + ¢3)*
JP,Z = ) 0'21/{2 + . (A_4)
»Uo T4

and where the three sets of parameters ¥, § and ¢ are themselves functions
of an underlying set of parameters v. All four sets of these parameters are
in turn functions of the basic parameters of the Beck and Wieland model
as defined in Sections 3 and 4. Also, notice that the deterministic and
cautionary components are quadratic functions of the control variable in
period zero, ug, and the probing component is a function of the ratio of two
quadratic functions in ug.

The calculations of these three separate components of the cost-to-go are laid
out in considerable detail in the Tucci, Kendrick and Amman (2007) paper.
However, for our purposes here it is sufficient to know that many of these
four sets of parameters ¥, §, ¢ and v are themselves functions of the initial
state xg so we can rewrite the three equations in more general function form
as

Jp,N = fD (X0.u0) (A-5)
Je,N = fe (xo,uo0) (A-6)
Jp.N = fp (x0.uo) (A-7)

and thus from equation (A-1) one can think of the total cost-to-go function
itself a function of the initial state and the initial control variable, i.e.

Jn = f (x0.uo) (A-8)
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Our MATLAB program builds on the foundation of equation (A-8) to com-
pute the policy function

uo = f (xo) (A-9)

This is done with a set of two for loops. The outside loop is over the grid for
Xo. As was discussed in Section 5 the range for this grid is [—3, 3] to follow
the range used in Figure 5.1 of the Beck and Wieland paper. Also, the grid
is set more finely that in the BW paper to provide a smoother function by
spacing the grid elements 0.025 apart so as to create 240 points in the xo
grid.

Between the outside and inside for loops are the calculations of the sets of
parameters ¥, §, ¢ and v some of which are functions of xo. Then the inside
loop is over a grid for uy. We use a grid search rather than a gradient method
to find the optimal control that corresponds to each value of x¢ because the
cost-to-go function (A-8) may be non-convex.

The range for the ug grid is [—10, 10] with a spacing between grid points of
1073, This is a very fine grid; however the evaluation of the cost-to-function
(A-8) and the storage of this value as an element in a vector at each pass
through the loop require very little computation.

After the end of the ug for loop we apply the MATLAB function min to
the vector of values for Jy corresponding to each of the ug grid values. The
minimum value obtained from this operation then gives us the point of the
policy function (A-9) corresponding to the current x¢ grid point. Therefore
by the time we have passed through the outside loop over all the x¢ grid
points we have completed the construction of the policy function (A-9) and
can plot it.
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Optimal control uO

Figure 7.1:

Comparison of the Dual and the BW Policy Functions
Optimal policy function for b=-0.3 and sigma sq b = 0.25

— - Dual solution
— BW solution
I
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State variable x0

19



