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Bootstrapped learning of novel objects 
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Recognition of familiar objects in cluttered backgrounds is a challenging computational problem. Camouflage provides a 
particularly striking case, where an object is difficult to detect, recognize, and segment even when in “plain view.” Current 
computational approaches combine low-level features with high-level models to recognize objects. But what if the object is 
unfamiliar? A novel camouflaged object poses a paradox: A visual system would seem to require a model of an object’s 
shape in order to detect, recognize, and segment it when camouflaged. But, how is the visual system to build such a 
model of the object without easily segmentable samples? One possibility is that learning to identify and segment is 
opportunistic in the sense that learning of novel objects takes place only when distinctive clues permit object 
segmentation from background, such as when target color or motion enables segmentation on single presentations. We 
tested this idea and discovered that, on the contrary, human observers can learn to identify and segment a novel target 
shape, even when for any given training image the target object is camouflaged. Further, perfect recognition can be 
achieved without accurate segmentation. We call the ability to build a shape model from high-ambiguity presentations 
bootstrapped learning. 

Keywords: object recognition, learning, camouflage, segmentation, background, clutter, color, motion, mechanochemical, 
morphogenesis, novel objects, top down, bottom up 

 Introduction 
A fundamental function of biological vision is to 

detect and recognize potential food items and predators 
from naturally cluttered backgrounds. The task can be 
especially difficult when the form and coloration of the 
target objects are similar to the background. Camouflage 
provides a particularly striking example, where natural (or 
artificial) mechanisms work to disguise an object even 
when in “plain view.” It wasn’t until the advent of 
computer vision research in the 1960s and 1970s that it 
was realized that most objects, not just those that are 
camouflaged, blend in with their backgrounds to a 
surprising extent. In fact, to this day, the segmentation of 
static figures from cluttered backgrounds has no robust 
machine vision solution. To the best computer vision 
system, almost all objects are camouflaged, not just those 
intending to hide. What we might call the unintentional 
camouflage of everyday vision is the rule, rather than the 
exception. Finding object contour boundaries is difficult 
because image edges can be caused by illumination and 
material changes, and not just the depth discontinuities 
defining object boundaries. Further, when an object is 
seen against a cluttered background, its contour 
boundaries tend to merge with the contours of 
background elements. There is an apparent scarcity of 
local image features that remain invariant over viewpoint, 
lighting, and background changes. The objective local 
ambiguity stands in contrast to the speed and accuracy 

with which humans can identify objects in natural images 
(Thorpe, Fize, & Marlot, 1996).  

It is generally believed that the extraordinary 
competence of the primate visual system at detecting and 
recognizing objects involves coupling local image 
measurements with global knowledge of the shapes and 
properties of objects and object classes previously seen. 
Early computational approaches used generic knowledge 
of surface properties (piece-wise smoothness) to link 
together contour segments or texture measurements likely 
to belong to the same surface (Poggio, Torre, & Koch, 
1985). Systems relying solely on generic grouping 
principles, however, tend not to be robust. Greater 
robustness can be achieved, at the cost of generality, by 
relying on specific knowledge of familiar objects for both 
segmentation and for nonsegmented classification (Amit 
& Geman, 1999; Yuille, 1991). High-level object 
knowledge is also important for dealing with occlusion 
and object articulations. However, the importance of 
high-level object knowledge leaves us with a profound 
paradox. When object learning begins, there is no model 
of the object. If ambiguous local image measurements are 
not sufficient for object recognition, then surely it is not 
sufficient for model building. We call this the 
bootstrapped learning problem. 

One way out of this paradox is to assume that 
learning occurs under conditions of low ambiguity. For 
example, the movement or color of an object may 
distinguish it from its background. Motion is a well 
known basis for segmentation (Braddick, 1974; Lamme, 
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A photograph of a flat-tailed gecko, with and without background. B. An artificial morphogenic object, or “digital embryo,” 
d without background. Despite the fact that both objects are unoccluded, they cannot be segmented without prior 
f the object. Digital embryo scenes mimic aspects of nature’s more severe forms of camouflage. Gecko photograph by M. 
://home.wxs.nl/~mkramer/).  
many animals display vivid color patterns as 
r for social recognition (Brown, 1975). 
it may be that object learning is opportunistic, 
hen segmentation is possible, but not under 
of high ambiguity or camouflage, and it is only 
ng that an observer can recognize or segment a 
uflaged object. We tested this hypothesis by 
servers on images in which a camouflaged 
t is presented against a cluttered background 
tion-defined boundaries, (2) color-defined 
, or (3) ambiguous boundaries. The hypothesis 
t on testing, recognition performance should 

r the low-ambiguity conditions (1 & 2), but not 
iguous condition. 

ds (Experiment 1) 

erate unfamiliar camouflaged objects, we 
ct, camouflage, and scene models for image 

odel 
r to study how objects are learned in 
, it is necessary to have stimuli that retain the 
perties of naturally important surfaces and yet 
iar. Plants and animals are fundamental to 
l; unfortunately, there are no guarantees that 
lants or animals will be novel to all observers 
iment. We solved this problem by simulating 
ts of embryological development to grow 3D 
dered using computer graphics (M. J. Brady, 
 demonstration of the growth process, see M. 

Brady, 1999. Our morphogenic algorithm is 
mechanochemical (i.e., intracellular forces as well as 
diffusion of a chemical morphogen are both simulated, 
such that chemical pattern formation and shape forming 
movements of cells occur simultaneously). For other 
examples of mechanochemical morphogenesis, see Ball 
(1999) as well as Murray  (1993). We call our resulting 
objects digital embryos. (See right panel of Figure 1). 
Digital embryos appear to be organic forms but do not 
resemble a familiar class of organism. 

Camouflage model 
Camouflage occurs when the surface texture and/or 

shape of an animal or object appears similar to the 
background (left panel of Figure 1). 

Background model. We adopted the extreme form of 
camouflage in which the target object is set against a 
background of similar objects, all drawn from the same 
class, in our case, other digital embryos that also had 
albedo variations that we describe next (right panel of 
Figure 1). 

Surface texture model. In nature, intra-species albedo 
variation may seem minor (as in deer) or it may be major 
(as in zebra and giraffe). Upon close inspection, many of 
the seemingly minor variations prove to be quite 
extensive. Within individuals, albedo variation may occur 
due to mud wallowing, precipitation, sweat, molting, 
shedding, changing clothes, or wearing makeup. Shadows 
cast from forest canopies may also be confounded with 
these albedo variations. In this experiment, we mimic the 
more rigorous conditions found in the learning of both 
object classes and individuals by the use of major changes 
in albedo patterns. The appearance of a given object of 
fixed shape was varied by painting, or texture mapping, 
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Figure 2. Output of the consistency algorithm. The consistency algorithm takes a set of training images and attempts to find object 
fragments, which appear repeatedly in the training sequence (see “Appendix B”). The algorithm is challenged because the object 
images vary due to changing camouflage, translation in 3D space, and minor changes of relative viewpoint induced by the translation. 
The algorithm attempts to translate a series of training images to align the object of interest in each. In the image resulting from the 
averaging of the translated training images, background pixels will tend toward a mean value (minimum consistency score), whereas 
the darker and lighter portions of the object of interest will remain near the extreme pixel values (maximum consistency score). Pseudo-
coloration A allows the reader to consider various thresholds for object versus background. B-D. Distance-from-the-mean images from 
a training set of 3, 7, and 20 images, respectively. The object of interest is shown in E. Some hypothetical fragments may be selected 
from these images but the uncertainty is high. F-H. Algorithm output for 3, 7, and 20 training images with the same object shown in E, 
except that the object was not camouflaged during training. The algorithm performs much better, showing the effect of camouflage on 
image consistency. J-L. Output from 3, 7, and 20 training images containing the object shown in I. Uncertainty is high after 3 training 
images but decreases with further training. A suitably chosen threshold could segment out a diagnostic fragment for use in object 
recognition. Other thresholds would produce a mix of false positives and false negatives. Performance was similar on 4 out of 9 object 
training sets. N-P. Results from the training set for the object shown in M. Uncertainty remains very high. Four out of 9 training sets 
produced similar results. In all training sets, uncertainty is very high at the onset of training and remains high even after 3 images. One 
would expect that an observer would not be able to segment the first image of a training set. 

different gray-level albedo patterns on the surface. The 
camouflage was made particularly challenging by using 
albedo patterns that were themselves images of other 
digital embryos. One consequence of this manipulation is 
to introduce albedo edges, internal to the object, that 
mimic shading seen at self-occluding boundaries or folds 
(Ben-Shahar, Huggins, & Zucker, 2002). Using albedo 
patterns, which mimic 3D-surface shading and 
discontinuities, might seem to be an unrealistically 

difficult form of camouflage. However, such mimicry 
appears frequently in nature (Thayer, 1909), a dramatic 
example of which is found in the moths of the genus 
Callionima (http://dlp.cs.berkeley.edu/photos/). Also, 
albedo patterns, which mimic the 3D surfaces of 
vegetation, are the basis of many popular patterns on 
modern hunting clothing. 
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Our camouflage model ensured that no geometric 
forms other than embryos need to be introduced or their 
effects explained. 

 

Scene model 
We fixed object orientation, distance, and 

illumination, but varied the background objects, position 
of the object of interest, and camouflage patterns from 
trial to trial. In the color training scenes, objects of 
interest were colored green. In motion training scenes, 
objects of interest were animated over a parabolic path 
with quasi-random coefficients. (See “Appendix A” for 
rendering details). The complete set of stimuli can be 
viewed and downloaded (Brady & Kersten, 2000). 

Characterization of object camouflage 
We wanted to characterize algorithmically the extent 

of albedo and contrast variation, in order to measure the 
extent to which portions of an object appear repeatedly in 
a sequence of training images. To do this, we applied a 
translation invariant consistency algorithm, which detects 
objects or object parts that appear repeatedly in a series of 
scenes. The results are shown in Figure 2. Object 
fragments reappear to varying degrees. However, there is 
considerable uncertainty whether repeating fragments are 
from the object or from the background. 

Movie 1. The first six scenes of a training session, in the 
ambiguous segmentation case. 

Training took place over 4 days. Each training session 
consisted of showing object A for 10 s, B for 10 s, C for 
10 s, and then A, B, C, repeating until each object had 
appeared 5 times. In each appearance of an object, the 
camouflage pattern, background, and object location was 
changed. In order to compare any two scenes of the same 
object, observers had to hold one scene in memory during 
a 20-s delay and two intervening learning tasks. 

Observer Training 
We trained six adult observers on scenes of novel 

objects and then tested their ability to recognize those 
objects. The training and testing scenes were generated by 
placing a digital embryo at random in a scene, applying 
camouflage, then placing other camouflaged embryos to 
fill in the background (Figure 1, upper right). The 
camouflage patterns consisted of scenes of novel objects. 
Every scene had a new set of background objects and new 
camouflage patterns on the objects. 

 

The goal of training was to imitate a natural object 
learning scenario, where an animal views an object, such 
as another animal, the object may disappear for some 
seconds, then reappear. It may not reappear for some 
hours or days, when learning may resume. Each time it 
appears it has a new background and if it is a different 
instance of the same object class, it may have a new 
surface pattern. The object may emit a sound or an odor, 
which helps to identify it. In this experiment, we played a 
sound with each appearance. 

Each observer was trained on three sets of three 
objects. One set was shown as moving against its 
background, one set was shown in color against its 
background, and one set was shown with no 
supplemental segmentation clues. We call this last case 
the ambiguous case. 

Movie 2. First four scenes of a training session, in the motion 
segmentation case. 
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Figure 3. Novel object learning over 4 days of testing. Training 
occurred on days 1-4. Observers were divided into two groups 
according to performance on the ambiguous case. A. Weak 
learners SE, PR, and IB show little or no learning in the 
ambiguous case, but they were able to exploit situations where 
segmentation clues were present. Chance performance is .25 
for an observer who guesses at all choices with equal 
probability. However, chance performance is .5 for an observer 
who always guesses ”other” and this is the upper bound of any 
guessing strategy. Statistics are by analysis of variance 
(ANOVA) with clue and day as factors. Clue and day effects 
are significant, F ratio has a p value < .0001. Interaction 
between clue and day is not significant, p value = .324. B. 
“Super observers” AN, WA, and SM provide an existence 
proof for a powerful bootstrapped learning algorithm. They 
achieve near perfect performance, even in the ambiguous 
case. All observers have normal or better acuity and contrast 
sensitivity. Statistics are by ANOVA. Factors were clue and 
day. Clue and day effects were significant, with p values 
<.0001. Interaction is also significant, with p value < .0001. In 
an ANOVA comparing groups, supers are significantly better 
than weak learners, p value <.0001. 

 

Observers were tested on their ability to recognize 
objects. Test stimuli consisted of a camouflaged object 
with a background of other camouflaged objects (Figure 
1, right). The object of interest was one of the three 
current training objects or a completely novel object. 
Each trial was a four alternative forced choice where the 
choices were “A, B, C, or other.” No sounds or 
segmentation clues were provided and the camouflage 
patterns and backgrounds changed with each scene. 
Testing took place on four days. Tests were given 24 hr 
after each training session and before any new training. 
Thus, testing was of long term memory.  

 Results (Experiment 1) 
Recall our initial hypothesis that recognition learning 

cannot occur under conditions of high ambiguity or 
camouflage, but only when segmentation is possible, and 
it is only after such opportunistic learning that an 
observer can recognize or segment a static camouflaged 
object. Our scenes were constructed so that when 
segmentation clues were not present, observers could not 
be certain which elements belong to the object of interest 
and which belong to background. How do observers 
perform in learning objects from images with and without 
segmentation clues? 

Figure 3 shows observers’ ability to utilize 
segmentation clues during object learning. However, our 
initial hypothesis is proven incorrect in general (Figure 
3B), because three out of six observers did not depend 
upon segmentation clues in order to learn new objects. 
Apparently, they are able to combine information from a 
number of ambiguous sources to produce a reliable object 
model. We call this phenomenon bootstrapped learning. 
Figure 3B shows just how reliable bootstrapped object 
models can be for some observers. 

 Methods (Experiment 2) 
The surprising result of Experiment 1 was that there 

exist observers who could learn to recognize and segment 
objects in the ambiguous training condition. In order to 
further explore the generality of this finding, we did a 
second experiment with just the ambiguous training. 
Further, we want to empirically establish that, prior to 
training, human observers could not segment the objects 
with any degree of certainty. Experiment 2 quantified the 
observers’ ability to segment scenes before and after 
training. 

Stimuli 
The same stimuli as in Experiment 1 were used, 

except that the color and motion cases were omitted.  
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Subject training  Results (Experiment 2) 
Six observers were trained as in Experiment 1, except 

that there was no training on colored or motion scenes. Example tracings are shown in Figure 4. Prior to 
training, observers are uncertain of what is the object and 
what is the background. They may miss the object entirely 
(Figure 4A) or, because the object of interest is in the 
foreground, they may trace part of the true boundary. 
However, part of the background (Figure 4B and 4C) is 
included as well. After training, both segmentation and 
recognition performance improve significantly (Figure 5). 

Testing 
Observers were tested in their ability to recognize and 

segment objects. Recognition testing was the same as in 
Experiment 1.  

For segmentation testing observers were asked to 
trace object contours in test scenes. Prior to any training, 
observers were asked to trace three novel objects in test 
scenes. These objects were not part of an individual 
subject’s subsequent training or testing set, but were used 
by the other subjects as part of the balanced experimental 
design to control for object-specific effects. After 4 days of 
training, observers were asked to trace the three training 
objects of interest in novel scenes and were asked to trace 
three still novel objects in test scenes. Tracing errors were 
of two types, missed contour segments and extraneous 
tracing. Tracings were scored by combining tracing path 
lengths as follows: 

 Discussion 
Over several days, and with relatively few image 

presentations (20 scenes per object in Experiments 1 and 
2), observers are able to learn to recognize and segment 
camouflaged objects. Further, they were able to do this 
with images that were highly ambiguous as shown in 
observers’ inability to initially segment any given training 
image. Evidence of segmentation uncertainty comes not 
only from the objective consistency score and the 
subjective tracing tasks, but also from the recognition 
task. Recognition of objects after ambiguous training is 
near chance, even after a day of training. If observers had 
a high confidence in object feature selection or 
segmentation, they are unable to exploit this during 
recognition. Given that Experiment 1 shows observers’ 

Trace Score = (Trace Correct)/ 
   {(Trace Correct) + (Trace Missing) + (Trace Extraneous)} 

At Trace Score = .5, the amount of correct tracing 
equals the amount of tracing error. 

Figure 4. Tracing e
Green segments a
experimenter. A. O
day 1. Score is .21
Score is .41. E. KH
training on the obje
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xamples. Green and red segments were originally drawn by the observer and color coded by the experimenter. 
re correct and red are extraneous. Yellow segments were missing in the observer’s trace and added by the 
bserver YH’s trace of object D on day 1, prior to any training. Score is 0.0. B. Observer YH’s tracing of object A on 
. C. FF’s tracing of object 1 on day 1. Score is .25. D. BK’s tracing of D on day 5 after 4 days training on the object. 
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ability to utilize segmentation information when available, 
an inability to utilize segmentation information would be 
even more surprising than bootstrapped learning.  

Previous psychophysical studies of unsupervised novel 
shape learning have tended to focus on scenes without 
background clutter, with components that are 
segmentable without learning. Fiser and Aslin (2001) 

showed that human observers can learn shape-composites 
based on probabilistic co-occurences of potential parts. 
Bootstrapped learning is distinguished from other types 
of object learning in that observers learn from scenes 
where the classification of edge segments into boundary 
segments and background segments is uncertain.  

Computer models of novel object learning with 
background clutter are rare. However, Weber, Welling, 
and Perona (2002) have developed an algorithm that can 
learn uncamouflaged objects in cluttered scenes. This 
algorithm does not necessarily compute edges, whereas 
our human observers do in the segmentation tracing task. 
Shams, Brady, and Schaal (2001) have developed a 
somewhat similar algorithm, which has shown some 
ability to learn uncamouflaged digital embryos in 
background. However, it is unlikely to be able to cope 
with the degree of camouflage found in the present 
experiment. Both of these algorithms make use of a 
constellation of features approach, in which a set of 
features is collected, along with their relative positions. 
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We believe that bootstrapped learning for our 
observers may have been accomplished by a process such 
as the following:  

1. The first image containing object A (image A1) is 
presented.  

 2. Features or object parts are extracted from image A1, 
by a method such as that described by Malik et al., 
(2001) and Tu and Zhu (2002a, 2002b), and stored  
in a working memory buffer. Such features must be 
more subtle than templates of object images or 
templates of object image parts. (See algorithmic 
characterization of scenes above, especially  
Figure 2M-2P.)  

Figure 5. Recognition (top) and tracing (bottom) of camou-
flaged objects with background and without segmentations 
clues. Observers start with a new set of objects on day 6. 
Observers are significantly better at recognizing and tracing 
familiar objects. A two factor ANOVA of the tracing data, with 
novelty and subject factors, shows significant effects for nov-
elty (p =.00041), subject (p =.00042), and insignificant interac-
tion (p =.64). An ANOVA was performed on data averaging the 
two 1-week blocks. The difference between day 1 novel tracing 
and day 5 novel tracing was not significant in a t test (p =.29). 
The difference between day 5 trained tracing and day 10 
trained tracing was significant in a t test (p =.02) but may be 
due to either a generalized task training effect or an object ef-
fect, because object effects are not controlled for within a sin-
gle week. For examples of these tracing score values, see 
Figure 4. Observers learn to recognize objects in spite of an 
initial inability to segment them. In 5 of 12 day-1 tracings, super 
observers had a 0.0 tracing score. Segmentation ability 
evolves in parallel with recognition ability, as expected in the 
case of bootstrapped learning. There were 4 super learners in 
Experiment 2, who learned to perfect or near perfect perform-
ance, and 1 weak learner, whose performance did not improve 
by a measurable amount. A sixth observer went from being a 
weak learner in week 1 to being a super learner in week 2. 
Data is averaged over super and weak groups. Novel scene 
tracing at day 5 is a control for general task learning.  

3. Working memory content persists while two or more 
unrelated images (B1, C1, etc.) are processed over a 
period of 20 s or more.  

 4. Image A2 is presented.  

 5. Features are extracted from A2.  

 6. The intersection of the two feature sets is tested for 
preservation of relations between features within  
each image.  

 7. The resulting subset of features is bound together and 
stored in long-term working model memory as an 
evolving model. This long-term working model 
memory can persist for at least 24 hr.  

 8. Steps 1-7 are repeated for images A2, A3, etc., except 
that an evolving high-level model is now available to 
help segment relevant features via a top down 
mechanism. 
Any algorithm used by the bootstrapping observers 

must depend upon two memories: the working memory 
buffer and the long-term working model memory.  

 

Downloaded from jov.arvojournals.org on 06/29/2019



Brady & Kersten 420 

Texture wrapping uses Inventor’s default method. 
First, the bounding box for each object is computed. 
Next, the texture image is projected onto each side of the 
box and then onto the object’s polygons. 

A major challenge for machine vision research is to 
create a system that can learn to recognize objects from 
example images. But, which way should one proceed? The 
target system might need to be opportunistic and subsist 
on a diet of well-segmented scenes. These scenes would 
have to be prepared manually and therefore require a 
great deal of human labor. Alternatively, the 
opportunistic system might be placed in a rich 
environment and simply wait for well-segmented images 
to occur. This could take a considerable amount of time 
and require its own form of automation. Fortunately, we 
have been able to demonstrate the existence of a learning 
algorithm, which does not depend on special 
opportunities. Instead, it proceeds directly to learn objects 
given only the most ambiguous, yet commonly occurring, 
images of those objects. By defining what information is 
required by an object learner, machine vision researchers 
are able to pursue one avenue to machine object learning 
rather than several. 

Each work week (5 days) observers were trained on day 
1, tested for recognition and then trained on days 2-4, and 
they were tested for recognition on day 5. This was 
repeated for each segmentation clue type in Experiment 1.  

In Experiment 2, observers performed (a) a novel 
tracing task on day 1, week 1; (b) a novel and a familiar 
object tracing task on day 5, week 1; and (c) a familiar 
tracing task on day 5, week 2. During each week, the 
observers used a different set of three training objects. 
Object sets were permuted evenly among observers to 
control for object difficulty and ordering effects. 

 Appendix B. Consistency  
 Algorithm 

This program measures the consistency with which 
object regions in a series of n images appear, relative to 
random background fragments. In the interest of 
modeling the iterative nature of human learning, the 
algorithm collects information one image at a time and 
consolidates it with a current assessment of image 
consistency.  

 Conclusions 
Natural scenes tend to be highly cluttered, which 

presents a challenge to observers learning to see new 
objects. Yet there are opportunities when segmentation 
may be easier, such as when color or motion 
segmentation clues are present. Our study began with the 
hypothesis that learners of novel objects would necessarily 
rely on such opportunities to overcome segmentation 
problems, especially when dealing with severely 
camouflaged objects. We found, on the contrary, that 
there exist two routes to object recognition. One is 
opportunistic whereas the other relies on bootstrapped 
learning. 

The algorithm first takes the pixel-wise log of each 
image. It then computes a sequence of composite images. 
Composite pixel intensity value c(k,i,j) at (i,j) in the kth 
composite is defined recursively as 

c k,i , j( ) =
k − 1( )c k − 1,i, j( ) + p k,i + tx(k), j + ty(k)( )

k
,k = 1...n  

where p(k,i,j) is a pixel intensity value in the kth training 
image and (tx(k),ty(k)) is a translation of the kth training 
image. c(1,i,j) is simply p(1,i,j). (tx(k),ty(k)) is chosen so 
as to minimize 

 Appendix A. Method Details 
Six observers participated in each experiment. All 

were 20/20 or better on the standard Lighthouse test at 4 
m and in a modified Lighthouse at the experimental 
viewing distance of 61 cm.  

 

c k −1,i, j( ) − p k,i + tx(k), j + ty(k)( )
i, j
∑  

Images were 18-cm square and viewed on an iMac 
computer at 72-dpi resolution.  

The final translated mean image M is simply the nth 
composite, where n is the number of training images. 

Images were generated using the Inventor library on a 
Silicon Graphics computer. The position of objects of 
interest were randomized at an (x,y) location with mean 
(x,y,z) =(0,0,0). The (x,y) position of the object of 
interest varied ±.375. In each scene, 21 background 
objects had (x,y) coordinates ±1.5 and z coordinates from 
-1.8 to -9. The projection was perspective with the virtual 
camera at (0,0,5). Units are arbitrary Inventor units.  

Let the mean within M be µ(M) Background pixels will 
tend toward this mean. Therefore, any pixels, which tend 
toward the extremes are likely to be on object fragments. 
To visualize this, compute a new image  

E = abs M − µ M( )( ) 

A threshold may be applied to select candidate object 
fragments, or as we have done in this paper, the image 
may be pseudo-colored to portray numerous possible 
thresholds at once. 

Lighting was directional with fixed direction vector 
(1, -1, -1). Objects were rendered with Phong shading 
using Inventor parameters diffuse color = (.8, .8, .8), 
specular color = (1, 1, 1), ambient color = (.5, .5, .5), and 
shininess = 1. 
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 Appendix C. Growing Digital  
 Embryos 

Digital embryos are generated using simulated 
hormonal diffusion, simulated physical forces, and 
polygon fission. These operations are applied repeatedly 
to an evolving polyhedron. Any polyhedron can be used 
as a starting shape. In the current application, a regular 
icosahedron was used. 

Two loops operate concurrently. One loop controls 
the lifecycles of morphogen secreting cells and morhogen 
diffusion among cells. A second loop controls cell 
division and simulates the physical dynamics of the cells. 
Cells are represented by vertices in the polyhedron 
geometry.  

The morphogen secretor lifecycle and loop is simple. 
A fixed number of vertices (3 in the current experiment) 
are maintained as morphogen secretors. Each generator is 
assigned a finite lifespan at random. At the end of a 
particular generator’s lifespan, it is replaced by another 
generator somewhere else on the surface of the embryo. 
The location is determined at random.  

Active morphogen secretors retain a fixed high 
morphogen concentration, which diffuses to adjacent 
calls or vertices. Morphogen flows between vertices, which 
are connected by edges. The flow rate is proportional to 
the difference in the concentrations of the adjacent 
vertices. There is also a constant leakage of morphogen, 
out of each cell, into the surrounding fluid. The result of 
these effects is that the morphogen concentration in any 
nonsecreting cell i, with neighbors j is  

Ci,t+1 = 1 −L( ) Ci,t +

R C j,t −Ci,t( )
j

∑
n

 

 

 
 
 
 

 

 

 
 
 
 

 

at time t+1. R is a diffusion rate and n is the number of 
vertices connected to vertex i. 

The polygon fission operation proceeds as follows: All 
polygons in the present implementation are triangles. A 
triangle is marked for fission if the average morphogen 
concentration of its constituent vertices is above some 
threshold. The triangle is split into four new triangles as 
shown in Figure 6. After fission, vertex I is a full-fledged 
vertex but vertices K and J are not. They cannot be 
allowed to move as a normal vertex would because it 
might cause triangles AED and DFC to become 
quadrangles, and non-planar ones at that. Therefore, 
vertices K and J remain dependent vertices. What this 
means, in the case of K, for example, is that K must 
remain on a line between D and E regardless of what 
forces act upon it. K will be promoted to a nondependent 
vertex when AED is split. 

Vertices move about in space according to the sum of 
forces that act upon them. The amount of motion per 

time increment is proportional to the magnitude of the 
force, whereas the direction of motion is determined by 
the total force vector. All vertices in an embryo repel all 
other vertices according to an inverse square law. At the 
same time, vertices, which are attached by an edge, are 
attracted according to Hooke’s law.  

Before

After

A

F

E

D

C

B

A

F

E

D

C

B

G

H
I

G

H
I

K

J

 

Figure 6. Triangle DEF before and after fission. DEF will 
eventually be replaced by KEI, IFJ, JDK, and KIJ. However, 
DEF may persist for awhile as the neighbor of AED and DFC.  

 Acknowledgments 
We thank an anonymous reviewer for suggesting the 

log transform in the consistency algorithm. This research 
was supported by National Institutes of Health Grant 
RO1 EY02857. Commercial relationships: none.  

 References 

Amit, Y., & Geman, D. (1999). A computational model 
for visual selection. Neural Computation, 11(7), 1691-
1715.[PubMed] 

Ball, P. (1999). The Self-Made Tapestry (1st ed.). Oxford: 
Oxford University Press. 

Ben-Shahar, O., Huggins, P. S., & Zucker, S. W. (2002). 
On computing visual flows with boundaries: The 
case of shading and edges. In H. H. Bülthoff, S.-W. 
Lee, T. Poggio, & C. Wallraven (Eds.), Biologically 
motivated computer vision, BMCV 2002, (2525 ed.). 
Berlin: Springer-Verlag. 

 

Downloaded from jov.arvojournals.org on 06/29/2019

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10490943&dopt=Abstract


Brady & Kersten 422 

 

Braddick, O. J. (1974). A short-range process in apparent 
motion. Vision Research, 14, 519-527. [PubMed]  

Brady, M. (1999). Growing Digital Embryos, from 
http://gandalf.psych.umn.edu/~kersten/kersten-
lab/camouflage/degrowqt.html 

Brady, M., & Kersten, D. (2000). The Camouflage 
Challenge, from 
http://gandalf.psych.umn.edu/~kersten/kersten-
lab/camouflage/camouflageChallenge.html 

Brady, M. J. (1999). Psychophysical investigations of 
incomplete forms and forms with background. Ph. D. 
Thesis. University of Minnesota, Minneapolis. [Link]  

Brown, J. L. (1975). The Evolution of Behavior. New York: 
W. W. Norton. 

Fiser, J., & Aslin, R. (2001). Unsupervised statistical 
learning of higher-order spatial structures from visual 
scenes. Psychological science, 12(6), 499-504. [PubMed]  

Lamme, V. (1995). The neurophysiology of figure-ground 
segregation in primary visual cortex. Journal of 
Neuroscience, 15(2), 1605-1615. [PubMed] 

Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). 
Contour and texture analysis for image 
segmentation. International Journal of Computer Vision, 
43(1), 7-27.  

Murray, J. D. (1993). Mathematical Biology (2nd, corrected 
ed. Vol. 19). Berlin: Springer. 

Poggio, T., Torre, V., & Koch, C. (1985). Computational 
vision and regularization theory. Nature, 317, 314-
319. [PubMed]  

Shams, L., Brady, M. J., & Schaal, S. K. (2001). Graph 
matching vs. mutual information maximization for 
object detection. Neural Networks, 14(3), 345-354. 
[PubMed] 

Thayer, G. (1909). Concealing-Coloration in the Animal 
Kingdom. New York: Macmillian. 

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of 
processing in the human visual system. Nature, 381, 
520-522. [PubMed]  

Tu, Z., & Zhu, S. (2002a). Image segmentation by data-
driven markov chain monte carlo. IEEE Tranactions 
on Pattern Analysis and Machine Intelligence, 24(5), 657-
673.  

Tu, Z., & Zhu, S. (2002b, May). Parsing images into region 
and curve processes. Paper presented at the 7th 
European Conference on Computer Visions, 
Copenhagen, Denmark. 

Weber, M., Welling, M., & Perona, P. (2000). 
Unsupervised learning of models for recognition. Paper 
presented at the 6th European Conference on 
Computer Vision, ECCV2000, Dublin, Ireland.  

Yuille, A. (1991). Deformable templates for face 
recognition. Journal of Cognitive Neuroscience, 3(1), 59-
70.  

 
 
 

Downloaded from jov.arvojournals.org on 06/29/2019

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4423193&dopt=Abstract
http://gandalf.psych.umn.edu/~kersten/kersten-lab/camouflage/degrowqt.html
http://gandalf.psych.umn.edu/~kersten/kersten-lab/camouflage/degrowqt.html
http://gandalf.psych.umn.edu/~kersten/kersten-lab/camouflage/camouflageChallenge.html
http://gandalf.psych.umn.edu/~kersten/kersten-lab/camouflage/camouflageChallenge.html
http://gandalf.psych.umn.edu/~kersten/kersten-lab/papers/MarkBradyThesisUMinn1999.pdf
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11760138&dopt=Abstract
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7869121&dopt=Abstract
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2413361&dopt=Abstract
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11341570&dopt=Abstract
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8632824&dopt=Abstract

	Introduction
	Methods (Experiment 1)
	Stimuli
	Object model
	Camouflage model
	Scene model
	Characterization of object camouflage

	Observer Training
	Testing

	Results (Experiment 1)
	Methods (Experiment 2)
	Stimuli
	Subject training
	Testing

	Results (Experiment 2)
	Discussion
	Conclusions
	Appendix A. Method Details
	Appendix B. Consistency � Algorithm
	Appendix C. Growing Digital � Embryos
	Acknowledgments
	References

