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A method is proposed to determine the phase-volume fractions in tomographic
representations of two-phase systems. The method is applicable in cases where no
independent mean values for the phase-characteristic property (a) are available,
such as in standard X-ray computed tomography (CT) using a polychromatic
source. The proposed procedure is based on ®tting a sum of three parametric
expressions to the histogram of a-values. The terms include two normal proba-
bility-density functions to account for noisy pure-phase values, and an analytical
expression to account for intermediate values due to interface-containing voxels
and blurring. To test the method, it was applied to several X-ray CT data sets of
two-phase systems with known volume fractions and varying a-ranges, including
a system with only about one standard deviation di�erence between the mean
phase a-values, i.e., with substantial overlap between the noisy pure-phase dis-
tributions. The accuracy for the considered cases was found to be approximately 2
vol% or better. As an example, the proposed ®tting procedure was used to de-
termine the representative elementary volume needed for porosity estimation of a
porous medium consisting of 0.5-mm glass beads. Ó 1999 Elsevier Science
Limited. All rights reserved

1 INTRODUCTION

Tomographic methods provide nondestructive cross-
sectional or three-dimensional object representations in
terms of a phase-characteristic property, such as elec-
trical capacitance or electrical resistance; absorption,
di�raction, or re¯ection of light; or emission of elec-
tromagnetic radiation from nuclei in response to exter-
nal magnetic ®elds (nuclear magnetic resonance)5. In
radiation-based (gamma or X-ray) computed tomo-
graphy (CT), which will be considered here, this prop-
erty is the speci®c attenuation of electromagnetic
radiation and depends on local atomic composition and
density within the object. Typically, the spatial resolu-
tion is between 0.01 and 10 mm. Computed tomography
has been successfully used to investigate the spatial
distribution of soil bulk density8 and soil-water con-

tent1,8,9, and to determine the porosity of rock cores11.
In addition, tomographic techniques have been applied
to study miscible displacement in porous media6,14, and
multiphase ¯ow15, including recent application to real-
time monitoring5.

A speci®c class of problems involves tomographic
data sets (or subsets) of spatial domains containing
exactly two phases. Examples include the investigation
of spatial variation of porosity in porous media, or the
measurement of gas bubbles in a liquid7. To determine
the phase-volume fractions for such data, the mean
values for the phase-characteristic property must be
known for each phase. These values can be theoretically
predicted only under certain conditions. For example,
in the case of radiation-based CT the atomic compo-
sition and density of both phases must be known and
the radiation must be monochromatic. This paper de-
scribes a method to identify the local phase-volume
fractions for all cases where independent mean values
are not available or not easily obtained, such as in
standard X-ray tomography using a polychromatic
source.
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2 THEORY

The subsequent analysis assumes the following precon-
ditions:

· The spatial domain of interest, D, contains two im-
miscible phases (e.g., solid and ¯uid). Volumetric
phase content is denoted by hA and hB for phases
A and B, respectively, with hA + hB � 1.

· A set of n nonoverlapping, equal-sized volume ele-
ments or voxels completely ®lls D.

· There exists a property a with distinct values aA

and aB (aA < aB) for phases A and B, respectively.
In radiation-based CT, a represents the linear at-
tenuation coe�cient with units of inverse length.

· A value ai has been obtained for each voxel i. The
complete set of n measured a-values is denoted by
a.

2.1 Voxel categories and volume fractions

If a were free of any noise and artifacts, an individual
value ai would belong to one of three subsets: A, pure
phase A (ai � aA); B, pure phase B (ai � aB); or M,
intermediate values (aA < ai < aB). Intermediate a-val-
ues occur for all voxels that contain a phase interface. In
addition, due to blurring, the spatial range of interme-
diate a-values usually extends over several voxels in the
direction normal to the interface orientation. The degree
of blurring in a depends on the sharpness of the indi-
vidual projections, i.e., on geometric factors such as size
of X-ray source and detectors. Denoting the number of
a-values in each subset by NA, NB, and NM, respectively,
three volume fractions can be de®ned as

/k �
Nk

n
k � A;B;M �1�

with
P

/k � 1. The expected value for a is given by

E�a� � /AE�A� � /BE�B� � /ME�M�; �2�
with

E�A� � aA and E�B� � aB: �3�
The a-value for a voxel containing an interface is as-
sumed to follow from linear interpolation between aA

and aB according to the fractioning of the voxel volume
between phases A and B. This is an approximation in-
asmuch as a nonlinear interpolation may be implied, for
example, by the partial-volume e�ect' in radiation-based
CT. This e�ect is related to the orientation of phase
interfaces relative to the beam direction for each pro-
jection within a scanning sequence. The theoretical av-
erage a-value based on the volume fractions for the
phases present within the voxel is a maximum value,
which represents the e�ective a-value only if beam and
interface are normal to each other. For all other align-
ments, the e�ective a-value is smaller, causing a theo-
retical bias toward aA in the measured a-values for all
voxels containing an interface. The e�ect is trivial if ai

ÿ1

is much larger than the voxel size10. The signi®cance of
the error due to linear interpolation thus depends on the
particular tomographic method used, but is in all cases
limited by /M.

The fraction /M contains volume contributions from
phases A and B, /M;A and /M;B, respectively, with
/M�/M;A + /M;B. If all intermediate values are due to
interface-containing voxels only (no blurring), the ex-
pected value for M is given as

E�M� � /M;A

/M

aA �
/M;B

/M

aB �4�
based on linear interpolation for each voxel. We will
assume that eqn (4) holds for a subject to blurring as
well, i.e., that the blurring is unbiased and does not af-
fect E(M). As a consequence, we require that the
boundaries of D do not coincide to any signi®cant de-
gree with a phase interface. Since volumetric phase
content values are given by

hk � /k � /M;k; k � A; B; �5�
it follows, after substituting (3) and (4) into (2), that

hA � aB ÿ E�a�
aB ÿ aA

and hB � E�a� ÿ aA

aB ÿ aA

: �6�
Consequently, hA and hB can be computed once E(a),

aA, and aB have been obtained. The value of E(a) is
easily calculated as

E�a� � 1

n

Xn

i�1

ai: �7�

For polychromatic radiation, the parameters aA and aB

cannot generally be predicted independently, but are
e�ective values depending on phase distribution and
beam energy spectrum. If the di�erence between aA and
aB is su�ciently large, relative to the noise, to prevent
signi®cant overlap between the probability-density
functions (PDF) of a-values in A and B, both parame-
ters may be estimated as the peak locations in the a-
histogram. If this is not the case, a statistically su�cient
number of voxels known with high certainty to represent
only one phase (i.e., from locations su�ciently far from
phase interfaces to not be a�ected by blurring) may be
possible to identify, and a mean e�ective a-value be es-
timated for the respective phase. As a faster and more
generally applicable alternative, we propose to obtain aA

and aB directly from the histogram of all measured a-
values by ®tting a parametric model PDF.

2.2 Development of model PDF

First, a is assumed to be free of noise. The probability-
density functions for the two distributions of pure-phase
a-values are then given by

f �k �a� � d�aÿ ak�; k � A; B;

where d(a) is the Dirac delta function. The distribution of
the intermediate a-values is not necessarily symmetric,
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but can be skewed towards either aA or aB, depending on
the geometry of the phase interfaces within the voxel set.
To describe the probability-density function f �M of this
generally unknown distribution, an expression is needed
that is ¯exible, simple and has few parameters. We
propose the following de®nition, which has the desired
properties:

f �M�a� �
�aÿaA�cA �aBÿa�cBRaB

aA

�aÿaA�cA �aBÿa�cB da

; aA6 a6 aB;

0; a < aA; aB < a:

8><>: �8�

The integral in the denominator ensures thatZ1
ÿ1

f �M da � 1;

while the two parameters cA and cB�cAcB > 0� allow for a
wide range of shapes for the distribution function.
Several examples are shown in Fig. 1 using the nor-
malized variable n that maps the interval [aA, aB] to [0,
1]. Note that switching cA and cB is equivalent to a
horizontal mirroring of the curve.

In general, a is not free of noise due to the random
nature of both photon emission and attenuation. Note
that this randomness is unrelated to any randomness in
the spatial distribution of A and B. To include noise in
a, we will assume that it is Gaussian10, with a variance
independent of a13. Gaussian noise acts as a convolution
kernel G on the probability-density functions for the
respective distributions of a-values in all three catego-
ries. Due to symmetry, G does not a�ect E(A), E(B), and
E(M), so that eqn (6) remain valid in the presence of
noise. Convolution of each f�k (k � A, B, M) with the
Gaussian kernel G of standard deviation r,

fk�a� � �f �k � G� �
Z 1

ÿ1
f �k �a0�G�a0 ÿ a�da0;

k � A; B; M �9�

results in respective probability-density functions for A
and B,

fk�a� � 1

r
������
2p
p exp

ÿ�aÿ ak�2
2r2

" #
; k � A; B

Some spreading of A and B is also due to `beam-hard-
ening' in the case of polychromatic radiation. This
phenomenon is related to the relatively stronger atten-
uation of the lower end of the X-ray energy spectrum
and causes a-values of voxels near the object center to be
arti®cially lowered relative to those near the circumfer-
ence, with a smooth transition in between. The degree of
beam-hardening depends on X-ray source spectrum and
object attenuation. A portion of this additional
spreading will appear as noise and thus be included in
eqn (9). The remaining portion will be considered in-
signi®cant relative to /AfA and /BfB. The convolution
f �M � G to obtain fM is computed numerically, with the
limits of integration, )1 and 1, replaced by aA ) 4r
and aB + 4r, respectively. The complete model for the
PDF of the a-distribution is given by

f �a� � /AfA�a� � /BfB�a� � /MfM�a�: �10�
De®nitions (1), (8), and (9) ensure thatZ 1

ÿ1
f da � 1:

2.3 Procedure

Seven independent parameters, /A; /B; aA; aB; r; cA;
and cB, are included in eqn (10) (note that
/M � 1ÿ /A ÿ /B). The following procedure can be
used to estimate these parameters:

1. Compute E(a) using eqn (7).
2. From the measured a, compute a normalized his-

togram f̂ �a� such thatXm

j�1

f̂jDa � 1;

where Da and m denote class size and total number
of classes, respectively, and j is the class index
(class value aj increases with j).

3. Provide initial estimates for /A, /B, aA, aB, and r
from inspection of f̂ �a�: If there is su�cient sepa-
ration between the pure-phase distributions, aA

and aB can be estimated as the peak center loca-
tions, while /A and /B should correspond to the
relative area under each peak.

4. Provide initial guesses for cA and cB.
5. Fit f(a) to f̂ (a).
6. Compute hA and hB using eqn (6).

The parameter optimization (step 5) was implemented
using the Levenberg±Marquardt--based LMLM -OPT-OPT code4.
The software is written in C and available from the au-
thors upon request. The large number of parameters
makes the ®tting procedure susceptible to premature

Fig. 1. Behavior of f�M plotted for the dummy variable n.
Number pairs indicate values for cA and cB for the respective

curve.
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termination due to local optima (nonuniqueness). Thus
the optimization should be repeated with several sets of
initial parameter values to increase the likelihood of
identifying the global optimum. For example, approxi-
mately 10 parameter sets were tried for each of the ap-
plications discussed in the next section. An alternative
function for cases where n is too small to obtain a
meaningful histogram is given in Appendix A.

Note that for systems containing three or more
phases, the individual contributions of each phase to the
fraction of mixed voxels, /M, cannot be determined
from a ®tted model PDF and /M must e�ectively be
treated as an additional phase10. Therefore, the proce-
dure described here is limited to two-phase systems.

3 APPLICATION AND DISCUSSION

3.1 Tests using capillary tubes

A rectangular domain of 1.547 ´ 1.547 ´ 1.617 mm3

was considered. The domain consisted of 88 ´ 88 ´ 92
cubic voxels with a side length of 18.4 lm, resulting in a
total number of voxels, n, of 712,448. Voxel values a

represent speci®c X-ray attenuation and were obtained
in a CT scan of a vertical glass capillary tube. A mic-
rofocus cone-beam scanner equipped with a polychro-
matic Leitz source (Tungsten anode) was used at
Scienti®c Measurement Systems, Austin, TX. Source
potential and current were 125 keV and 0.1 mA, re-
spectively, resulting in a 10-lm source spot size. The
scanned portion of the tube was horizontally centered in
the domain. The two phases present were (A) air and (B)
glass. Independent values of 0.82 and 1.50 mm for the
inner and outer tube diameter, respectively, were deter-
mined using a scanning electron microscope. These
measurements imply a theoretical volumetric phase
content value hA of 0.527. Using eqn (7), a value of
0.02433 mmÿ1 was obtained for E(a). A normalized
histogram was f̂ �a� was computed with m equal to 100.
Initial estimates for /A; /B; aA; aB; and r were ob-
tained from inspection of f̂ �a�. Fig. 2 shows the opti-
mized f (a), its three components, and f̂ �a�. Dotted lines
denote /AfA (left peak) and /BfB (right peak). The thin
and thick solid lines represent /MfM and f, respectively,
and the individual data points denote f̂ . Initial and ®t-
ted parameter values are given in Table 1, together with
hA computed from ®tted parameters using eqn (6).
Goodness of ®t is expressed as root-mean-square rms,
given by

rms � 1

m

Xm

j�1

�f̂j ÿ f �aj��2
 !0:5

The computed hA-value of 0.522 di�ers only by 0.5 vol%
from the theoretical value of 0.527. In contrast, had aA

and aB been obtained by identifying 100 pure-phase

voxels for each phase and averaging their respective a-
values, hA-values as low as 0.482 and as high as 0.620
could have been obtained, depending on the location of
the selected voxels.

The phase interfaces in the data set (i.e., the vertical
inner and outer tube surfaces) were found to be blurred
over approximately three voxel lengths in the normal
direction. Thus the number of voxels containing the
physical interface area (36,128) was multiplied by three
and divided by n to obtain a theoretical value of 0.152
for the fraction of voxels with intermediate a-values
(/M). The optimized /M-value was 0.148.

Subsequently, we tested the accuracy for di�erent
¯uid/glass systems with decreasing separation distance
between aA and aB. Similar capillary tubes as in the
previous example were ®lled with air, water, and
three di�erent concentrations (20, 40, and 60 g/l) of
sodium-iodide (NaI) solution (¯uid phase, A) and

Fig. 2. Comparison of f̂ and f for glass/air test case. Dotted
lines denote /AfA (left peak) and /BfB (right peak). The thin
and thick solid lines represent /MfM and f, respectively, and

the individual points denote f̂ .

Table 1. Comparison of initial and optimized parameters for
capillary-tube data

Parameter Initial estimate Final estimate

/A 0.4 0.4686
/B 0.4 0.3838
aA [mmÿ1] 0.0 0.00256
aB [mmÿ1] 0.05 0.04815
r [mmÿ1] 0.01 0.00836
cA 1.0 0.8746
cB 1.0 0.0531

rms ± 0.114
/M ± 0.1476
E(a) [mmÿ1] ± 0.02433
hA ± 0.522

A, air; B, glass. The theoretical hA-value was 0.527.
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simultaneously scanned. Voxel dimensions were again
(18.4 lm)3. To limit the number of phases in each do-
main to two, the vertical domain boundary was de®ned
as a cylinder with a 70-voxel (1.288-mm) diameter, and
thus located within the respective capillary tube (glass
phase, B), excluding any outside air. Only complete
voxels were included, resulting in a horizontal domain
cross-section of 3853 voxels (1.304 mm2). Domain
height was 31 voxels (0.570 mm), resulting in a total

domain size of 0.744 mm3 with n equal to 119,443. The
theoretical value for the volumetric ¯uid content was
0.405 based on geometric considerations.

The values of all optimized parameters are shown,
together with rms, /M, E(a), and hA, in Table 2. No
meaningful result could be obtained for the 60-g/l NaI
solution because in this case the values of aA and aB

di�ered by less than 0.075 r, which prevented a dis-
tinction between solution and glass phases. Fig. 3

Table 2. Optimized parameter values for di�erent ¯uids in capillary tubes

Fluid Air Water NaI solution [g/l]

20 40

/A 0.3708 0.3737 0.3846 0.3835
/B 0.5378 0.5685 0.5829 0.6165
aA [mmÿ1] 0.00345 0.01832 0.02937 0.03938
aB [mmÿ1] 0.04836 0.04885 0.04913 0.04968
r [mmÿ1] 0.00812 0.00784 0.00794 0.00802
cA 5.8238 4.0889 1.6325 ± a

cB 2.8094 3.8857 0.0599 ± a

rms 0.231 0.294 0.344 0.334
/M 0.0914 0.0578 0.0325 0 a

E(a) 0.03022 0.03660 0.04136 0.04573
hA 0.404 0.401 0.393 0.384

A, ¯uid; B, glass. The theoretical hA-value was 0.405.
a /M was ®xed at zero by forcing (/A + /B)� 1 during the optimization.

Fig. 3. Comparison of f̂ and f for glass and air (a), glass and water (b), glass and 20-g/l NaI solution (c), and glass and 40-g/l NaI
solution (d). Legend is the same as for Fig. 2.
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compares the ®tting results for the four remaining sys-
tems. De®nition of lines and symbols is identical to
Fig. 2.

Assuming that the phase interface in each data set
was again blurred over approximately three voxel
lengths in the normal direction, the theoretical /M-value
was 0.106. However, the fraction of intermediate a-val-
ues can be expected to be increasingly masked by the
noise in the pure-phase voxels as the di�erence between
aA and aB decreases (a virtual one-phase system with /M

equal to zero occurs if aA and aB are identical). Indeed,
considering the ¯uid phases air, water, and 20-g/l NaI
solution, successively smaller values of /M were esti-
mated by the ®tting procedure for a decreasing di�er-
ence between aA and aB (Table 2 and Fig. 3). Thus a
match between optimized and theoretical /M-values
should only be expected if the di�erence between aA and
aB is large enough, relative to r, to provide nearly
complete separation between hA fA and hB fB, as was the
case for the two glass±air systems considered (Figs. 2
and 3(a)). Prediction of hA was much less a�ected by the
a-separation, suggesting robustness of the proposed
procedure.

If /AfA and /BfB overlap to such a degree that their
sum forms a single peak, it is likely that insu�cient in-
formation is contained in the shape f̂ �a� to ®t seven
parameters, and (/A + /B) should be ®xed at unity to
ensure meaningful results (thus forcing /M equal to zero
and making the ®tted /A-value numerically equal to hA).
This was done in the case of the 40-g/l solution. As cA

and cB can then be ®xed at arbitrary values, the number
of ®tting parameters is reduced to four (aA, aB, r, and
/A), which greatly decreases the likelihood of multiple
optima. If /M-values close to zero are obtained, ®xing
(/A + /B) at unity during the optimization may be ad-
vantageous even if /AfA and /BfB do not add up to a
single peak. As a test, this option was used with the 20±
g/l solution, resulting in an estimated hA-value of 0.392.

There is excellent agreement between f̂ and f in all
cases. All estimated hA-values were within approxi-
mately two volume percent of the respective theoretical
value. Any beam-hardening e�ects on the a-distribution
appear to be well accounted for by the parametric
model. Moreover, the results in Table 2 and Fig. 3(c)
and (d) show that the proposed procedure can be ap-
plied even if there is considerable overlap between
/AfA and /BfB.

3.2 Estimation of bead-pack porosity

The proposed method was applied to determine the size
of a representative elementary volume2 (REV) for the
porosity. A random pack of uniform glass beads in a
vertical Plexiglas cylinder of 4.76 mm inner diameter
was scanned using the previously described CT equip-
ment. The bead diameter dp was 0.5 mm and voxel di-
mensions were (18.4 lm)3. The scanned domain

included the complete object cross section over a vertical
range of 3.827 mm. From the original a-set, increasingly
bigger sample cubes D were extracted, all centered at the
same location on the vertical cylinder axis, beginning
with 8 ´ 8 ´ 8 voxels and incrementing the cube side
length L by 4 voxel lengths (0.0736 mm) at each step.
The individual porosity (hA) values for all sample cubes
were obtained by applying the proposed procedure to
the extracted a-set of the respective sample. The maxi-
mum possible sample size had to be chosen so as to
ensure exclusion of the region of higher porosity due to
the presence of the cylinder wall. That size was (2.797
mm)3, or 1523 voxels. Two sets of hA(L)-values were
obtained, one with the sample centered in the glass
phase, the other with the sample centered in the air
phase. Both curves are plotted in Fig. 4. The plot sug-
gests a REV size L/dp of approximately 5.15. At this
point the curves begin to coincide, indicating that for
samples of at least this size the porosity is independent
of the sample location12. The estimated porosity was
0.384. Fig. 5 shows the REV cube intersecting two
perpendicular vertical cross sections through the origi-
nal domain. Blurred voxels at the glass±air interface and
the presence of noise throughout the data set are visible
in the cross-sectional planes.

The e�ect of beam hardening, inevitable with poly-
chromatic radiation, can be clearly seen in Fig. 6 where
optimized aB-values (glass phase) are plotted as a func-
tion of L (air-phase a-values were too small to be no-
ticeably a�ected). Since the center of D remains ®xed at

Fig. 4. Estimated porosity for a cubic domain of increasing size
within a glass-bead pack, centered either within the air or the
glass phase. Cube side length is expressed as multiple of the

bead diameter dp (0.5 mm).
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the same point on the vertical object axis, each increase
in the size of D adds voxels of increasing distance from
the center. Due to beam hardening, a general increase in
the average pure-phase values aA and aB can thus be
expected with growing D. The potential for error in

predicting hA(L) using a ®xed aB for all L is obvious
from Fig. 6 and emphasizes the need to obtain the re-
spective values for aA and aB from each a-set itself, as
proposed here. For example, in this case a 0.003-mmÿ1

error in aB would result in an additional four-volume-
percent error in hA.

Lacking a true independent measure for the porosity
within the considered bead pack (i.e., excluding the wall
e�ect), con®dence in the predicted porosity could be in-
creased by its estimation from a second scan with pore
air displaced by water. A sample cube corresponding in
size to the previously identi®ed REV was extracted from
the water/glass a-set. The hA-value of 0.376 obtained
using the proposed procedure was within less than one
volume percent of the value estimated for the dry sample.

4 SUMMARY

A method is described to determine the phase volume
fractions in two-phase systems in general, with particu-
lar applicability to the measurement of porosity in po-
rous media. To test the method, it was applied to several
two-phase systems with known volume fractions and for
large and small di�erences between aA and aB. Accuracy
for the considered cases was found to be approximately
2 vol% or better, including a system with only about one
standard deviation di�erence between the mean phase a-
values. Application of the method to determine the size
of the representative elementary volume for porosity in
a random pack of uniform glass beads was demon-
strated. The value obtained for the side length of the
REV was approximately 5.15 times the bead diameter.

Repeated optimization with di�erent initial estimates
for the ®tting parameters is recommended to increase the
likelihood of identifying the global best ®t for the model
PDF. If there is signi®cant overlap between the a-distri-
butions of both phases, the number of ®tting parameters
can be reduced from seven to four. Within the framework
of stated assumptions, and given su�cient di�erence
between aA and aB relative to r, the method is applicable
to any two-phase system of arbitrary complexity. A
possible limitation could arise from the unimodal de®-
nition of f�M(a), because a more complex distribution of
intermediate a-values, while not apparent for any of the
considered cases, is conceivable in principle.
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Fig. 6. Optimized value for parameter aB as a function of
domain size. The center of the domain is ®xed at a point on the
vertical object axis. Side length of cubic domain is expressed as

multiple of the bead diameter dp (0.5 mm).

Fig. 5. Two vertical cross sections of glass-bead pack with
REV of 140 voxels (2.576 mm) side length. Pore space is oc-
cupied by air. Gray scale maps a-values between )0.01 mmÿ1

(black) and 0.07 mmÿ1 (white). Bead diameter is 0.5 mm.
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APPENDIX A

It is possible that n is too small to obtain a mean-
ingful histogram due to the resulting large class size. An
alternative for such cases is to ®t the cumulative distri-
bution function,

F �a� �
Z 1

ÿ1
f �n� dn

to the estimated cumulative distribution F̂ �a�: The cu-
mulative distribution is given by

F � /AFA � /BFB � /MFM;
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with

h�n� � �nÿ aA�cA�aB ÿ n�cB :

The function FM is evaluated numerically.
To obtain F̂ �a� the members of a are ®rst sorted in

ascending order. This requirement, in fact, limits the
applicability of this alternative method to `small' values
of n, i.e., those that are practically manageable by a
sorting algorithm on the available hardware. Each F̂ �ai�
is assigned a value of nÿ1(i ) 0.5), where i is the index
for the ordered a-sequence starting with i � 1 for the
smallest a-value. The discretization and lumping asso-
ciated with histogram classes are thus avoided. In three
tests with n equal to 77,440, hA-predictions deviated at
most 0.1 volume percent from those obtained by ®tting
the PDF.
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