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Abstract

This paper addresses a supervisory control problem for uncertain timed discrete event systems (DESs) under partial observation. An uncertain
timed DES to be controlled is represented by a set of possible timed models based on the framework of Brandin and Wonham [(1994).
Supervisory control of timed discrete event systems. IEEE Transactions on Automatic Control, 39(2), 329–342]. To avoid the state space
explosion problem caused by tick events in the timed models, a notion of eligible time bounds is proposed for a single timed model obtained
from the set of all possible timed models. Based on this notion, we present the necessary and sufficient conditions for the existence of a robust
supervisor achieving a given language specification for the single timed model. Moreover, we show that the robust supervisor can also achieve
the specification for any timed model in the set.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since Brandin and Wonham (1994) proposed a supervisory
control framework for timed discrete event systems (DESs)
based on a tick event and a forcing mechanism, various studies
on supervisory control of timed DESs have been accomplished
within this framework (Lin & Wonham, 1995; Takai, 2000;
Takai & Ushio, 2006). However, the introduction of the tick
event often leads to the problem of state space explosion. To
avoid such a state space explosion, Brandin (1998) has proposed
to incorporate the timing information of states into timer vari-
ables under complete observation. On the other hand, Park and
Cho (2006) have proposed the notion of eligible time bounds
to investigate the supervisor existence problem under partial
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observation. However, the issue of partial observation and
model uncertainty has not yet been properly addressed till this
date in consideration of the state space explosion problem in
spite of its practical importance in many real situations.

This paper addresses the supervisory control problem of sati-
sfying a given language specification imposed on a timed DES
under partial observation and model uncertainty. The timed
model proposed by Brandin and Wonham (1994) is employed in
this paper as a basic framework since the language-based super-
visory control of Ramadge and Wonham can be easily adopted
within this framework. In addition, we introduce the uncertainty
modeling of Bourdon, Lawford, and Wonham (2005) to repre-
sent an uncertain timed DES by a set of possible timed models.
In consideration of such a model uncertainty, Takai (2000) has
also presented the robust supervisory control of timed DESs
under partial observation. It was, however, based on the timed
model of Brandin and Wonham (1994) and thereby the state
space explosion problem still remains as a crucial issue. Hence,
we investigate the robust supervisory control problem of un-
certain timed DESs by introducing the notion of eligible time
bounds to avoid such a state space explosion problem. The

http://www.elsevier.com/locate/automatica
mailto:parksjin@ajou.ac.kr
mailto:ckh@kaist.edu


876 S.-J. Park, K.-H. Cho / Automatica 44 (2008) 875–881

primitive notion of eligible time bounds was introduced in Park
and Cho (2006) under partial observation. We extend the no-
tion of eligible time bounds to the case of partial observation
and model uncertainty. To develop the main idea in a more
concise way, we represent a given set of possible timed mod-
els by a single timed model, and investigate the controllability
and observability properties of a language specification from
the single timed model. Finally, we show that the resulting con-
trollability and observability properties become the necessary
and sufficient conditions for the existence of a robust super-
visor that can achieve a given language specification for any
model in the set of possible timed models.

2. Uncertain timed DESs

An uncertain timed DES G considered in this paper is as-
sumed to be modeled by a set of possible timed models as
follows: G := {Gi |i ∈ I } where I = {1, . . . , n}. The timed
models are based on the framework of Brandin and Wonham
(1994). For each timed model Gi , an activity model describing
its logical behavior is represented by a finite state automaton
Gi,act = (Ai, �i,act, ai,0, �i,act) where Ai is the set of activity
states, �i,act is the set of activity events, ai,0 is the initial activ-
ity state, and �i,act : Ai × �i,act → Ai is the activity state tran-
sition (partial) function. Each event � in �i,act is assigned with
a lower time bound l(�) ∈ N and an upper time bound u(�) ∈
N ∪{∞} where N is the set of natural numbers. From the activ-
ity model and time bounds, the timed model can be represented
by the following finite state automaton: Gi = (Qi, �i , qi,0, �i )

where Qi is the set of states, �i is the set of events, qi,0 is
the initial state, and �i : Qi × �i → Qi is the state transition
function (refer to Brandin & Wonham, 1994, for more detailed
definitions of its transition structure). The set �i is decom-
posed into �i =�i,act ∪{tick} in which the event tick represents
the tick of the global clock. The set �i,act is further classified
as �i,act = �i,c∪̇�i,uc = �i,o∪̇�i,uo (∪̇ means a disjoint union)
where �i,c is the set of controllable events, �i,uc is the set of
uncontrollable events, �i,o is the set of observable events, and
�i,uo is the set of unobservable events. Furthermore, there is a
set �i,for (⊆ �i,act) of forcible events which can preempt the
tick event by forcing action of a supervisor.

To develop the main results in a more concise way, we con-
sider a single timed model G with its activity model Gact as
follows: Gact = (A, �act, a0, �act) where A = (∪i∈IAi) ∪ {a0},
�act = (∪i∈I�i,act) ∪ {�1, . . . , �n}, a0 is the initial state, and
�act : A×�act → A is the transition function (�act(a0, �i )=ai,0
for all i ∈ I and �act is the same as �i,act for any other activity
state a ∈ ∪i∈IAi). The hypothetical events �i’s are adopted to
discern Gi,act’s in the single model Gact. The timed model G is
then defined as follows: G= (Q, �, q0, �) where Q is the finite
set of states, �= (∪i∈I�i )∪{�1, . . . , �n}, q0 is the initial state,
and � : Q × � → Q is the transition function as defined by
Brandin and Wonham (1994). The hypothetical events �i’s are
assumed to be uncontrollable and unobservable with zero time
bounds, i.e., l(�i ) = u(�i ) = 0 for all i ∈ I . In addition, we let
�c =∪i∈I�i,c, �uc = (∪i∈I�i,uc)∪{�1, . . . , �n}, �o =∪i∈I�i,o,
�uo = (∪i∈I�i,uo) ∪ {�1, . . . , �n}, and �for = ∪i∈I�i,for.

Let �∗
act and �∗ denote the set of all finite strings of elements

in �act and �, respectively, including the empty string �. Then,
we can define two projections Po and Pact as follows: Po :
�∗

act → �∗
o is defined as (i) Po(�) = �, (ii) for s ∈ �∗

act and � ∈
�act, Po(s�)=Po(s)� if � ∈ �o, and Po(s�)=Po(s) otherwise,
and Pact : �∗ → �∗

act is defined as (i) Pact(�)=�, (ii) for s ∈ �∗
and � ∈ �, Pact(s�) = Pact(s)� if � �= t ick, and Pact(s�) =
Pact(s) otherwise. Let ticki denote the string of ticks with length
i. For instance, tick2 = tick tick. The prefix closure of a language
L (⊂ �∗) is pr(L) := {t ∈ �∗|tu ∈ L for some u ∈ �∗},and L
is said to be closed if L=pr(L). For s ∈ �∗, let �L(s) := {� ∈
�|s� ∈ pr(L)}. The closed behaviors of Gact and G are defined
by L(Gact) := {s ∈ �∗

act|�act(a0, s) is defined} and L(G) :=
{s ∈ �∗|�(q0, s) is defined}, respectively. We let L(Gact)=Lact
and L(G) = L for short.

3. Eligible time bounds

We first define an eligible lower time bound (el) and an
eligible upper time bound (eu) as follows:

Definition 1. Let s ∈ �∗
act and � ∈ �act. Then el(s, �) and

eu(s, �) are the minimum and maximum values, respectively, of
k satisfying �(q, tickk�) ∈ Q for any v ∈ P −1

act (s) ∩ L ∩ �∗�act
with q = �(q0, v).

After the occurrence of the last activity event of s, the event
� can occur after at least el(s, �) and before at most eu(s, �)

occurrences of a tick, respectively. The formula of computing
the eligible time bounds is as follows: For s, t ∈ Lact, �0 ∈
�act ∪ {�}, and �1, . . . , �n ∈ �act, let s = t�0�1 . . . �n. Then,
an event � ∈ �act is called impending at s if the following
conditions are all satisfied:

(i) �k �= � for all k = 1, . . . , n;
(ii) � ∈ �Lact (t�0�1 . . . �k) for all k = 0, 1, . . . , n;

(iii) � /∈ �Lact (t)\{�0} or t = �0 = �.

For s ∈ Lact and an impending � at s, let

Al(s, �) :=
n−1∑
k=0

el(t�0 . . . �k, �k+1),

Au(s, �) :=
n−1∑
k=0

eu(t�0 . . . �k, �k+1).

For non-impending � at s, we define Al(s, �)=Au(s, �)=0. The
values Al(s, �) and Au(s, �) mean the minimum and maximum
time elapses, respectively, from the first activation of � at t�0
until the occurrence of �n. Let

C(s) := min
�∈�Lact (s)

(u(�) − Al(s, �)).

Then, for all � ∈ �Lact (s), we can compute the eligible time
bounds as follows:

el(s, �) =
{

l(�) − Au(s, �) if l(�) − Au(s, �)�C(s),

undefined otherwise,
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eu(s, �) =
{

C(s) if l(�) − Au(s, �)�C(s),

undefined otherwise.

We call an event � feasible at the string s if el(s, �) is defined.
We note that the computation of el and eu only requires

searching over Lact and the time bounds of events. It does
not require searching over L which can cause the problem of
state space explosion. For any s ∈ Lact, the computation of
el and eu for each event requires to check whether the event
is impending. If so, Al and Au can be computed, and then el
and eu can be computed by using the above formulae. Thus,
the computational complexity of computing the eligible time
bounds in G is O(|A| · 5|�act|).

Since the eligible time bounds are not enough to properly
describe the behavior of timed DESs under partial observation,
it is necessary to extend those to the case of partial observation
as follows.

Definition 2. For s ∈ Lact and � ∈ �act, let s=t�o�1 . . . �n and
�n+1 =� where t ∈ �∗

act, �o ∈ �o, and �1, . . . , �n ∈ �uo. Then,
an eligible lower time bound (elp) and an eligible upper time
bound (eup) under partial observation are defined, respectively,
as follows:

elp(s, �) := el(t�o, �1) +
n∑

k=1

el(t�o�1 . . . �k, �k+1),

eup(s, �) := eu(t�o, �1) +
n∑

k=1

eu(t�o�1 . . . �k, �k+1).

For s ∈ Lact satisfying Po(s) = �, the string t�o in the
above definition is replaced with �. The values of elp(s, �) and
eup(s, �) imply that, after the occurrence of the last observable
event �o of s, the event � should occur after at least elp(s, �) and
before at most eup(s, �) occurrences of the tick, respectively.

4. Existence conditions of a robust supervisor

A supervisor S = (V , Ie, If , 	) is defined by V : �∗
o → 2�act ,

Ie : �∗
o × �act → 2N , If : �∗

o × �for → 2N , and 	 : �∗
o → N .

For so ∈ �∗
o, V (so) is the set of events to be enabled or forced

by the supervisor after the observation of so. Note that V (so) ⊇
�uc since the uncontrollable events are permanently enabled.
The supervisor enables an event � ∈ V (so) if the value of a
timer 	(so) belongs to Ie(so, �), otherwise the event is disabled.
In addition, the supervisor forces an event � ∈ V (so) if � ∈ �for
and the timer value 	(so) belongs to If(so, �).

A supervised system S/G denotes the timed DES G under
control by the supervisor S. The closed behavior of S/G de-
noted by L(S/G) is defined based on induction as follows: (i)
� ∈ L(S/G) and 	(�) = 0, (ii) for s ∈ �∗ and � ∈ �, suppose
that s ∈ L(S/G) and s� ∈ L with Pact(s)= sa and Po(sa)= so,
then

(1) in case � ∈ V (so) and 	(so) ∈ Ie(so, �) ∪ If(so, �), s� ∈
L(S/G) and 	(so�) = 0 if � ∈ �o, otherwise 	(so) is un-
changed;

(2) in case � = t ick and k < eu(sa, 
) for all 
 ∈ �Lact (sa)

(where s = s′�tickk and � ∈ �act), s� ∈ L(S/G) and 	(so)

is updated to 	(so) + 1.

Given a closed language specification K̃ ⊆ ⋂
i∈IL(Gi,act)

for an uncertain timed DES G := {Gi |i ∈ I }, we investi-
gate the existence conditions of a robust supervisor S such
that Pact(L(S/Gi)) = K̃ for any Gi ∈ G. For the single
timed model G, it is evident that this problem is equivalent
to finding the existence conditions of a robust supervisor
S satisfying Pact(L(S/G)) = pr({�1, . . . , �n}K̃). Let K :=
pr({�1, . . . , �n}K̃) which denotes the closed language specifi-
cation to be achieved in G. We assume that K is feasible with
respect to (w.r.t.) G; i.e., for any s ∈ K , every event � ∈ �K(s)

is feasible at the string s.
To develop the existence conditions of a robust supervisor,

it is necessary to introduce the following notions. First, for a
string s ∈ K , let

B(K, s)

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
�∈(�Lact (s)\�K(s))∩�uc

elp(s, �) if there exists

a feasible � ∈ (�Lact (s)

\�K(s)) ∩ �uc,

∞ otherwise.

Note that this is the minimum value of elp’s for the uncontrol-
lable events deviated from a path of K after s in G. For the
language K to be achieved in G, there should exist a forcible
event on the path of K after s with an elp value smaller than
B(K, s).

Let two strings si, sj ∈ K satisfy Po(si) = Po(sj ). Then, a
binary relation 
K is defined as sj
Ksi iff

(i) there is no feasible � ∈ (�Lact (sj )\�K(sj )) ∩ �uc with
elp(sj , �) < B(K, si), and

(ii) � ∈ �Lact (sj ) and elp(sj , �) < B(K, si) for at least one
� ∈ �K(si) ∩ �for satisfying elp(si, �) < B(K, si).

For the two different strings si and sj with an identical obser-
vation, if the relation sj
Ksi holds then, after si in G, there
always exist at least one uncontrollable event not belonging
to �K(si) and at least one forcible event belonging to �K(si).
Moreover, after sj in G, there exists a forcible event belonging
to �K(si) with its elp value smaller than B(K, si). Thus, when
a supervisor forces a forcible event before B(K, si), the event
tick is preempted by the forcible event after si and sj .

For a string so ∈ Po(K), let |so|K := {s ∈ �∗
act|s ∈

K and Po(s) = so} which can be partitioned into |so|K =
g1∪̇g2∪̇ · · · ∪̇gm∪̇f l, where

• gk (k = 1, . . . , m) is the set of elements satisfying sj
Ksi
for some si ∈ gk and any sj ∈ gk (such an si is defined as a
master of gk);

• fl is the set of elements satisfying si /
Ksj , sk /
Ksi , and
si /
Ksk for any si, sj ∈ f l (si �= sj ) and a master sk of gk;
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• if si and sj are the masters of gi and gj , respectively, then
si /
Ksj and sj /
Ksi .

After a string sj satisfying sj ∈ gk , at least one forcible event
defined after si (si is the master of gk) is enabled before the
minimum value of elp’s for the uncontrollable events defined
after si in G while not belonging to �K(si).

Based on the aforementioned notions, we consider the con-
trollability and observability of a language specification as
follows.

Definition 3. A closed language K(⊂ �∗
act) is controllable

w.r.t. an uncertain timed DES G if the following conditions
hold for any s ∈ K:

(i) in case there exists a feasible � ∈ (�Lact (s)\�K(s))∩�uc,
there exists � ∈ �K(s) ∩ �for with elp(s, �) < B(K, s),

(ii) in case s ∈ gk for some gk with a master sm, �K(s)={� ∈
�K(s)|elp(s, �) < B(K, sm)}.

The controllability condition implies that, when there are
illegal uncontrollable events deviated from a path of K after
a string s, there must be a legal forcible event � after s such
that the value elp(s, �) is smaller than B(K, s). Moreover, for
any string after which the forcible event � is defined, the set of
legal events after the string with their elp’s less than B(K, sm)

must be identical with the set of legal events after the string.
For s ∈ K and � ∈ �act, let

T (K, s, �)

:=

⎧⎪⎨
⎪⎩

{l∈N |elp(s, �)� l<B(K, sm)} if s∈gk for some

gk with a master sm,

{l∈N |elp(s, �)� l�eup(s, �)} otherwise.

Definition 4. A closed language K (⊂ �∗
act) is observable w.r.t.

an uncertain timed DES G if, for any � ∈ �c and s1, s2 ∈ K

with Po(s1) = Po(s2), s1� ∈ K , and s2� ∈ Lact, the following
conditions hold: (i) s2� ∈ K; (ii) T (K, s1, �)∩T (K, s2, �)=∅
if s2� /∈ K .

The observability condition states that, for the two different
strings s1 and s2 with an identical observation, there should be
no conflict by the event � in making a control decision, i.e.,
s1�, s2� ∈ K . If there is a conflict by the event, it requires that
there should be no time instant at which the conflicted event
is enabled either after s1 or s2. For the case of s2� /∈ K , the
conflict can be avoided by disabling the event � during the time
interval T (K, s2, �).

Let us discuss the computational complexity of verifying
the presented controllability and observability conditions. First,
we note that for each s ∈ K , � ∈ �act, the values such as
elp(s, �), eup(s, �), B(K, s), and T (K, s, �) can be computed
separately in prior steps. For real implementations, these can
be stored in a certain memory location associated with the
pointer (s, �) as a data structure form. Hence, to check the
conditions, only the values of the associated data structure

for each (s, �) need to be compared, e.g., whether the value
elp(s, �) is less than B(K, si) (the condition (i) in Definition
3) or whether T (K, s1, �) ∩ T (K, s2, �) is an empty set or not
(the condition (ii) in Definition 4). Therefore, the computational
complexity of verifying the controllability condition becomes
O(m · |A| · |�act|) and that of the observability condition be-
comes O(m2 · |A| · |�act|) where m denotes the number of states
of the automaton that recognizes the language K . Thus, check-
ing the conditions does not require searching over the states
set Q with tick transitions. On the other hand, the approach of
Takai (2000), in a worst case, requires searching over p|Ai |
states of Qi in each Gi where p is the finite maximum upper
time bound of events, which therefore results in the computa-
tional complexity of O(m · p2 · |A| · |�act|) for controllability
and O(m2 · p3 · |A| · |�act|) for observability, respectively.

The following two theorems present the main results of this
paper based on the foregoing developments.

Theorem 1. For a closed language specification K (⊆ Lact),
there exists a robust supervisor S for an uncertain timed DES
G such that Pact(L(S/G)) = K if and only if K is controllable
and observable w.r.t. G.

Proof. (If) Consider the following supervisor S=(V , Ie, If , 	):
for any so ∈ Po(K),

V (so) = {� ∈ �c|sa ∈ |so|K and sa� ∈ K} ∪ �uc,

Ie(so, �) =
⋃

sa∈|so|K
T (K, sa, �) for � ∈ V (so),

If(so, �) = {l ∈ N |l = B(K, sm) − 1

for sm ∈ |so|K, � ∈ �K(sm)

and a master sm of some gk},
	(�) = 0.

The proof can be done by induction on the length of strings.
It holds that � ∈ Pact(L(S/G)) ∩ K . Let us assume that, for
any string sa with |sa|�n, sa ∈ Pact(L(S/G)) if and only if
sa ∈ K where |sa| denotes the length of sa. Let us prove the
same for strings of sa� where |sa| = n and � ∈ �act. Suppose
s ∈ L(S/G), Pact(s) = sa, and Po(sa) = so. We first consider
sa� ∈ Pact(L(S/G)) and assume that sa� /∈ K . Then, we obtain
� ∈ V (so) by the definition of S. Let us consider the following
two cases.

Case 1: � ∈ �c: The relations sa� ∈ Pact(L(S/G)), � ∈
V (so), and sa� /∈ K imply that there exists s′ ∈ |so|K such that
s′� ∈ K and T (K, sa, �) ∩ T (K, s′, �) �= ∅. It contradicts the
observability assumption of K .

Case 2: � ∈ �uc: Since K is controllable, there exists a fea-
sible � ∈ �K(sa) ∩ �for satisfying elp(sa, �) < B(K, sm) for
some master sm. By the above definition of If , it follows that
B(K, sm)−1 ∈ If(so, �). Then, the supervisor S forces the event
� when 	(so)=B(K, sm)−1, which results in stickj� /∈ L(S/G)

for any j. Thus it holds that sa� /∈ Pact(L(S/G)) which contra-
dicts the assumption.



S.-J. Park, K.-H. Cho / Automatica 44 (2008) 875–881 879

In the next, let sa� ∈ K . Then, if sa ∈ gk for some
gk with a master sm, the controllability of K implies
elp(sa, �) < B(K, sm), otherwise it naturally holds that
elp(sa, �)�eup(sa, �). For both cases, it holds that T (K, sa, �)

⊆ Ie(so, �) by the above definition of Ie. Hence, when the
timer 	(so) reaches a value in Ie(so, �), the event � is enabled
by the supervisor S and as a result s� ∈ L(S/G). It then fol-
lows that sa� ∈ Pact(L(S/G)). This completes the proof of the
whole induction steps.

(Only if) Assume that a robust supervisor S satisfies
Pact(L(S/G)) = K . First, let us prove that K is controllable
w.r.t. G based on a contradiction principle. According to the
definition of controllability, the following two cases can be
considered.

Case 1: For some s ∈ K satisfying (�Lact (s)\�K(s))∩�uc �=
∅, assume that there does not exist any feasible � ∈ �K(s)∩�for
satisfying elp(s, �) < B(K, s). Then, according to the defini-
tion of B(K, s), there exists � ∈ (�Lact (s)\�K(s)) ∩ �uc satis-
fying elp(s, �) = B(K, s). In order to avoid the occurrence of
� after s, the supervisor should force a forcible event before its
timer 	 reaches the value B(K, s). However, there is no feasi-
ble forcible event after s and therefore the occurrence of � is
not avoidable, i.e., s� ∈ Pact(L(S/G)). Since s� /∈ K , it is a
contradiction.

Case 2: For some s ∈ K , assume that �K(s) �= {� ∈
�K(s)|elp(s, �) < B(K, sm)} where sm is a master of some
gk with s ∈ gk . Then, there exists � ∈ �K(s) satisfy-
ing elp(s, �)�B(K, sm). This means that there exists � ∈
(�Lact (s)\�K(s)) ∩ �uc with elp(sm, �)�elp(s, �) by the
definition of B(K, sm). Further, it follows from s� ∈ K

and Pact(L(S/G)) = K that s� ∈ Pact(L(S/G)) implying
� ∈ V (so) and elp(s, �) ∈ Ie(so, �). Since � ∈ �uc, it is true
that � ∈ V (so). Hence, in order to avoid the occurrence of �
after sm, the supervisor S should force a forcible event be-
fore its timer value 	(so) reaches B(K, sm). However, since
elp(sm, �)�elp(s, �), the forcing action prevents the occur-
rence of � after s, i.e., s� /∈ Pact(L(S/G)). This is a contradic-
tion to the assumption of Pact(L(S/G)) = K .

From the above cases, we conclude that K is controllable
w.r.t G.

To verify the observability, let us assume that s2� /∈ K and
T (K, s1, �) ∩ T (K, s2, �) �= ∅ for some � ∈ �c and s1, s2 ∈
K with Po(s1) = Po(s2), s1� ∈ K , and s2� ∈ Lact. Then,
s2, s1� ∈ Pact(L(S/G)) from Pact(L(S/G))=K . This implies
that the supervisor S enables the event � when its timer reaches
a value in T (K, s1, �). Since T (K, s1, �) ∩ T (K, s2, �) �= ∅,
the supervisor also enables the event � after the string s2 when
its timer reaches a value in T (K, s1, �) ∩ T (K, s2, �) �= ∅.
Note that this is the time instant at which the event � is si-
multaneously enabled after s1 and s2. Thus, it holds that s2� ∈
Pact(L(S/G)). However, since s2� /∈ K , it is a contradiction to
Pact(L(S/G)) = K . Therefore, we conclude that K is observ-
able w.r.t. G. �

Remark 1. Note that if the conditions of Theorem 1 are satis-
fied then a robust supervisor achieving K can be automatically
designed from Po(K), B(K, ·), and T (K, ·, ·) as shown in the

‘If’ part of the proof. In this respect, the proof of Theorem 1 is
constructive.

The following theorem shows that a robust supervisor achiev-
ing a language specification for a single model G also achieves
the specification for any model Gi in G.

Theorem 2. Given a closed language specification K̃ ⊆⋂
i∈IL(Gi,act) for an uncertain timed DES G := {Gi |i ∈ I }

and K := pr({�1, . . . , �n}K̃), if a robust supervisor S satisfies
Pact(L(S/G)) = K , then Pact(L(S/Gi)) = K̃ for any Gi ∈ G.

Proof. From the definition of the single timed model G, it holds
that

Pact(L(S/G))

= {�} ∪ {�1}Pact(L(S/G1)) ∪ {�2}Pact(L(S/G2))

∪ · · · ∪ {�n}Pact(L(S/Gn)).

In addition, it follows from K := pr({�1, . . . , �n}K̃) that

Pact(L(S/G)) = K = {�} ∪ {�1}K̃ ∪ {�2}K̃
∪ · · · ∪ {�n}K̃ .

Hence, it follows that Pact(L(S/Gi))= K̃ for any Gi ∈ G. �

There have been various studies including Maler, Pnueli, and
Sifakis (1995) and Tripakis and Altisen (1999) on the controller
synthesis by using symbolic representations in the formal meth-
ods community. The studies were primarily based on dense-
time models such as timed automata which can resolve the state
space explosion problem of discrete-time models (e.g., timed
transition models of Brandin & Wonham, 1994). However, most
of the studies in the formal methods community focused on the
state-based approach while this paper focuses on the language-
based approach. For a language specification K , considering
two different strings s1, s2 (∈ K) reachable to one state q (i.e.,
�act(a0, s1) = �act(a0, s2) = q), the eligible time bounds for an
event � defined at the reachable state can be different for the two
strings, i.e., el(s1, �) �= el(s2, �) or eu(s1, �) �= eu(s2, �). This
makes it difficult to specify eligible time bounds in terms of
states. Although the language specification problem addressed
in this paper can still be dealt with in timed automata mod-
els by using the formal methods such as on-the-fly algorithms
and time-abstracting bisimulations (Tripakis & Altisen, 1999),
the resulting presentation would be inevitably complicated as
in this paper if we consider timed languages.

5. Example

To illustrate the main idea of this paper, we consider an un-
certain timed DES G={G1, G2} with the activity models G1,act,
G2,act and the single activity model Gact as shown in Fig. 1. The
time bounds of the events are as follows: (d1, 1, 1), (d2, 1, 1),
(d3, 1, 1), (d4, 1, 1), (a, 1, ∞), (b, 2, ∞), and (c, 2, 3) where
(d1, 1, 1) means l(d1) = 1 and u(d1) = 1. It is assumed that
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Fig. 1. The single activity model Gact .
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Fig. 2. The elp values.

�c = {a, b}, �o = {a, b, c}, and �for = {a}. The elp values for
some strings are shown in Fig. 2 where elp(�1d3d4, b) = 3 is
computed as follows: First, the event b is impending at �1d3d4
since b ∈ �Lact (�1d3)∩�Lact (�1d3d4). We notice that there are
no impending events except the event b at �1d3d4. Then,

Al(�1d3d4, b) = el(�1d3, d4) = l(d4)

− Au(�1d3, d4) = 1 − 0 = 1,

Au(�1d3d4, b) = eu(�1d3, d4) = C(�1d3)

= min(u(b)−Al(�1d3, b), u(d4)−Al(�1d3, d4))

= min(∞ − 0, 1 − 0) = 1,

C(�1d3d4)= min(u(b)−Al(�1d3d4, b), u(c)−Al(�1d3d4, c))

= min(∞ − 1, 3 − 0) = 3,

el(�1d3d4, b) = l(b) − Au(�1d3d4, b) = 2 − 1 = 1,

elp(�1d3d4, b) = el(�, �1)

+el(�1, d3)+el(�1d3, d4)+el(�1d3d4, b)

= 0 + 1 + 1 + 1 = 3.

We consider a language K̃1=pr({d1a, d1b, d2b, d3d4c}) and
then K1=pr({�1, �2}K̃1)=pr({�1d1a, �1d1b, �1d2b, �1d3d4c,

�2d1a, �2d1b, �2d2b, �2d3d4c}). For s = �2d1 ∈ K1, it follows
that c ∈ (�Lact (s)\�K1(s))∩�uc and B(K1, s)= elp(s, c)= 3.
Through computations using this value, it turns out that
|�|K1 = g1 ∪ f l where g1 = {�1, �2}{d1, d2} (s = �2d1 is
a master of g1). Then, it holds that �K1(s) = {a, b}, but
{� ∈ �K1(s)|elp(s, �) < B(K1, s)} = {a} since elp(s, a) = 2
and elp(s, b) = 3 = B(K1, s). Thus, K1 is not controllable
w.r.t. G. Moreover, for s1 = �1d3d4 and s2 = �2d2 satisfying
Po(s1) = Po(s2) = �, it holds that s1c ∈ K1, s2c /∈ K1, but
T (K1, s1, c) ∩ T (K1, s2, c) = {4, 5} ∩ {3, 4} = {4} �= ∅. Hence,
K1 is not observable w.r.t. G.

Throughout a similar procedure as in the above, we can show
that for K̃2 = pr({d1a, d2c, d3d4c}), K2 = pr({�1, �2}K̃2) is
controllable and observable w.r.t. G. Then, according to The-
orems 1 and 2, there exists a robust supervisor S satisfying
Pact(L(S/Gi)) = K̃2 for i = 1, 2. The supervisor can be de-
signed following the definition presented in the ‘if’ part of the
proof of Theorem 1. For instance, if there is no observed event
at the initial state, V (�)={a}∪�uc, Ie(�, a)=T (K2, �1d1, a)∪
T (K2, �2d1, a) = {2} ∪ {2} = {2}, Ie(�, c) = T (K2, �1d2, c) ∪
T (K2, �2d2, c)∪T (K2, �1d3d4, c)∪T (K2, �2d3d4, c)={3, 4}∪
{3, 4}∪{4, 5}∪{4, 5}={3, 4, 5}, and If(�, a)={B(K2, �2d1)−
1} = {3 − 1} = {2}. If the timer 	(�) reaches 2, the supervi-
sor forces the event a to prevent the occurrence of the event c
when d1 has occurred. If d2 has occurred, the forcing of the
event a does not influence the occurrence of the event c since
the forcible event a is not defined after d2.

6. Conclusions

In this paper, we have shown that the controllability and
observability are the existence conditions of a robust supervisor
that can achieve a language specification for an uncertain timed
DES. The results have been developed based on the notion of
eligible time bounds in order to avoid the state space explosion
problem of timed models.
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