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    Abstract- Market risk management is a critical, resource-
intensive task for financial trading firms. The industry relies 
heavily on innovation in technical infrastructure to increase the 
quality and quantity of risk management information and to 
reduce the cost of its production.  However, until recently, the 
industry has lacked an independent standard for gauging the 
potential of new technologies to help.  This changed when the 
STAC Benchmark™ Council developed STAC-A2™, a vendor-
independent benchmark suite based on real-world market risk 
analysis workloads.  It was specified by trading firms and made 
actionable by leading HPC vendors.  Unlike vendor-developed 
benchmarks known to the authors, STAC-A2 satisfies all of the 
requirements important to end-user firms: relevance, neutrality, 
scalability, and completeness.  Intel has demonstrated the utility 
of STAC-A2 for comparing successive generations of Intel® 
Xeon® processors. 
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I.    INTRODUCTION 

Trading firms devote a tremendous amount of resource to 
analyzing their market risk—that is, how the value of the 
positions they hold in various financial instruments would 
change given potential combinations of price movements in 
the markets. Understanding market risk is critical to pricing 
and hedging deals, as well as deciding when to curtail or 
expand certain types of trading. Proper management of this 
risk is essential to the financial integrity of the world’s trading 
institutions and the smooth functioning of capital markets.  
Recent well-publicized events in the financial markets have 
increased the industry’s focus on improving the quality of 
such risk management. 

Many of the financial instruments that must be analyzed 
are derivatives.  Understanding the market risk of derivative 
instruments typically requires a firm to analyze the sensitivity 
of the derivative values to changes in the behavior of the 
underlying instruments from which they are derived as well as 
changes in the broader market, such as shifts in interest rates.  
This analysis requires numerical methods that are 
computationally intensive. Large firms have datacenters 
packed with thousands of compute nodes dedicated to this 
task. The workload has become more taxing as market 
volatility increases, portfolios get more complex, and more 

trading desks incorporate risk information into their decision 
making, requiring shorter turnaround times for analysis. 

A firm's goals with respect to market risk analysis can 
depend on the extent to which it is focused on cost reduction, 
revenue expansion, or regulatory compliance. It may wish to 
reduce the power and space required for calculations, to 
analyze more assets, to analyze more scenarios for more users, 
to increase the accuracy of the calculations, or all of the above. 

No matter what the requirement, innovation in technology 
infrastructure has proven to be a crucial enabler of these 
business goals. New processors, memory, and interconnects, 
as well as innovative software libraries, development tools, 
and grid software can create favorable shifts in the tradeoffs 
(e.g., accuracy vs speed, capacity vs power consumption, etc.). 

In evaluating the potential of new technologies to improve 
trading functions, end-user firms can benefit from standard 
benchmarks that enable vendors to publish apples-to-apples 
comparisons and that enable end-user firms to baseline their 
existing systems using the same tests. 

Such standards exist in areas such as low-latency data 
distribution and time-series data management.[1]  But when it 
comes to market-risk analysis, the industry has, until now, 
lacked a vendor-independent technology benchmark suite 
based on a realistic workload. 

The STAC-A2™ Benchmark suite fills this gap.  STAC-A2 
is a set of test specifications based on a modern market-risk 
workload. It has been designed by leading trading firms with 
the input of key high-performance computing vendors. Unlike 
vendor-provided benchmarks, STAC-A2 satisfies the key 
customer requirements explained in Section III. 

At the time of this writing, STAC-A2 Benchmarks are in a 
beta state as they undergo refinement. Like all other STAC 
Benchmark specifications, the exact details of STAC-A2 are 
confidential, available only to contributing members of the 
STAC Benchmark Council, a large group of trading 
organizations and vendors. This confidentiality supports a 
business model that incentivizes ongoing investment in the 
benchmarks. Contributing members can access the benchmark 
specifications, meeting notes, and discussion forums at [2]. 

This paper explains the STAC-A2 specifications at a high 
level and illustrates them by sampling some preliminary, 
unofficial results from Intel’s work with the standard. 



II.   ANALYTIC OPERATIONS 

Under STAC-A2, the job of the "stack under test" (SUT) is 
to compute option-price sensitivities (“Greeks”) for multiple 
assets by applying Monte Carlo methods to the Heston model 
[3], a popular approach in today’s capital markets.  In addition 
to benchmarking end-to-end calculation of Greeks, the suite 
scrutinizes specific layers of the computation. 

A key influence on the speed of such analytics is the 
quality that is required (whether the relevant dimension of 
quality is precision, closeness of realized to theoretical values, 
etc.). All other things being equal, higher quality requires 
more processing time.  As discussed in Section III, STAC-A2 
does not impose minimum quality standards on an implemen-
tation but rather measures and reports its quality. The layers of 
STAC-A2 and their respective quality measures are: 

 

1. Double-precision exponential, log, and square root 
operations, which are required for the inner loop of the 
Monte Carlo simulation.  Quality is measured by 
relative error of the units in the last place (ULP).  ULP, 
which (roughly speaking) measures the gap between the 
last digit of a calculated result and its theoretical value, 
is a common way to measure the accuracy of floating-
point calculations 

2. Generation of independent unit normal random 
numbers. Quality is measured by applying the 
Anderson-Darling test for normality [4] and a Hilbert-
Schmidt Independence Criterion [5].  Anderson-Darling 
transforms the output data to a uniform distribution 
using the assumption that the data are from a normal 
distribution, then testing the uniformity of that 
distribution.  Hilbert-Schmidt works by breaking the 
output data into segments, which it tests against each 
other for independence. 

3. Generation of correlated unit normal random 
numbers. Quality is measured by applying the 
Anderson-Darling test for a multinormal distribution 
and computing the root-mean-square error of the output 
correlations relative to the input correlations. 

4. Single-asset path generation using the Andersen QE 
method [6].  QE is one of two methods (the preferred 
method) proposed by Andersen for time-discretization 
and Monte Carlo simulation of Heston-type stochastic 
volatility models.  Quality of the generated paths is 
assessed by computing the root-mean-square error of 
the mean and variance of the price paths relative to 
theory, and by the difference between the vanilla call 
and put prices obtained from the Monte Carlo 
simulation and the Heston closed-form formula. 

5. Multi-asset path generation. Quality is assessed by 
computing the realized correlation matrices for each 
path, using those to compute a matrix of average 
correlations, then computing the root-mean-square 
difference between the average realized correlations 
and the input correlations. 

6. Early exercise.  Early exercise follows the approach of 
Longstaff and Schwartz [7]. Quality is assessed for 

single assets by pricing an American option under the 
Heston model calibrated to a flat volatility skew and 
comparing this with the Black-Scholes binomial model 
approximation given by [8]. 

7. Greeks: Theta, rho, delta, gamma, cross-gamma, 
model vega, correlation vega. Quality is assessed for 
single assets by comparing the Greeks obtained from 
the Monte Carlo with Greeks obtained from a Heston 
closed form formula for vanilla puts and calls. Quality 
is assessed for two assets by calibrating the Heston 
model to a flat volatility skew for two individual assets, 
applying the Margrabe formula for two-asset spread 
option pricing [9], and comparing this with spread 
option Greeks obtained from the Monte Carlo. 

 

III.  SCALING 

The baseline speed benchmarks in STAC-A2 fix the 
problem size in order to enable consistent comparisons across 
multiple technology stacks. They also test the SUT in its 
entirety. But STAC-A2 also enables two kinds of scale tests: 
 

1. Workload scaling.  STAC-A2 allows two key 
dimensions of the workload to vary without limit: 

 The number of correlated assets.  This corresponds 
to the size of the portfolio processed by the SUT. 

 The number of paths in the Monte Carlo 
simulations.  Increasing the number of paths 
increases the accuracy of the resulting Greeks. 

Workload scaling enables benchmarks of the 
maximum capacity of the SUT with respect to 
portfolio size and number of paths.  No matter how 
large the SUT, STAC-A2 measures how much work 
it can process within a set timeframe, holding 
everything but the scale dimension constant.  
Workload scaling also yields scale curves, where 
each point represents the speed at which the SUT is 
able to process a different size of workload. 

2. SUT scaling.  An official STAC-A2 report shows the 
performance of the SUT at various “SUT Scales”.  A 
SUT Scale is defined as a subset of the SUT that is 
capable of independently processing the end-to-end 
Greeks operation. Each implementation is 
responsible for defining its SUT Scales, and the tester 
is responsible for deciding which of those to test.  For 
example, in a SUT consisting of a grid of 8 servers 
each with 2 sockets and 4 cores per socket, SUT 
Scales might be defined as a single thread, 2 threads, 
4 threads, a single server, 2 servers, 4, servers, and 8 
servers.  STAC-A2 requires both speed and capacity 
benchmarks to be run at multiple SUT Scales.  
Plotting the performance of progressively larger 
scales on the same chart yields a curve that describes 
an architecture’s scalability. 



IV.  BENCHMARK PROPERTIES 

STAC-A2 satisfies several properties that are important for a 
benchmark standard: 
 

1) Relevance. STAC-A2 was designed by trading 
organizations who deal with market risk on a daily basis. 
While STAC-A2 does not specify a production-quality 
algorithm (i.e., not necessarily something on which a 
trading firm would run its business), it captures the 
essence of workloads used to analyze options and other 
derivatives with option-like properties. In addition, 
STAC-A2 measurements are expressed in terms that are 
meaningful to a business person at a trading firm, making 
it easy to relate the performance of an innovation to its 
economic impact. 

2) Neutrality. Specified purely in mathematics and English, 
STAC-A2 is architecture neutral. Implementations have 
been and are being developed for leading vendor 
architectures. Implementations are possible across CPUs, 
GPUs, FPGAs, and other types of processors, as well as 
virtualized environments.  Implementations can be written 
at a low level to be hardware aware, at a higher level that 
is partly or completely hardware agnostic, or at the 
highest level, taking advantage of financial analytic tools. 
This neutrality enables apples-to-apples comparisons of 
any layer of the solution stack.  For example, STAC-A2 
could be used to compare: 
 processors, servers 
 programming languages, compilers 
 analytic libraries 
 distributed computing software (e.g., grid 

middleware, Hadoop) 
 cloud services, including different service options 

from a single cloud provider 
3) Scalability. As described in Section III, STAC-A2 is 

arbitrarily scalable. This enables it to assess performance 
from a single core to a large grid. 

4) Completeness. The benchmark suite reveals the four 
properties of a SUT that are most important to risk-
management technologists:  
a) Speed: the time it takes to obtain analytic results in a 

standard, usable form. As described in Section II, 
speed is measured for several discrete steps in 
computation and for the overall calculation. 

b) Efficiency: power and space consumption, as well as 
metrics that relate that consumption to the work 
completed. Power efficiency is of particular 
importance to most trading firms.  A vendor cannot 
simply “throw hardware at the benchmark” without 
suffering in the efficiency metrics. 

c) Quality: metrics specific to each calculation that 
indicate the usefulness of the calculated results.  
There are well-known tradeoffs between quality and 
speed. There are also legitimate reasons for firms to 
pick different points on that tradeoff curve.  STAC-
A2 quantifies the quality of the implementation being 
tested, as described in Section II. 

d) Programming difficulty: how easily a given 
developer could re-create the implementation. The 
complexity of writing high-performance code is 
widely assumed to vary considerably by architecture. 
And the productivity of risk-analytics developers is 
crucial to technology buyers, since these developers 
tend to be highly paid. However, programming 
difficulty is hard to measure and depends on the 
context within a given trading firm. STAC-A2 lets 
trading firms draw their own conclusions by 
requiring any vendor disclosing results to make the 
source code of its implementation available within 
the STAC Benchmark Council (with the exception of 
code beneath productized interfaces). 

V.   EXAMPLE USE OF BENCHMARKS 

Intel has created a STAC-A2 implementation for the latest 
x86 instruction set using components of Intel® Parallel Studio 
XE[10] such as the Intel® Math Kernel Library and Intel® C++ 
Composer XE. This implementation makes use of Advanced 
Vector Extensions (Intel® AVX) on those chipsets able to take 
advantage of it. Intel® AVX is a 256-bit extension to SSE and 
helps to improve performance of floating point intensive 
applications due to wider vectors and rich functionality. 
Optimization of the Intel x86 implementation is on-going.  
Results are not official and cannot be fairly compared to other 
vendors’ results at this stage.  However, STAC has authorized 
release of preliminary results to facilitate discussion of the 
STAC-A2 specifications as they proceed toward ratification. 

While not finalized, the current Intel implementation has 
proven useful for comparing Intel architectures, as demon-
strated in the following sections. 

A. Speed Results 

Intel compared two systems:  
 System 1, running Intel® Xeon® X5680, 3.33 GHz, 2 

sockets x 6 cores with 24 GB RAM and 12 MB LLC 
(codenamed Westmere EP).  

 System 2, running Intel® Xeon® E5-2690, 2.9 GHz, 2 
sockets x 8 cores with 64GB RAM and 20 MB LLC 
(codenamed Sandybridge EP). 

Each system had the highest clockspeed available and the 
most 1333 MHz DRAM that could be accommodated by its 
processor.  Both systems ran Red Hat Enterprise Linux 6.1. 

As Table 1 and Figure 1 illustrate, System 2 demonstrated 
a 33% to 76% speed advantage over System 1. The difference 
increased with the number of Monte Carlo paths (except at 
200,000 paths). 

TABLE I.  STAC-A2.V0.5.GREEKS.* RESULTS (IN SECONDS)                     
WITH VARYING PATHS (5 ASSETS, 10 TIMESTEPS) 

 Number of Paths 
 5K 10K 100K 150K 200K 

System 1 0.11 0.23 2.75 4.13 5.66 
System 2 0.07 0.14 1.62 2.35 3.32 

 
Intel® 64 mode, KMP_AFFINITY=compact, LP64 mode of Intel® MKL.             
Build options: icl –xSSE4.2 –openmp (System 1), icl –xAVX –openm (System 2). 



 
Figure 1 – Relative Speed of Intel Architectures                                         

using STAC-A2.v.0.5.GREEKS.* 

The improvement in these compute- and memory- 
intensive benchmarks is due in part to architectural improve-
ments in the CPU, a higher core count, and using Intel® AVX 
on System 2 (which supports AVX) and Intel® SSE on System 
1.  The workload fit within 24GB RAM, so the extra memory 
in System 2 is not believed to have contributed. 

B.  Capacity and Efficiency Results 

Table II compares Systems 1 and 2 using capacity and 
efficiency tests from STAC-A2. The asset-capacity test 
determines the maximum number of assets for which Greeks 
can be calculated within a 10-minute window. System 1 was 
capable of handling 66 assets, while System 2 handled 79.  
This 20% improvement in asset capacity masks a greater 
underlying increase in compute capacity, since the workload 
increases roughly quadratically with the number of assets. 

Table II also shows the difference in power efficiency 
when these systems run at their maximum asset loads. The fact 
that System 2 completed significantly more work with slightly 
less power consumption than System 1 translates into an asset-
efficiency improvement of 21%.  That is, given a fixed power 
budget, a manager could expect System 2 to process risk for a 
portfolio 21% larger than on System 1. 

TABLE II.  COMPARISON OF INTEL ARCHITECTURES USING                        
STAC-A2.V0.5.GREEKS.CAPACITY AND                                        

STAC-A2.V0.5.GREEKS.EFFICIENCY 

 
System 1 System 2 

Percentage 
difference 

Mean Watts consumed 380 375 -1% 

Kilojoules consumed 228 225 -1% 

ASSET CAPACITY 
(Assets completed) 

66 79 20% 

ASSET EFFICIENCY 
(Assets per kilojoule) 

0.29 0.35 21% 

 
10 time steps, 10K paths.  Intel(R) Composer XE 2013.  Intel® 64 mode, 
KMP_AFFINITY=compact, LP64 mode of Intel® MKL.  Build options: icl –xSSE4.2 
–openmp (System 1), icl –xAVX –openm (System 2).   

C. Scaling Results 

The Intel x86 implementation defines scales in terms of 
threads, in powers of two.  Figure 2 is one example of a scale 
curve, in this case plotting the speed at which a set workload 

can be executed at six different scales.  As expected, 
additional threads increase the speed until they exceed the 
number of cores available (in System 1). 

 
Figure 2 – Speed vs SUT Scale (Threads) for Intel Architectures                                   

using STAC-A2.v.0.5.GREEKS.* 

D. Quality Results 

Intel’s implementation scores high on the STAC-A2 
quality metrics.  For example: 
 The Anderson-Darling statistic for the output of the unit 

normal random number generation benchmark converted 
to a p-value of 0.92, which indicates very high 
confidence that the generator was, in fact, Gaussian. 

 The root-mean-square error between observed and 
theoretical values for the mean Heston price and 
variance of Heston price were 0.06% and 0.04%, 
respectively.  Figures 3 and 4 plot the observed and 
theoretical values. 

E. Programming Difficulty 

In conformance with STAC-A2 requirements, Intel is in 
the process of submitting the source code of its 
implementation to the STAC Benchmark Council for 
inspection by members. 
 

 
Figure 3 – Observed and Theoretical Mean Heston Prices 
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