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Abstract
Wavelet analysis provides information on the time course of the phase and amplitude 
of oscillations in non-stationary signals. The results of wavelet analysis are equivalent 
to those of the faster method of complex demodulation. We combined this method 
with the mixture model to identify differences in the time course of synchrony 
between brain areas during task-set reconfiguration. The mixture model provides a 
trial-by-trial likelihood of intention activation (de Jong, 2000), that is, of subject-
driven reconfiguration prior to stimulus presentation. This allows prepared and non-
prepared conditions to be distinguished within the switch condition, identical in every 
way except for the odds of preparation. Preliminary results could not, due to 
equipment failures, be reliably interpreted, but did indicate that this combined 
approach may provide interesting results in the future.
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2. Introduction
The primary purpose of our internship was to implement the use of wavelet analyses 

to extract rhythm characteristics from EEG signals (section 1.2). Pilot tasks we used 

to test the method can be found in appendix A. These tasks were concerned with 

short-term visual memory and perceptual binding. Section 1.3 provides details of the 

application of the method to task switching, our secondary objective. In that section 

we explain how the mixture model (de Jong, 2000) can distinguish, on a trial-by-trial 

basis, whether subjects had or had not prepared to switch to a different task. We used 

wavelet analyses to determine physiological differences between these response-

determined conditions. The following section provides theory that may help to 

interpret the kind of physiological effects detectable by wavelet analyses.

2.1. Synchrony and the brain

After the theory introduced in section 1.2.1, we will provide an exact definition of 

synchrony in the context of the measurement of brain activity at the scalp. For now, 

we define synchrony in the brain as a period of rhythmic activity in two or more 

neuronal groups of which the "downbeats" of the rhythm (that is, action potentials) 

have a consistent separation in time. Discussion of the role of synchrony in cognition 

requires some theory concerned with cell assemblies.

2.1.1. Cell assemblies

Distributed populations of neurons may become more strongly connected through the 

modified Hebbian learning rule (Pulvermüller, 1999), which states that correlated 

neuronal activity results in heightened synaptic sensitivity. This allows distributed 

neuronal populations, e.g. in visual cortex (Roelfsema, 1996; see section 1.1.2), to be 

activated by a single object, functional specialization resulting in a distributed coding 

of the object's properties (Roelfsema, 1996). Distributed, co-activated populations are 

termed cell assemblies and have ecologically and theoretically attractive properties.

Cell assemblies aid survival in a complex and changing world, and hence have 

significance for reproduction and evolution, by the way they avoid the combinatorial 

explosion that would follow from a strict separation of specific functions and 

representations (Roelfsema, 1996). This explosion would cause an undesirable trade-
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off between the ability to make detailed and varied distinctions and the number of 

neurons to be maintened. Distributed coding is still subject, in principle, to this trade-

off, but greatly increases the level of detailed variation for a given number of neurons 

by using them more efficiently, as the same neuron can then be used in a large number 

of different representations. This method of coding also allows novel stimuli to be 

represented as new combinations of known stimuli, and new tasks as new 

combinations of known actions, making representation both flexible and consistent. 

Finally, similar stimuli and actions will be represented by similar populations, which 

implicitly builds the concept of similarity, and hence the functions of categorization 

and abstraction, into the structure of the brain.

Cell assemblies’ utility for theory comes from their provision of a framework for 

understanding dynamics between brain areas (see below) and the interplay between 

seriality and parallellity in cognition (Simon, 1994; see section 1.5). For instance, the 

cell assembly is an inherently parallel structure, but the space for cell assemblies to 

exist concurrently may be limited, and hence cell assemblies may have to come into 

existence sequentially.

Nunez' (2000) local / global theory states that global characteristics of brain activity 

are produced by large-scale features such as brain size, but also by local neuronal 

interactions, which are themselves influenced by global processes. The cell assembly 

model may help integrate the results obtained from the different levels, such as those 

provided by Nunez' (2000) methods for the global level and by Engel, König and 

Singer (1991) concerning in vitro studies (Nunez 2000, reply 1.3). Cell assemblies 

can be defined recursively, in the sense that a population of local cell assemblies may 

form a cell assembly at a more global scale. The processes associated with cell 

assemblies discussed in sections 1.1.2 and 1.1.3 may be the cause of activity at both 

local and global scales, and the cause of their interactions.

For the idea of a cell assembly to be useful, the neuronal groups participating in a cell 

assembly must be distinct in some way: this allows the question of what, exactly, the 

cell assembly is assembled of to be answered. We define the distinctiveness of two 

neuronal groups as the condition that cell assemblies exist such that the one neuronal 

group is not part of the assembly if and only if the other neuronal group is also a 
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member. It seems to make sense to consider subsets of a neural population that are not 

split up in terms of cell assembly membership as a unit; the population of interest and 

the relevant assemblies depend on the experimental context. An illustration of a 

distinct neuronal group is given in section 1.1.3, at which point assembly membership 

will have been related to synchrony. Neuronal groups can of course also be 

distinguished on other, e.g. anatomical, grounds, but such distinctions may become 

cloudy when the assembly of interest consists of component parts that themselves are 

composed of possibly widespread and anatomically heterogeneous neuronal groups. 

Unfortunately, specific relationships between anatomical characteristics and cell 

assembly memberships are beyond the scope of this paper. 

Though distinct neuronal groups may themselves be cell assemblies on a smaller 

scale, and so forth on smaller and smaller scales, groups relevant to this and similar 

studies will have to be of a certain size and have certain characteristics. Section 

1.2.3.2 provides details of the limitations of the EEG measurements we used. The 

most important result of these limitations is that the distinct neuronal groups of which 

we can measure the activity are sections of cortex with sizes in the order of about 5 

square centimeters (Nunez, 2000, reply 1.7). This is about the scale of gross neural 

anatomy, which is also the scale of much neuropsychological data. The neuronal 

groups that we will consider will thus be lobes with broad subdivisions, and have 

functions like location representation, auditory processing, etc.

2.1.2. Binding

If simultaneously activated cell assemblies overlap and still differently influence and 

are differently influenced by the rest of the brain, some kind of transient grouping 

must be involved. The brain has somehow evolved to solve this problem of grouping 

together the correct neuronal groups, as illustrated by the way visual information 

processing works (Roelfsema, 1996). Amongst other dimensions of visual objects, 

location and identity are represented separately in the brain, the perceived object 

being represented as the cell assembly consisting of all the perceived dimensions. If 

two or more objects are perceived simultaneously, the attributes of the one object 

must be explicitly coded in such a way as to distinguish them from those of the other. 

This coding of distinction and belonging has been labelled binding.
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2.1.3. Synchrony and its functions

Engel, König and Singer (1991) have demonstrated that cells in cat visual cortex 

responding to two superimposed lights bars, presented at the same location with 

different orientations, become segregated into distinct assemblies by synchrony. Note 

that, because the light bars occupied the same region in visual space, their 

representations in the cortex must have overlapped. Coding in synchrony allowed the 

two simultaneously active sets of cells to overlap in space and still be distinguishable, 

which is just the function attributed to binding.

Aside from supplying an extra dimension for neuronal coding, synchrony exploits the 

property of coincidence detection, which refers to the inverse relationship of neurons' 

firing threshold and synchronization of their inputs (Azouz & Gray, 2000). Once a 

group of neurons with synchronous activity exists, coincidence detection could help to 

recruit large groups of neurons into an assembly (Azouz & Gray, 2000). How could 

such a pacemaker arise in the first place?

The most important cause of synchrony seems to be the structure of certain cortical 

networks (Sukov & Barth, 2001). Although specialized pyramidal pacemaker cells do 

exist (for instance, Gray & McCormick's (1996) chattering cells produce action 

potential bursts at frequencies between 20 and 70 Hz in response to depolarization) 

and may enhance synchrony or be preferentially tuned to certain frequencies (Sukov 
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& Barth, 2001), computer models (e.g. Traub et al., 1999) and in vitro studies (e.g. 

Buhl et al., 1998) have shown cortical pacemakers to be unnecessary for synchrony to 

occur. Sukov and Barth (2001) provide a pacemaker model in which the thalamus has 

a modulatory influence, which will be described after an example of a synchrony-

causing network structure.

A simple network that oscillates in response to a constant excitatory input is given in 

figure 1.1 A (based on Eckhorn, 2000, in Miller (2000)). Activated excitatory neurons 

will produce post-synaptic potentials until their activity causes the central neuron to 

inhibit them, thereby shutting off its own excitation and allowing the process to begin 

again, and again, in a rhythm determined by properties such as the thresholds, strength 

of excitation and inhibition, etc.

Figure 1.1 B shows two overlapping networks, of which the middle neuron is distinct 

from its neighbors in the sense provided in section 1.1.1. This illustrates how 

synchrony can convey information on belonging; it disambiguates the situations 

where the marked neuron is bound to one or the other group.

Sukov and Barth (2001) propose a cortical circuit in which gamma frequency 

oscillations in the cortex are evoked by tonic depolarization caused by the thalamus. 

Two mechanisms produce synchronies in response to this depolarization. The first 

depends on excitatory and inhibitory reciprocal intralaminal interactions between 

pyramidal cells and inhibitory interneurons, which seems similar to the example from 

Eckhorn (2000) above. The second is based on interlaminal interactions, in which the 

supra- and intragranular layers reciprocally activate each other.

     

An interesting aspect of the Sukov and Barth model is that neural network processes 

involving the thalamus may have an effect on synchrony at the cortical level. 

Synchrony between possibly distant cortical locations mapped onto the thalamus 

might then be the output of neural circuitry that implements logical operators and is 

highly connected to other parts of the nervous system. This suggests that synchrony 

could occur at the cortical level in a wide variety of configurations, constrained, 

within biological parameters, by their learned usefulness for the organism at a given 

moment.
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Coincidence detection suggests that synchrony not only provides the binding function, 

but also enhances the influence of representations that are part of cell assemblies. This 

could provide stability in cognition over short and long periods of time. At small time 

scales, the brain will not fluctuate between responses to varying sources of activity, 

but will respond primarily to coherent populations. Populations with heightened 

synaptic sensitivity due to experience will also be the ones most important in 

cognition in present situations, providing continuity over long periods.

The function of synchrony of most importance to this study is transient connectivity, 

which we distinguish from the transient grouping that occurs during, for example, 

perceptual binding. Consider a simple feedforward process in which tuned cells 

(Sukov & Barth, 2001; see above) respond selectively to members of a population 

oscillating at their preferred frequency, creating a grouping within the population. 

Note, however, that this grouping is a consequence of existing synaptic connections, 

only providing a connection in the sense that the conveyed information is grouped 

relative to receiving areas. Flexible cognition requires transient connections with an 

abstract synaptic function, for example mapping stimuli to responses. Since the brain 

has evolved to be sensitive to rhythmic qualities of neuronal activity, it seems 

reasonable to look to this coding dimension for an explanation of the flexibility in 

cognitive connections. Coincidence detection and pacemaker cells with preferred 

frequencies seem likely to play important parts in this function.

The following hypothetical model is intended to illustrate that synchrony could at 

least be part of a connective mechanism. A group of "fickle grandmother" pacemaker 

cells with different preferred frequencies and a wide range of connections could 

recruit oscillating cell assemblies representing actions or perceptions. Such a 

grandmother would have children, and children's children, but could swap them for 

other cell assemblies, at the time scale of change in oscillatory activity. Each member 

of a temporary family would receive coincident activation from the other members, 

providing feedforward and feedback loops, in which activation of one member 

activates the others. Grandmother cells may manipulate the inhibitor neuron in 

Eckhorn's model, perhaps competing amongst each other for the frequency of their 

potential family. The results presented in the next section provide some empirical 
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support for the association between synchrony and transient connectivity, although it 

should be clear that relationship between synchrony and transient connectivity is far 

from transparent. Even so, the combination of synchrony-causing network 

interactions and a transient connectivity function provide the possibility of a very 

powerful model for brain function.

2.1.4. Results concerning oscillations and synchrony

Neuronal characteristics such as thresholds and synaptic strength and other biological 

parameters, such as propagation speed (Nunez, 2000) and the distance between 

synchronized cells (Nunez, 2000; Singer, 1993) together determine frequencies of 

oscillations and synchronies. We will not discuss the modeling literature that studies 

in detail the relative importance and interactions of these factors in causing 

oscillations of various frequencies; but see Kopell et al. (2000) for an example 

explaining different synchronization properties of beta and gamma oscillations based 

on synaptic strength and membrane conductance. The following results provide an 

overview of the situations in which oscillations of various frequencies occur, together 

with tentative interpretations and explanations based on theory presented so far.

2.1.4.1. Delta / theta activity

Harmony et al. (1996) predicted increases in delta activity (around 4 Hz) 1) during 

mental operations on a stimulus, 2) in response to increased difficulty, and 3) when 

irrelevant stimuli should be inhibited, and presented results supporting their prediction 

in the first two cases. They based their prediction on Vogel et al.’s (1968) distinction 

between classes I and II inhibition, which are both reflected in slow waves in the 

EEG. Class I inhibition occurs during slow-wave sleep and represents a global 

inhibition of excitatory processes. Class II inhibition is the task-related, selective 

suppression of irrelevant neural activity. Harmony et al. propose that attention to 

internal processing should be accompanied by class II inhibition, and hence increases 

in delta activity.

Nunez (2000) reports an increase in theta (4 – 7 Hz) coherence, especially between 

anterior and posterior regions, during mental calculations, relative to rest. Similarly, 

Sarnthein et al. (1998) found theta coherence between prefrontal and posterior 

association areas during working memory retention. Nunez (2000) notes that theta 
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coherence is low relative to alpha coherence, which is discussed below. He suggests 

that this may be a consequence of spatial resolution. As theta coherence is related to 

specific mental processes the underlying networks are likely to be smaller than the 

more global areas involved in alpha coherence.

One possible explanation of the association of delta / theta band activity with task-

related inhibition is that delta activity reflects recruitment of assemblies at a frequency 

band that may be too slow to produce the benefits of coincidence detection. Even if 

depolarization is strong due to synchronous input, the cell membrane of a connected 

neuron may have time to return to its resting potential before the next pulse of inputs 

arrives, effectively dampening the effect of the output of the inhibited area and 

resulting in theta coherence between the inhibited and connected areas. At the same 

time, cells with characteristics allowing coincidence detection of slow oscillations 

may respond to the slower activity, allowing a coherent object to be the target of 

inhibition. If this hypothetical function of delta activity is the case, it would seem 

likely to play an essential part in negative priming (e.g. Tipper and Driver, 1988).

2.1.4.2. Alpha activity

An early finding concerning a relation between oscillations in the EEG and 

cognition was made by Berger (1929), who observed that performing mental 

operations such as arithmetic caused alpha rhythms, present in rest, to be replaced by 

irregular, fast oscillations. A general decrease in alpha coherence during mental 

calculations was found by Nunez (2000). This coherence decrease occurred at the 

same time as the increase in theta coherence mentioned above. Alpha amplitude was 

decreased most over posterior sites, but alpha coherence decreased most between 

frontal electrode pairs. This fits with the explanation provided later. Nunez noted that 

the precise frequency bands in which alpha coherence effects are strong might be 

narrow; choosing too broad a frequency band for analysis may thus obscure effects.

Klimesch et al. (1996) found a number of intriguing relations between memory 

performance and decreases in localized synchronization (event-related 

desynchronization, ERD; note that this measure is based on power at electrodes, not 

phase relations between them; see section 1.2.1) in the lower and upper alpha band 

(around 9 and 12 Hz respectively). They present an interpretation of different alpha 
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activity of good and bad performers based on the functional significance of the upper 

and lower alpha bands, desynchronization in these bands reflecting encoding (the 

upper band) and attention (the lower).

Two kinds of explanations arise for these results. Desynchronization suggests 

separation as opposed to grouping or connection. Separation of activity may be 

necessary to allow local processes to proceed without the disruption of new inputs 

arriving with the force of synchrony. However, it may also be the case that local 

processes do not require desynchronization, but cause it simply because local network 

interactions come to determine cell activity more than global alpha activity (see 

below). Whether separation is cause or effect, the consequent lack of coincidence 

detection may also serve a delay function, making sure even strong local activity 

remains localized. The memory model of Moscovitch (1992) discussed in section 

1.1.5 proposes functional neuronal units of which the inner workings are unavailable 

to consciousness. Alpha desynchronization may be the method of keeping such black 

boxes closed.

The question remains why it is specifically alpha activity that seems to oppose the 

integrity of local processes. One possibility is that oscillations in the alpha band 

mostly reflect boundary conditions such as the size and shape of the brain and the 

propagation speed of electric waves traveling through it via synaptic activity (Nunez, 

2000) and are therefore both strong and unrelated to specific local processes. Roughly 

reasonable estimates of propagation speed and brain size provide some support for a 

simple example of this interpretation. A wave traveling from one end of the brain to 

the other over the cortex (say 20 cm) at a speed of 5 m / s (a little lower than the 6 – 9 

m / s estimate given by Katznelson (1981) and Nunez (1995)) would result in a 

“return-trip” taking 2 * 0.2 / 5 = .08 s, and an oscillation of 12.5 Hz. The different 

topography of amplitude and coherence decreases mentioned above seem logical 

given this explanation. Frontal areas seem likely to be involved in mental calculations, 

local processes dominating their own oscillatory activity. If alpha activity is indeed 

caused by wave-like effects over the brain, its amplitude at all areas seems likely to be 

attenuated if the interacting waves are disturbed by strong local processes. However, 

what is left of the alpha waves may still be coherent at regions other than the 

disturbing ones.
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2.1.4.3. Beta activity

Pfurtscheller et al. (2000) found beta oscillations (14 - 32 Hz) in the EEG over 

somatosensory cortex during voluntary finger movements. The frequencies with the 

highest activities were location-specific, around 17 Hz over the hand area and 23 Hz 

over the foot area. Roelfsema et al. (1997) found beta synchronization between areas 

7 and 51 in cat cortex during a task in which a lever had to be pressed in response to a 

change in grating orientation.

The dependence on structural properties of underlying tissue suggested by beta 

activity’s location-specificity suggests that this kind of activity primarily reflects the 

activation of specialized neural networks. The synchrony occurring after associative 

learning fits well with this interpretation because of the presumable formation of a 

new cell assembly during training. Given the same approximations as were used for 

alpha activity, beta frequency fits reasonably well resonant activity within more 

localized circuits.

2.1.4.4. Gamma activity

Oscillations and synchrony in the gamma band (20 - 70 Hz), especially 40 Hz 

oscillations, are strongly related to cognition in which conscious perception and 

control plays a part. Perhaps the most well known indication of this relationship is the 

40 Hz activity during REM sleep (Mendel & Goldstein, 1971). In delta sleep (see 

section 1.1.4.1), both gamma activity and dreams are absent. Awake subjects show a 

40 Hz response to auditory stimuli that is absent during a certain kind of anaesthesia 

(Madler et al., 1987).

Gamma activity not only differentiates general states of arousal. Complex motor 

actions result in synchronous gamma activity in monkey motor and somatosensory 

cortex that is weaker during simple actions (Murthy & Fetz, 1992). EEG and MEG 

studies (Kristeva-Feige et al., 1993; Pfurtscheller et al., 1994) show increases in 

gamma activity prior to complex movements in humans.

Coherent visual stimuli such as Kanizsa triangles (three pac men with their mouths 

creating the three points of a “white” triangle) (Tallon-Baudry et al., 1995) and 
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moving lines (Lutzenburger et al, 1995) result in gamma activity over visual cortex, 

while incoherent stimuli with equivalent elementary visual characteristics (pac men 

turned away from each other, lines that do not move as a group) do not. The 

Lutzenburger study also showed that the oscillations occur at the specific locations in 

the brain activated by the stimuli: inferior and superior occipital sites respond to 

stimuli in the upper and lower visual fields respectively. The gamma activity related 

to auditory stimuli was noted above. Sequences of clicks with a driving frequency 

around 40 Hz have the added property of increasing power at the sequence’s 

frequency.

Finally, gamma activity is clearly related to word processing. Visually (Lutzenburger 

et al., 1994) and auditively (Pulvermüller et al., 1995) presented words resulted in 

stronger 30 Hz activity, located specifically over left perisylvian cortex, than 

pseudowords. In a lexical decision task, Pulvermüller et al. (1996) showed that the 

processing of verbs was related to 30 Hz activity over motor cortex whilst processing 

nouns resulted in 30 Hz activity over visual cortex.

In a review article, Tallon-Baudry and Bertrand (1999) note that the spatiotemporal 

characteristics of gamma activity depend on the task and on which sensory areas are 

used, and that an interpretation in terms of dynamic linking mechanisms fits well with 

these characteristics. Three studies directly concerned with synchrony provide 

preliminary support for this interpretation, the assumption being that phase-locking 

(see section 1.2 for details) is unlikely to occur without some kind of direct 

relationship. The first is that by Engel, König and Singer (1991) described above. 

Lachaux et al. (1999) found synchrony around 40 Hz between various brain areas 

using intracortical measurements in an oddball task. Haig et al. (2000) also used an 

oddball task, and found global increases in EEG synchrony around 40 Hz and 

synchrony between electrodes within large regions.

It appears that the various frequencies at which activity occurs in the brain may have 

quite clear functional distinctions. Delta activity represents inhibition; alpha activity 

the (lack of) influence of local interactions on local activity; beta activity the local 

non-transient connectivity of neural networks; and gamma activity grouping and 

transient connectivity between specialized areas. Despite the variety in functions, they 
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can be explained by a small set of underlying mechanisms: coincidence detection, 

neural network interactions and transient connectivity.

The theories and results discussed in the preceding sections show the importance of 

oscillatory activity in the brain. They help to understand how binding may be realized 

in the brain and provide a first step in determining how the formation of cell 

assemblies at various scales may result in local - global interactions. Examples are the 

global-to-local process of tonic depolarization and the local-to-global process of cell 

assembly recruitment. The psychophysiological information provided by oscillation 

and synchrony studies, together with general theories of oscillation and synchrony 

such as those provided in sections 1.1.1 to 1.1.3 or by Nunez (2000), may be used in 

the construction of detailed hypotheses concerning the measurement of predicted 

instances of cell assembly activation, inhibition, local network interactions and 

transient connections. However, more elaborate and specifically cognitive models are 

required to provide such predictions. Such models must specify how the neuronal 

representations of goals and memory create the global and local conditions under 

which synchrony results in controlled, coherent behavior.

2.1.5. Synchrony and selection for action

The following theories and models may help to predict when and which patterns of 

synchrony will occur, and to interpret those patterns if they are found.

Fuster (1997) bases his model of the brain on the perception – action dichotomy in 

mammalian neurology, in which anterior and posterior areas are concerned with 

action and perception respectively. The required temporal integration of action (both 

motor and cognitive, such as attention) is provided by prefrontal cortex. Moscovitch' 

(1992) model of memory and consciousness contains three components: the posterior, 

temporal and frontal lobes. Posterior areas contain specialized functional units, of 

which only the output and input are available to consciousness and conscious control. 

Temporal medial areas are the location of automatic memory storage and retrieval, 

such as that due to cueing. The frontal lobes receive output from the other two 

components and support strategic, controlled encoding and retrieval processes. The 

functions performed by the frontal lobes are termed working-with-memory. Damasio 

and Damasio (1994) provide neuropsychological evidence that memory is a process in 
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which early sensory and motor cortices become activated as part of an ensemble. 

Anterior convergence zones, ensembles of neurons at the nexus of many feedforward 

and feedback connections, play the organizing role in Damasio and Damasio’s model 

of memory. In all these models specialized posterior neuronal groups with relatively 

simple functions are organised by anterior areas to achieve more complex 

representations and cognition.

Switching between tasks is an example of temporal organization of interest to this 

study. An aspect of task switching we expect to be susceptible to study by the EEG 

methods described in section 1.2 is selection for action.

Simon (1994) points out the ecological necessity for the human organism to have both 

parallel and serial functions. Selection for action is concerned with the parallellity of 

information in the brain, which must somehow result in effective serial actions in the 

outside world. The transient connection of relevant neuronal representations to 

anterior areas is the neuronal expression of selection for action suggested by the 

functions of synchrony and the models described above. More specific predictions for 

these anterior areas are given by Burgess et al. (2000).

Burgess et al. provide neuropsychological evidence for the location of three 

components of multitasking: retrospective memory, prospective memory and 

planning. The respective areas are the posterior cingulate, Brodmann areas 8, 9 and 10 

(tentatively) and the right dorsolateral prefrontal cortex. Note that the location of 

retrospective memory, that is, the location of its organizing area, is neither anterior 

nor, in fitting with Fuster, action - directing. However, the connections within 

retrospective memory represent the task instructions to be followed and are thus an 

important part of multitasking and task switching.

The models introduced above allow us to formulate hypotheses concerning at least 

some of the processes of switching between tasks. These hypotheses, concerning 

synchrony measured between EEG channels, will be discussed in section 1.3.

2.2. Measuring synchrony
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The following section is concerned with the measurement of synchrony at the scalp. 

First, the decomposition of a signal using wavelet analysis will be discussed. This 

decomposition is used in a number of measures of synchrony, two of which will be 

described in section 1.2.2. Two other measures we will not discuss are coherence and 

quasi-coherence. These measures are based on both phase and amplitude, and were 

dropped in favour of the measures of section 1.2.2, which are based only on phase 

relations. Finally, we will look at problems caused by the way signals from the brain 

translate into electrical fields that can be measured at the scalp, and, where available, 

solutions for these problems.

2.2.1. Wavelet analysis

Fourier analysis is based on the theorem that any signal can be written as the sum of 

sines and cosines of various amplitudes (the peak of the function) and phases (the 

shift of the function along the ordinate) (Glaser & Ruchkin, 1976). Wavelet analysis 

determines the amplitude and phase, not of component (co-) sines of specific 

frequencies, but of component wavelets with a frequency and temporal content 

centred on various values. An example of a wavelet (the Morlet wavelet) is given in 

figure 1.2. Note, first, that the wavelet is localized in time: the further points are from 

the centre, the more their 

function values approach 

zero. This is not the case 

for sines, which keep on 

oscillating with the same 

amplitude to plus and 

minus infinity. Second, a 

sine is precisely localized 

in frequency, whereas the 

wavelet has a frequency 

mean around which its amplitude decreases with distance.

There are infinitely many wavelets, just as there are infinitely many sines. However, 

all wavelets are localized, like the example, in time and frequency. This localization is 

not exact. There is always a range in either time or frequency or both around the mean 

over which the amplitude of the wavelet decreases to zero (Raz, Dickerson & 
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Figure 1.2. Temporal and frequency characteristics  

of a wavelet

Taken from Tallon-Baudry & Bertrand (1999).



Turetsky, 1999). The amplitude of the Morlet wavelet, the wavelet we use in our 

analyses, is a Gaussian function in both time and frequency centred on the mean, and 

the relationship between the amplitude function in time and frequency is always

σf = 1 / ( 2π * σt )

where σf and σt are the standard deviations of the amplitude function in frequency and 

time, respectively. The standard deviation of a Gaussian function determines its 

width, higher standard deviations corresponding to a broader curve. The resolution of 

a wavelet, that is, the specificity of the kind of signals it responds to (see below), is 

directly related to its σf and σt. The σf is also central to the definition of wavelet 

families. Wavelets belonging to the same family all have the same f / σf ratio, the 

wavelet parameter.

In Fourier analysis the influence of all components of the signal with a frequency 

unequal to that of the chosen (co-) sine is zero. In wavelet analysis, components of the 

signal around the mean of the wavelet also contribute to the results, and hence the 

resultant amplitude and phase, due to the nonzero amplitudes around the mean 

frequency. This is what was referred to above as the wavelet responding to 

(components of) signals with frequencies around its mean frequency, not specifically 

to signals with exactly its mean frequency. The exception to this lack of specificity in 

frequency is when σf = 0, in which case σt = infinity, and the wavelet becomes a (co-) 

sine. The analogous exception is infinite lack of specificity in frequency, where all the 

signal components are lumped together and the well-known time – amplitude signal is 

returned.

The advantage of using wavelets over the (co-) sines in Fourier analysis is the 

localization in time of the former, which is “paid for” by their lack of specificity in 

frequency (Raz, Dickerson & Turetsky, 1999). The trade-off between specificity in 

time and frequency is a choice of the researcher, allowing for a flexible approach 

based on the type of data and experimental objectives. The advantage of wavelet 

analysis over Fourier analyses done on sections of signals is that the latter analyses 

require a choice of fixed window, which will only be optimal for detection of 
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waveforms at one time scale. Wavelet analysis offers variable windows, where faster 

rhythms in the same family are inherently more localized in time due to the constant f 

/ σf ratio and σf = 1 / (2π * σt) equation. Samar et al. (1999) note that this leads to the 

possibility of handling both large- and small-scale structure by a single, efficient 

analysis protocol.

If the σt is nonzero, adjoining time points will produce largely redundant information, 

so in the method used in this study not all time points were analysed. The analysed 

time points were taken in steps of the smallest σt used in the analysis. As well as 

reducing computation time for the wavelet analysis itself, this procedure will turn out 

to reduce statistical and computational problems in later stages of analysis.

Wavelet analysis is based on the convolution of a signal with wavelets, where, 

depending on the σt, only the part of the convolution centred on the mean-in-time of 

the wavelet will be (practically) nonzero. However, the amplitude and phase of a 

signal component of a given frequency at a certain time can also be extracted by 

complex demodulation, which is faster and provides equivalent results.

2.2.1.1. Complex demodulation

The aim of complex demodulation is to extract the time course of the amplitude and 

phase of a perturbed periodic component in a signal. Such a component can be written 

as

x(t) = R(t) * cos(λt + Φ(t))

in which R(t) is the amplitude as a function of time and Φ(t) is the phase shift as a 

function of time (“perturbation” refers to the amplitude and phase being a function of 

time, not constant over the whole series). Complex demodulation is characterized in 

Bloomfield (1976; this section is largely based on chapter 6 of Bloomfield’s book) as 

a local version of harmonic analysis, where the amplitude and phase at time t are 

determined only by data in the neighborhood of t, not by the whole series.
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Complex demodulation is based on the convolution of xt with an analysis oscillator 

term, exp(-iλt), where i is sqrt(-1). This analysis oscillator is set to the frequency of 

interest through the choice of λ. The convolution is now rewritten using the following 

formulae:

1. y(t) = x(t) * exp(-iλt).

2. x(t) = R(t) * cos(λt + Φ(t))

<=> x(t) = ½ * R(t) * [exp(i(λt + Φ(t))) + exp(-i(λt + Φ(t)))],

because exp(i*x) = cos(x) + i * sin(x), where x = λt + Φ(t) and thus the 

term between square brackets can be rewritten as

cos(λt + Φ(t)) + i * sin(λt + Φ(t)) + cos(λt + Φ(t)) - i * sin(λt + Φ(t))

= 2 * cos(λt + Φ(t)), 

which must then be divided by two to recreate the original cosine.

Inserting 2) into 1) produces

3. y(t) = ½ * R(t) * [exp(i(λt + Φ(t))) + exp(-i(λt + Φ(t)))] * exp(-iλt)

<=> y(t) = ½ * R(t) * exp(iΦ(t)) + ½ * R(t) * exp(-i(2λt + Φ(t))

The first term of this final form of y(t) can be used to calculate the desired time series:

4. In y(t) = ½ * R(t) * exp(iΦ(t)), R(t) is twice the norm of y(t), as the right 

side of the equation is simply the exponential form of a complex number.

The norm of y(t), and hence R(t), can be calculated by writing y(t) = x(t) * 

exp(-iλ) as y(t) = x(t) * cos(λt) - i * x(t) * sin(λt), of which the norm is simply 

the square root of [x(t)² * cos(λt)² + x(t)² * sin(λt)²]. The phase at time t is the 

arctan of -(x(t) * sin(λt)) / (x(t) * cos(λt)), as can be seen by drawing y(t) as a 

vector.

The second term must thus be removed, as well as, in realistic data, a noise term z(t) 

which in the convolution y(t) becomes z(t) * exp(-iλt). The result of these removals, 

that is, the first term, is called the demodulated series. Demodulation, the process of 
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removing the second and third term, is based on the smoothness of the first term: note 

that due to the fact that the analysis oscillator is exp(-λt), the λt disappears from the 

first term in the convolution. The functions in the goniometric form of the first term 

now do not contain a λt argument any more, or more formally, the λ is zero. The 

second term oscillates around –2λ Hz and the third term cannot be smooth as all 

frequencies of λ are regarded to be part of the first component, so the noise 

component by definition cannot contain those frequencies which would be shifted to 

zero frequency. 

Due to the smoothness properties of the terms, linear filtering can be used to separate 

the first component from the other two components, providing the necessary 

demodulation. Linear filtering will not be described in detail here, but is based on the 

idea of taking a running average of adjacent points. Because smooth components will 

be roughly the same over adjacent points and noise will vary with mean zero, the 

result of such a running average will represent the smooth signal more than the noise. 

The details of linear filtering are concerned with the choice of weights for the running 

average. Note that this subsequent application of linear filtering makes the 

equivalence of wavelet analysis and complex demodulation understandable at an 

intuitive level, as the function values of a Morlet wavelet are themselves the product 

of an analysis oscillator and a weighted average.

2.2.2. Using the phase results of wavelet analyses to define and detect synchrony

Section 1.2.1 provides us with a more precise definition of synchrony: a consistent 

phase-difference between two signal-components centred on a given frequency band 

around a certain point in time.

After a completed wavelet analysis, every analysed time point of every signal has 

been assigned a value for the instantaneous amplitude and for the phase of its 

surrounding signal in a number of frequency bands chosen by the researcher. The 

measures we used for synchrony were based on the phase data. The first measure we 

will discuss is the phase-locking value (PLV, Lachaux et al., 1999). The second, the 

quasi phase-locking value (QPL, de Jong, 2000), is a variant of the PLV sensitive to a 

somewhat different kind of order in phase relations.

22



23



The phase-locking value (PLV, Lachaux et al., 1999) measures the consistency of the 

phase difference between two signals, around a given time point and frequency, over 

trials. The PLV is defined to be 

PLV (t) = (1 / N) * | Σn exp (j * (ϕ1(t, n) - ϕ2(t, n)) |

The reasoning behind this measure is as follows. Consider the phase difference of 

every trial at the time point and frequency of interest as a normalized vector within the 

unit circle. The example in figure 1.3 shows two conditions, one with consistent and 

one with strongly varying phase differences. Add the vectors head-to-tail and divide 

the length of the sum-vector by the number of trials. As illustrated in the examples, if 

the phase differences are consistent over trials, the length of this average vector will 

approach unity as the aligned vectors build up to a long, more-or-less straight vector, 

and if the differences are random the average will approach zero as the vectors will 

tend to cancel each other out.

The precise formula for the PLV is a formalization of this procedure. Exp (jx) = 

sin(x) + j * cos(x), where the sine and cosine parts of the equation can be mapped to 
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Figure 1.3. Consistent and inconsistent phase difference vectors and their average

Taken from Lachaux et al (1999). The left and right examples show a consistent and 
inconsistent phase difference respectively. The average vector is longer for the consistent  
differences than for the inconsistent ones.



the x and y axes of the unit circle and thus can be represented as vectors. Taking the 

norm of these vectors removes the imaginary component.

The PLV only assigns high values to time points at which the specific phase 

difference is consistent over trials. This means it will not detect synchronies if the 

phase difference differs over trials. Note that this does not mean there is no 

synchrony: even if the phase difference is not consistent over trials, it may be 

consistent over time points within trials. For example, on trial i two areas may show a 

phase-locking with 45 degrees difference around some latency, whereas on trial i+1 

the phase-locking may occur around the same latency but with 10 degrees difference. 

Our second measure, the QPL, was designed to detect this kind of consistent phase-

locking in the absence of consistent phase differences. The QPL is computed as 

follows:

1. Select a number of adjacent time points as a segment of a trial. We used 

the samples within +/- 4 * σt ms around the mean time.

2. Compute the intra-trial PLV over the time points of the segment. The 

values are weighted by the Gaussian curve for the localization in time. Due 

to the smoothing effect of the wavelet (adjacent wavelets are largely based 

on the same set of samples), the intra-trial PLV will show an artefactual 

synchrony. However, as we are interested in changes over time and the 

artefactual synchrony is constant over time points this does not present a 

problem.

3. Repeat 1 and 2 for every trial.

4. Average the intra-trial PLV over all trials for the QPL value.

Note that the value per trial is abstracted from the specific phase difference to the 

intra-trial PLV before averaging over trials.

2.2.3. Measuring brain synchrony at the scalp: problems and solutions

The signals of interest in this study are of course EEG waveforms. However, the 

synchronies of interest are those between groups of neurons within the brain. This 

relationship between signal and source is complex and presents a number of problems. 
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First, we will discuss the route from neuronal activity to electrical currents at the 

scalp.

2.2.3.1.Field potentials generated by neurons

Neurons generate electrical fields because of the flow of ions through cell membranes, 

as during action potentials (transmission of current / information within a neuron) and 

post-synaptic potentials (transmission of current / information between neurons, 

Allison et al. (1986)). Two types of currents are generated during an action potential. 

First, there is a current along the axon, as the action potential travels away from the 

soma. Second, the action potential causes local currents due to the ions travelling in 

and out of the cell. This second kind of current produces a field that is negative above 

the location of the action potential (a current sink) and positive at some distance 

towards the soma and the axon terminal (current sources). Current sinks and sources 

are the only type of field generated by post-synaptic potentials, and produce stronger 

fields than the movement of the action potential (Allison et al, 1986).

The potentials generated by several currents summate at all locations in extracellular 

space (this is Helmholtz’s principle of superposition, Allison et al., 1986)). The 

orientation of nerve cells determines whether their fields will be measurable at a 

distance. Open fields (parallel alignment) do, and closed fields (dendrites radially 

extending outwards from a central group of neurons) do not produce measurable 

fields. Ring-dipoles are a less well-known configuration possibly important to 

synchrony (Tallon-Baudry, 1999).

2.2.3.2. Eight problems

Allison, Wood and McCarthy (1986) list the following seven limitations of surface 

ERP’s in psychophysiological research. Note that they themselves do not present 

them as fundamental, insurmountable or even unsolved, and supplied some of the 

answers presented in the next section. Also note that the problems and answers 

presented below are based on the generation of the EEG the ERP is based on, not the 

averaging process. As the PLV and QPL are based on the same EEG as the ERP, the 

discussion below also applies to those measures.
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1. The scalp ERP is a summation of all the currents produced by active 

neurons; it is a statistical aggregate in which it is unclear which neurons 

have contributed what.

2. The ERP only represents the activity of neurons with certain 

characteristics concerning orientation, location and synchrony.

3. There is no one-to-one relationship between psychological processes and 

ERP components.

4. Even well-defined and precisely localized ERP components would not 

imply anything about the nature of the information processing operations 

they represent.

5. The polarity of ERP's can not be used to draw conclusions about the 

underlying neurophysiological basis.

6. Potentials from different sources may overlap in time and space.

7. The brain structures responsible for an ERP may not lie directly under the 

scalp region where the ERP's amplitude is maximal.

We add problem 8, a specific consequence of problem 1 especially relevant to 

research on synchrony:

8. The spatial resolution of recordings at the scalp is low. Measures taken 

from different points, especially points closer to each other than about 10 

cm may largely represent the same underlying activity (Nunez, 2000), 

leading to artefactual synchrony.

2.2.3.3.Six answers

Now we will consider some answers to these problems.

1. Source localization combined with methods like fMRI and background 

anatomical knowledge allow the likelihoods of various numbers and 

locations of dipoles underlying scalp potentials to be investigated. 

(problems 1 and 7).

2. The selectivity of the brain activity picked up by the EEG has its 

advantages. Knowing what brain structures were unlikely to have 

contributed to the EEG attenuates the problem of source localization in 
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general, and only having to deal with a subset of activity makes the 

problem space a little smaller. Furthermore, it may be that it is the 

activity that can be picked up, e.g. of pyramidal cells, is of more 

theoretical interest than the activity that cannot, in which case the 

signal-to-noise ratio of relevant information would be enhanced 

(problem 2).

3. Computational theories supply component processes which may be 

more easily mapped to specific ERP components than the emergent 

processes such theories explain. Problems in relating psychological 

functions to ERP's whilst those psychological functions are not even 

specified at the same level of detail in time as the ERP's are obviously 

to be expected, and say less about the limitations of the technique than 

the inadequacy of the theories (problem 3).

4. It is psychological theory that conveys meaning to any experimental 

variable, including ERPs. However, phase-locking does perhaps have 

more inherent meaning due to the theories presented in section 1.1, 

which may have a positive effect by guiding interpretation (problem 

4).

5. Experimental design can help distinguish ERP components reflecting 

different information processing operations. This implies that the 

necessary unit of experimentation needed to identify ERP components 

despite the overlap in time and space and the complexity of ERP - 

function relationships is not a single experiment, but a combination of 

experiments, working together to identify components which do not 

overlap in condition (problem 6).

Problem five stands as a caveat, especially when interpreting oscillations. Alternating 

positive and negative currents are not necessarily caused by two open-field groups of 

neurons perpendicular to the scalp alternately firing action potentials at each other (for 

an example of another possibility see Allison, Wood and McCarthy, 1986, p. 15).

These answers are satisfactory to varying degrees, but do seem to imply that the 

limitations of scalp recordings may be solved or compensated for, to some extent at 

least.
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The sixth answer, a possible solution to problem 8, is current source density (CSD) 

analysis, the subject of the next section.

2.2.3.4.Current Source Density analysis

This section is largely based on Nunez (1981). Because the skull is a bad conductor, 

current sources and sinks will only be measurable if they are due to neuron groups 

perpendicular to the skull. Most locations on the scalp would not have perpendicular 

current sources / sinks directly underneath them. However, the raw EEG data consists 

of electrical potentials, which are present at locations other than those directly over 

the current sources. Current source density (CSD) analysis (Perrin et al., 1989) uses 

the potential data to calculate a measure that reflects the density of the current sources 

below the skull.

Before explaining the CSD procedure, the concept of current density should be 

explained. The total current in an electrical circuit is uniform at all location in the 

circuit, but this is not the case in the brain. A more useful measure is current density, 

the current flowing through the cross-section of a certain volume in the brain. The 

formula for current density is Σ ρ * v. ρ is the charge density: the number of free ions 

of a certain charge in the volume multiplied by their charge, the unit being C / m³. v is 

the average vector [m / sec] of the velocity of these ions. The summation is over all 

types of ions and results in the current density [C / (sec * m²) or A / m²]. Current 

density is highest where the density of sources of current, dipoles in the simplest case, 

is high. As stated above, CSD detects this density of current sources.

Obviously, the ρ and v terms are unknown, but it will now be shown how the relevant 

current information can be derived from scalp potentials.

At locations not above a current source / sink, the current density function will be flat 

over the sphere of the scalp, only showing steepness where the current density is high. 

The two-dimensional first derivative of the current density is thus a suitable measure 

for locating underlying current density sources. The following equations show how 

this measure is related to the scalp potential.
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1. ∇J = ∂Jx / ∂x + ∂Jy / ∂y, where ∇ is the two-dimensional first 

derivative or deviation and J is the current density.

2. J = σ E, where σ is the conductivity and E is the electrical field.

3. E = - ∇Φ, where Φ is the potential

Now insert 2) into a variation of 1) to get

4. (-1 / σ) * ∇J = (- 1 / σ) * ∇ σ E

 (- 1 / σ) * ∇J = -∇E

Finally, insert 3 into 4 for

5. (- 1 / σ) * ∇J = -∇-∇Φ

 (- 1 / σ) * ∇J = ∇²Φ

Thus, the first derivative of current density is proportional to the second derivative of 

the scalp potential.

The method of calculating the current density consists of two steps. First, the scalp 

potential is calculated from the discrete electrode positions and values. The software 

we used, Brain Vision, calculates splines (a spline is a type of curve; see our 

explanation of splines in section 2.5 for more details) that smoothly interpolate the 

electrodes. This calculation requires two parameters: the order of the splines, which is 

analogous to the smoothing parameter described in section 2.5 and determines the 

flatness of the curve, and the maximum degree of the Legendre polynomials used to 

calculate the splines. The maximum degree determines how many component 

polynomials are used to approximate the spline. A flatter spline requires fewer 

component polynomials to be reasonably approximated, hence the rule of thumb that a 

higher order of splines should lead to choosing a lower maximum degree of Legendre 
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polynomials. Second, the second derivative of the continuous potential field of the 

first step is calculated.

Current sources and sinks are more localized than the overall current they cause, so 

CSD data would be expected to have a better spatial resolution than EEG data. This is 

supported by experiments, e.g. Nunez (1981). 

2.3. Possible roles of synchrony in switching between and maintaining task sets

2.3.1. The task-switching paradigm

The average reaction times for tasks when subjects have to alternate between them are 

longer than those for the same tasks if performed in isolation (Jersild, 1927). The 

extra time caused by the alternation is referred to as a switch cost. The task-switching 

paradigm is an experimental framework in which subjects must alternate between 

tasks. We will use Roger & Monsell’ s (1995) alternating runs paradigm to illustrate 

the most important characteristics of the paradigm.

In Roger & Monsell’s task, blocks of trials consist of a sequence of a pair of one task 

followed by a pair of another. Labelling the different tasks A and B, this results in an 

AABBAABB... trial sequence. In this design two conditions can be distinguished: a 

switch condition consisting of trials following a trial in which a different task had to 

be performed (respectively the A and the B in BA and AB sequences), and a 

nonswitch condition in which the present and the preceding tasks were the same (the 

second trial of the AA and BB sequences). The difference between the reaction times 

on switch and nonswitch trials is the switch cost. 

The time a subject is given to prepare for the subsequent trial is an important variable 

in this paradigm. This time is calculated as the interval between response and the next 

stimulus (the response-stimulus interval, RSI). Rogers and Monsell (1995) describe 

preparation as the subject-driven creation of a new mapping of stimuli to responses; a 

specific mapping is called a task set and changing task set, either prior to or after 

stimulus presentation, is called task-set reconfiguration. Sohn et al. (2000) modeled 

preparation in ACT-R (Anderson & Lebiere, 1998), a theory of cognition concerned 

with the goal-directed retrieval and application of information, as the active retrieval 

of task relevant knowledge. In the intention-activation account of task-switching (de 
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Jong, 2000), subjects must have the intention, or goal, of preparing for trials, and 

retrieve and carry out that intention prior to stimulus presentation. So, in endogenous 

preparation, the subject must want to prepare for tasks (in terms of ACT-R, the goal 

of preparation must be active), recall that a change in task will occur, retrieve the 

relevant task-knowledge prior to trials, and in doing so activate the specific stimulus-

response mappings necessary to correctly perform the new task.

As can be seen in figure 1.4, switch 

costs gradually diminish as the 

interval provided for preparation is 

prolonged, indicating that subjects 

are able to prepare for switch trials. 

As RSI is not related to the reaction 

time on repetition trials, preparation 

does indeed seem to be specifically 

concerned with changing task-set. 

The switch costs at the longest 

preparation interval are called 

residual switch costs, because ample time is provided to complete any endogenous 

preparation.

2.3.2. Theories concerning residual switch costs

The following explanations of residual switch costs will be discussed in the next 

sections:

1. The task-set inertia hypothesis

2. The task-set reconfiguration hypothesis

3. The failure-to-engage hypothesis

2.3.2.1.Task set inertia (TSI)

Allport et al. (1994) attribute switch costs to some kind of proactive interference, 

which they call task-set inertia, due to the same stimuli being used in competing 

32

Figure 1.4. An example of switch costs

Taken from de Jong, 1995



stimulus – response mappings. The mappings persist from the instruction set on 

previous trials and therefore interfere with the instruction set on the next trials. The 

switch costs are not considered to be the result of central executive processes, but are 

caused by the time taken by the information processing system to settle into a unique 

response to the next stimulus. In the Norman and Shallice (1986) model of conflicting 

schemata, this is the process of sorting out which schema is probably best suited to 

take control of action. The TSI hypothesis thus states that switch costs represent an 

automatic, stimulus-driven process.

2.3.2.2.Task set reconfiguration (TSR)

The task-set reconfiguration hypothesis by Rogers & Monsell (1995) states that 

switch costs measure the duration of a process of enabling and disabling connections 

between processing modules, and / or re-tuning the input-output mappings performed 

by these processes, so that the same type of input can be processed in the different 

way required by the new task. Whereas Allport et al. suggest that switch costs arise 

solely from automatic processes, Rogers & Monsell propose that there is also an 

endogenous component involved: advance preparation by the participant also 

influences reaction times.

Advance preparation, as described above, is an anticipatory process initiated by 

subjects in order to prepare for a predictable switch. This endogenous component can 

reduce switch costs if the participant is given enough preparation time to complete the 

reconfiguration process, but can never eliminate the costs of switching tasks as these 

costs also reflect an exogenously triggered component. This second component is 

triggered by stimuli and involves competition between two S-R mappings, as in the 

TSI hypothesis. Although Allport et al. suggest that this competition between S-R 

mappings can be noticed several trials after a switch, Rogers & Monsell found in 

experiments that this process is better described as a one-off task-set reconfiguring 

process.

2.3.2.3.Failure-to-engage (FTE)

The failure-to-engage hypothesis is based on the assumption that subjects can fully 

prepare during the RSI but sometimes fail to engage in full advance preparation. That 
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is, the intention described in 1.3.1 is not activated. Switch costs are attributable to the 

effect of unprepared trials on the average reaction time.

The mixture model of de Jong is based on the FTE hypothesis. A first step in using 

the mixture model is the calculation of cumulative distribution functions (CDFs) by 

dividing the rank ordered RTs for each subject, for each condition into deciles (10% 

bins) and then computing the mean RT 

for each bin. Figure 1.5 shows that the 

responses on the switch trials with the 

longest preparation interval can be 

seen as a mixture of two basic types. 

Responses in the nonswitch condition 

of the long preparation interval should 

be relatively fast and can be regarded 

as responses in a prepared state, 

because the task set is already 

configured. Responses in the switch condition of the shortest preparation interval 

should be relatively slow and can be regarded as responses in an unprepared state, as 

the time given is too short for advance preparation and the task-set reconfiguration is 

incomplete. Now, the reason the CDF for the switch, long RSI condition suggests a 

mixed distribution of prepared and non-prepared responses is that when the responses 

are fast, they are as fast as the nonswitch (prepared) condition and when they are 

slow, they are as slow as the switch, short RSI (non-prepared) condition.

The CDFs illustrate the FTE hypothesis that switch trials with a long preparation 

interval can be seen as a mixture of responses with a completed task set configuration 

and responses where subjects failed to prepare in advance. This description is shown 

by the following equation, in which F is the CDF-function:

Fswitch, long PI(t) = α Fprepared(t) + (1 – α) Funprepared(t).

The α in this equation is the mixing probability: the probability that advance 

preparation is carried out completely during the long preparation interval. The 
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Taken from de Jong (2000).



estimates of the prepared and unprepared RT’ s are, respectively, the RT’ s on the 

nonswitch trials with a long preparation interval and the RT’ s of the switch trials with 

a short preparation interval. This provides the following equation:

Fswitch, long PI(t) = α Fnonswitch, long PI(t) + (1 – α) Fswitch, short PI(t).

If the prepared and unprepared CDFs have the same shape, but are shifted in time, 

including an extra, time-shifting parameter δ would provide a better fit. The δ can be 

seen as a reflection of an exogenous component of task-set reconfiguration which, 

under the FTE hypothesis, should not provide a benefit over the model with only the α 

parameter.

Fswitch, long PI(t) = α Fnonswitch, long PI(t - δ) + (1 – α) Fswitch, short PI(t).

So, if switch costs arise purely from the fact that, on switch trials, the average RT is 

based on two underlying distributions, the δ would be zero and the α sufficient to 

describe the overall CDF. If the CDF for long switch trials is simply based on the RTs 

of long nonswitch trials plus the time taken for an extra process, the α will be 1 and 

the δ will indicate this extra time. The α and δ parameters can be estimated by using 

the multinomial maximum likelihood model (MMLM (Yantis, 1991)). The measure in 

which FTE determines a reaction time distribution can be evaluated by testing the fit 

of the restricted model (α only) and then either testing whether generalizing the model 

by including the δ parameter significantly improves the fit, or testing whether the δ 

parameter of the generalized model is significantly different from zero. The second of 

these methods is preferable, because the a priori distribution of the G2 statistic is 

unknown in the generalized model.

2.3.3. Hypotheses on task switching and synchrony

Numerous studies have already validated the basic idea of the mixture model (e.g. 

Lorist et al., 2000): the RT distribution for switch trials is bimodal, consisting of the 

overlapping prepared and unprepared distributions. Our hypotheses are concerned 

with the physiological processes leading to the different reaction times.
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To our knowledge, no psychophysiological studies have been performed using the 

prepared – non-prepared difference. The literature does provide some indications of 

which brain areas may be relevant for preparation. Dorsolateral prefrontal cortex has 

been related to various kinds of cognitive control (Sohn et al., 2000: holding items in 

working memory (Cohen et al., 1997), dual task performance (Courtney et al., 1998), 

switching between task dimension (Konish et al., 1998) and switching to a cognitively 

more demanding task (MacDonald et al., 2000). Superior parietal cortex has been 

related to the allocation of attention (Corbetta et al., 2000), being more activated 

during the cueing period of a spatial cueing paradigm (MacDonald et al., 2000). fMRI 

studies have shown that switch trials (both pre- and post-stimulus)  are associated 

with higher levels of activation than repetition trials (Kimberg et al., 2000; Sohn et al., 

2000; Dove et al., 1999). The same studies suggest that prefrontal and parietal areas 

may be specifically concerned with task-switching, regardless of which tasks are 

being switched between. Sohn et al. explicitly distinguished endogenous and 

exogenous components of switching by manipulating foreknowledge of the task to be 

performed. Endogenous preparation, where foreknowledge was used during the 

preparation interval, was related to higher activation in inferior lateral prefrontal 

cortex and superior posterior parietal cortex. Exogenous adjustment, which must 

occur after stimulus presentation on trials without foreknowledge, was associated with 

superior prefrontal cortex and posterior parietal cortex. Under the FTE hypothesis, 

exogenous adjustments when foreknowledge is available are consequences of failures 

to engage.

In section 1.1.5, selection for action was introduced as a task-switch component in the 

working with memory model. The task set must determine which stimuli or stimulus 

attributes will be attended to, and to which response they will be mapped. Our 

hypothesis is as follows: the successful reconfigurations during the RSI preceding 

prepared trials involve transiently connecting the places where stimuli will be 

represented to the correct responses, whereas this linking will not occur before 

unprepared trials. The TSR hypothesis suggests that an old task set may be visible in 

both cases, preparation replacing its obsolete patterns of synchrony with new 

connections.
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This study is exploratory, but we were especially interested in the following 

possibility. Transients connections seem likely to arise during the reconfiguration 

process and after successful initiation of a task set, and these may be detectable via 

wavelet analyses as synchronies, especially between relevant perceptual and 

prefrontal and / or (pre-) motor areas. The tasks we used were therefore chosen to 

recruit well-separated brain areas, in consideration of the limitations of the EEG 

technique, and will be described in the method section.
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3. Method
3.1. Subjects 

Twelve right-handed subjects, aged 18-30, participated in this study. All of the 

subjects had normal or corrected to normal vision. None used any psychoactive 

medication. Six subjects were lost due to technical difficulties and unsuitable response 

characteristics (very high or low α’ s).

3.2. Procedure

The tasks used in the experiment were a rhyme task and a visual task, programmed in 

MEL and presented on a 17’’ Brilliance 107 MP monitor 80 cm away from subjects. 

Both tasks used the same stimuli, which were presented inside one of four cells in a 2 

by 2 matrix. The matrix was 15 by 9 cm, corresponding to +/- 5,3 and +/- 3,2 degrees 

for the visual angle. The used cell rotated one step clockwise each trial. The stimuli 

were composed of a single-digit number and a word, presented in different intensities 

one above another. The words were real and pseudo-words and all rhymed with the 

spoken sound of a number from one to nine. Intensity was based on the red-green-

blue values of which colours can be composed in MEL (the values for each of the 

three colours were integers running from 0 to 64) at a monitor intensity setting of 

50%. Letters and numbers were presented in a 0,8 by 1,2 cm font. Stimuli remained 

on screen until a response was given and the next stimulus appeared after a response-

stimulus interval (RSI), which could be 100, 750 or 1500 ms.

In the rhyme task, subjects had to decide if the stimuli rhymed, while in the visual 

task they had to decide if the stimulus with the highest intensity occupied the upper 

location. Rhyming stimuli were those such as “7 heaven” or “1 gun”. The difficulty of 

the visual task was adjusted during performance by changing the relative difference 

between intensities of the stimuli in an attempt to keep average reaction times of both 

tasks similar. The added intensity of the more intense stimulus was determined as an 

intensity parameter times the ratio of the lower intensity divided by the maximum 

intensity. The intensity parameter was adjusted based on the difference in reaction 

times of the past twenty trials. If the difference was larger than 5 % an adjustment of 

the intensity parameter of 0.1 was made. No reduction of the difference was made if 

an error had been made during the considered trials, and trials with reaction times 
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below 200 or above 2000 ms were not used for determining intensity adjustments. Per 

block (see below) the intensity parameter was not permitted to change more than 2 

points. 

The response keys were the Z and X for the left hand and the M and N for the right 

hand. The mapping of the keys to "yes" and "no" responses was random over subjects. 

At the beginning of the experiment the assignment of a task to a particular hand was 

chosen at random. This assignment was switched halfway through the experiment to 

be able to measure the lateralized readiness potential (LRP). This measure can either 

be calculated as the difference between the EEG signal over contralateral and 

ipsilateral motor cortex (we used the C3 and C4 electrodes), averaged over response 

hands; or as the difference between (C4 – C3) for both response hands. The only 

difference is the factor ½ for the averaging method compared to the subtraction 

method; both methods result in a reflection of lateralization due to motor preparation 

in which hemispheric differences are averaged out.

We used three conditions: a pure rhyme condition with only trials of the rhyme task, a 

pure visual conditions with only trials of the visual task and a switch condition, where 

the two tasks had to be performed according to a fixed pattern (see below). At the 

beginning of the experiment subjects were instructed on paper and were able to 

practice the three conditions. They were told to respond as quickly as possible while 

keeping the amount of errors to a maximum of two or three per block. A short version 

of the instruction appeared on the screen at the beginning of each block, which 

remained until a response was given. The participants could, if they needed, take a 

short break during this instruction.

In the switch condition, the cell the stimuli appeared in cued the task. Because of the 

clockwise rotation, the task of the next trial was always predictable. Either the top two 

or leftmost two cells cued the one task, the remaining cells cueing the other; this leads 

to Monsell's (1995) AABB design (section 1.3.1).

The experiment consisted of eight sessions, each session containing ten blocks of 50 

trials. The order of the blocks of a session was four switch blocks, one block of a pure 

condition, four switch blocks and one block of the other pure condition. After four 
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sessions subjects were allowed to rest and received a new instruction and training, 

because of the new mapping of the response keys. 

3.3. Recordings

The EEG was recorded at a sampling rate of 250 Hz from 61 electrodes referenced to 

an average of both ears, linked online without electrically connecting the electrodes. 

The electrodes were placed according to the international 10-20 system and the 

electrode impedances were kept below 2 kΩ. Vertical and horizontal eye movements 

were recorded and used to correct the EEG electrodes for eye movements and blinks 

using ocular correction. Figure 2.1 shows the electrode positions and the groups we 

analysed together as a region of interest (ROI) to simplify the data and to keep 

statistical power relatively high. The amplitude and phase values of the electrodes 

within in a group were averaged for the ROI values used in the analyses.

3.4. Data analysis
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In the analysis we used the RTs of the shortest and longest RSI to determine the fit of 

the mixture model and we only used the trials of the longest RSI for the calculation of 

the physiological data. Incorrect trials and trials following an incorrect trial were 

rejected from analysis. Also excluded from analysis were the first four trials of each 

block and trials faster than 200 ms or slower than 2000 ms.

We used Brain Vision for segmentation, artefact rejection, baseline correction and the 

previously discussed current source density (section 1.2.3.4). Some points must be 

made about the choice of baselines in this paradigm. First, there is no natural baseline 

in the trials in our design. At every period during the trial, the subject is performing or 

has very recently performed some aspect of the task and comparisons based on any 
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Figure 2.1. Electrode placement and grouping

The 12 ROI's we used were composed as follows:
0. FT7, F7, AF7, F5, FC5
1. FP1, FPZ, FP2, AF3, AFZ, AF4
2. FT8, F8, AF8, FC6, F6
3. F3, F1, FZ, F2, F4, FC1, FCZ, FC2
4. FC3, C3
5. C1, CZ, C2, CPZ, PZ
6. C4, FC4
7. T7, TP7, P7, C5, CP5, P5
8. CP3, CP1, P3, P1
9. CP4, CP2, P4, P2
10. T8, TP8, P8, C6, CP6, P6
11. PO7, PO3, POZ, PO4, PO8, O1, OZ, O2



baseline may show a systematic bias between conditions. During the RSI, the subject 

has just responded and may be preparing for the next trial. Physiological reflections 

of, for example, the level of attention at the time of either activity seem quite likely to 

be related to the assignment of the next trial to either the prepared or non-prepared 

condition. The choice of a baseline in this situation is in fact the choice of a specific 

contrast. Second, the results of wavelet analysis do not change if some constant is 

added to each value within a segment, so the choice of baseline in pre-processing for 

wavelet analysis is irrelevant. The baselines that could be of importance to us were 

those of phase and amplitude, as we were interested in changes in their time course. 

Fortunately, the PSA method, discussed in section 2.5, is not sensitive to added 

constants but only to differences in the shape of time curves. The EFA method 

(section 2.6) is sensitive to the baseline, if that contains an especially high or low 

value for that ROI at that frequency. The choice to use deviation scores for phase 

values attenuates the possible influence of extreme values on the ranking of somewhat 

less extreme values.

After the operations performed by Brain Vision the data was analysed by Gamma (de 

Jong, 2001), a program that calculates power and the phase-locking measures PLV 

and QPL by complex demodulation (section 1.2.1.1). We subtracted the ERP from the 

trials before calculation of power and phase to select only induced components, that 

is, those components not locked to the response.

A program of de Jong assigned the odds of preparation to trials. Bayes’ theorem was 

used: the odds of preparation given a reaction time RT is equal to α times the odds of 

a reaction time of or below RT given preparation. Recall that α is the chance of 

preparation provided by the mixture model. Estimates for the chances of RT or below 

given preparation and non-preparation are based on the long RSI, nonswitch and short 

RSI, switch. The odds were used to check the validity of interpreting the fastest and 

slowest 25 trials as being prepared and non-prepared respectively.

3.5. Principle spline analysis (PSA)

In PSA (Snijders, 2001), the method we used to test differences concerning the time 

courses of amplitude, the data are regarded as a set of curves over time, each curve 

consisting of measurements at a number of times (the “knots” in the discussion 
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below). The subjects’ curves at a point in frequency and ROI or ROI-pair are 

associated with one statistical test, which alleviates the number-of-tests problem 

relative to testing each data point individually. The test provides a level of 

significance for differences in the time course of amplitude or phase (-locking) 

between conditions. The procedure is based on the calculation of the smoothed curve 

that explains as much variance as possible of the subjects’ difference curves at once. 

Differences can be calculated between conditions or between a condition and its 

average. The smoothing procedure is based on the theory of smoothing splines, which 

we introduce below before describing the PSA procedure in detail.

A spline is a piecewise polynomial: a function defined on a segmented interval that is 

a polynomial function within each segment. The edges of the segments are called 

knots. Cubic splines are a type of spline fulfilling the criteria that each polynomial is 

of the third degree and the first two derivatives of the polynomials meeting at a knot 

are equal. These splines have the property of uniquely minimizing the criterion

Σ (y(t) – s(t))² + α ∫ (s’’(t))²dt,

in which the summation is over the difference curves. The first term is the deviation 

of the spline from the data, representing lack of fit, the second the roughness of the 

spline. Roughness, the area under the squared curve of the second derivative, is the 

deviation of the spline from a first-degree polynomial and measures the speed of 

change in slopes, or less formally, of wobbliness. The α is called the smoothing 

parameter and determines the relative importance of fit and roughness. Hence, a given 

set of curves has one optimal cubic spline for each possible α, where optimality is 

defined as minimization of the criterion above. For an α of zero, the spline 

interpolates the knots, and as α approaches infinity the spline approaches a straight 

line. Figure 2.2 provides an illustration of the effect of increasing α.

In smoothing problems in general, the α can be chosen in a data-driven fashion by 

cross-validation. Cross-validation of α’ s is done by calculating the spline for a given 

α for each possible subset of N – 1 subjects and then taking the sum of the errors of 

the associated left-out subjects as a lack-of-fit criterion. A number of α’ s must be 
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tested, of which the α  with the smallest lack-of-fit is selected. The procedure in PSA, 

described next, is a little different.

PSA is based on the principal spline (Snijders, 2001): the smoothed analogue of the 

principal component in factor analysis. The principal spline is the vector of weights 

that explains the maximum amount of variance under a roughness restriction 

determined by a smoothing parameter α. The α is chosen based on cross-validation 

using the prediction of a subject’s difference curve from the principal spline based on 

the N – 1 other curves. Figure 2.3 shows an example of principle splines. Each plot 

shows a similar variability-explaining curve despite variations in the average signal. 

Future work will investigate further the relation of principle splines to groups of 

curves with certain characteristics.

Once the α-specified principal spline has been determined, the subjects are assigned 

spline scores: the inner product (equivalently, the weighted sum) of their difference 

curve with the principal spline. The spline score represents the similarity of the 

individual curves to the principal spline and is the measure used for determining 

significance.

The principal spline of difference curves describes the observed differences between 

the conditions. If the conditions systematically differ, the subjects will show similar 

difference curves, of which the principal spline will capture the major features. In this 

case, the subjects’ spline scores will be generally large and have the same sign. If the 

conditions do not differ systematically, the principal spline will have only noise to 

explain and the subjects’ overall similarity to the principal spline, and hence their 

spline scores, will be low and the spline scores will be randomly distributed around 

zero. This second consequence of the absence of an effect of condition allows 
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Figure 2.2. The effect of increasing α of a spline

The three figures show the spline calculated for a group of noisy block waves,  

the α increasing from 0 to 2500 to 7500 (left to right).



significance to be determined in a nonparametric way, via the binomial distribution of 

the number of positive spline scores.

The PSA method exploits the fact that the true amplitude and phase are likely to vary 

in a smooth fashion over time. Hence, it seems reasonable to expect that the loss of 

variation due to smoothing will be more than compensated by a reduction in noise.

3.6. Extended Friedman Analysis (EFA)

The theory of selectivity suggests that the distribution of synchronicity over the brain 

could be important. That is, in some situations there is cake of synchronicity and not 

all brain areas can eat it, as the selectivity function would then be lost. A numerical 

representation wherein this win-lose / closed-game situation is expressed is the vector 

of rankings of PLV / QPL values over ROI-pairs at a given frequency and time: the 

synchronicity ranking. Snijders (2001, personal communications) helped us to specify 

what we term the Extended Friedman Analysis (EFA) to detect, first, points in time – 

frequency space at which the synchronicity ranking was consistent over subjects, and 

second, specific differences between ROI pairs, from consistent time – frequency 

points, that were significantly different from zero. Finally, the connections involved in 

the significant differences are selected to provide the final synchrony pattern.

The selection of time – frequency points is done via the nonparametric Friedman test 

for interchangeability, in our case of the values of ROI-pairs. The testing stochastic is 

based on the average rank of a ROI-pair over subjects. Two post-hoc tests can be used 
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Figure 2.3. An example of a principle spline

The first figure shows the average difference curve between two condition, the second 

the principle spline explaining this difference in the sample.



to determine the significance of differences between ROI-pairs, of which one is χ²-

distributed and the other Q-distributed. The second test is more powerful, but at this 

time only the first has been implemented. The final step extracts single ROI-pairs 

from the significant differences. Significant relations between ROI-pairs were coded 

as 1 (higher-than) and -1 (lower-than). Each ROI-pair was assigned the sum of its 

significant relations to other ROI-pairs. The total pattern of these summed significant 

relations are the final result, which we interpret to be significant at the level of the 

differences as they are directly determined from the results of the second step.
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4. Results

4.1. Behavioral data

One subject’s data was lost to due to a corrupted data file. RSI had a significant effect 

on reaction time (F = 5.4 (2, 9), p = 0.029). Reaction times for an RSI of 100 ms were 

significantly slower than for RSI’s of 750 ms (F = 11.9 (1), p = 0.006); reaction times 

did not significantly decrease further from RSI 750 ms to RSI 1500 ms (F = 1.256 (1), 

p = 0.289). Our attempt to reduce reaction time differences between tasks was 

unsuccessful (F = 25.8 (1, 10), p = 0.000, the visual task being faster), but there was 

no interaction between task and RSI (F = 2,3, (2, 9), p = 0.152) or task and switch – 

non-switch (F = 0.807 (2, 10), p = 0.390). The effect of RSI was different in the 

switch and non-switch conditions (F = 5,7 (2, 9), p = 0,025). Figure 3.1 plots these 

results. 

Figure 3.1. Behavorial data

The mixture model with only the α parameter provided an acceptable fit (G2 (24) = 

33.23, p = 0.0992; this means that the lack-of-fit of the model was non-significant). 

Adding the δ parameter provided a significant improvement over the single-parameter 

model (G2 (8) = 20.01, p = 0.0103). The estimate of δ was significantly different from 

zero (δ = 14.4, t = 1.97 (10), p < 0.05). This suggests that subjects could not 

completely prepare for tasks. The odds of preparation for the fastest and slowest 25 
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The left and right picture show the results for the rhyme and visual tasks respectively. The 
vertical and horizontal axes represent reaction time [ms] and RSI respectively. The RSI  
levels of 1, 2 and 3 represent 100, 750 and 1500 ms respectively. Switch values of 1 and 2 
refer to repetition and switch trials respectively. 
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trials were 78.6 and 19.5, respectively. Two subjects were dropped because their 

slowest and fastest trials were too alike in their odds of preparation.

4.2. ERP / LRP data

Due to equipment failures, four subjects’ physiological measurements were lost 

completely and the EEG signals of all subjects were not properly event-locked. We 

used the N2 component to shift the signals to approximate their correct position 

relative to markers. Obviously, the data cannot be taken very seriously. The following 

sections are therefore restricted to the prepared – non-prepared conditions and 

contrast. We will discuss the prepared – non-prepared contrast in section 3.6; for now, 

we note that it is a complex measure, as the non-prepared condition is not neutral but 

may reflect the previous, unchanged task set. Figures 3.2 A and B show the ERP’s 

and figures 3.2. E and D show the LRP’s, separated by task. The prepared condition is 

represented in black and the non-prepared condition in red. Positive values are plotted 

upwards and the range is from 10 μV to -10 μV. The plots contain the data points 

from 2250 ms before till 650 ms after stimulus presentation, which is marked by a 

dashed line. Baseline correction for the ERP’s was based on the first 100 ms after 

response (-1500 to -1400 ms). The LRP’s are presented as deviation scores. All the 

signals were low-pass filtered, with a cut-off frequency of 15 Hz.
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Figure 3.2. ERP and LRP results 

A. ERP, visual, rhyme = left. 

B. ERP, visual, rhyme = right. 
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C. Rhyme, rhyme = left.

D. Rhyme, rhyme = right. 

50

0

[µ V ]

-2 -1 0 [ s ]

Fp1

0

[µ V ]

-2 -1 0 [ s ]

Fp2

0

[µ V ]

-2 -1 0 [ s ]

F7

0

[µ V ]

-2 -1 0 [ s ]

F3

0

[µ V ]

-2 -1 0 [ s ]

Fz

0

[µ V ]

-2 -1 0 [ s ]

F4

0

[µ V ]

-2 -1 0 [ s ]

F8

0

[µ V ]

-2 -1 0 [ s ]

T3

0

[µ V ]

-2 -1 0 [ s ]

C3

0

[µ V ]

-2 -1 0 [ s ]

Cz

0

[µ V ]

-2 -1 0 [ s ]

C4

0

[µ V ]

-2 -1 0 [ s ]

T4

0

[µ V ]

-2 -1 0 [ s ]

T5

0

[µ V ]

-2 -1 0 [ s ]

P3

0

[µ V ]

-2 -1 0 [ s ]

Pz

0

[µ V ]

-2 -1 0 [ s ]

P4

0

[µ V ]

-2 -1 0 [ s ]

T6

0

[µ V ]

-2 -1 0 [ s ]

O1

0

[µ V ]

-2 -1 0 [ s ]

O2

0

[µ V ]

-2 -1 0 [ s ]

Fp1

0

[µ V ]

-2 -1 0 [ s ]

Fp2

0

[µ V ]

-2 -1 0 [ s ]

F7

0

[µ V ]

-2 -1 0 [ s ]

F3

0

[µ V ]

-2 -1 0 [ s ]

Fz

0

[µ V ]

-2 -1 0 [ s ]

F4

0

[µ V ]

-2 -1 0 [ s ]

F8

0

[µ V ]

-2 -1 0 [ s ]

T3

0

[µ V ]

-2 -1 0 [ s ]

C3

0

[µ V ]

-2 -1 0 [ s ]

Cz

0

[µ V ]

-2 -1 0 [ s ]

C4

0

[µ V ]

-2 -1 0 [ s ]

T4

0

[µ V ]

-2 -1 0 [ s ]

T5

0

[µ V ]

-2 -1 0 [ s ]

P3

0

[µ V ]

-2 -1 0 [ s ]

Pz

0

[µ V ]

-2 -1 0 [ s ]

P4

0

[µ V ]

-2 -1 0 [ s ]

T6

0

[µ V ]

-2 -1 0 [ s ]

O1

0

[µ V ]

-2 -1 0 [ s ]

O2



E. LRP Visual

F. LRP Rhyme
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In the explanatory framework provided by the theories and results discussed in the 

introduction, the ERP is an inherently confounded measure, summating the activity of 

frequency bands with completely different functional interpretations. Even so, visual 

inspection of the ERP results shows a distinction between the prepared and non-

prepared conditions. The ERP for the prepared condition has a larger contrast between 

the more positive values soon after the response and the more negative values during 

the pre-stimulus period than the non-prepared ERP. This preparation effect was 

present at most electrode sites, excepting left anterior electrodes, and is similar to the 

negative deflection found by Lorist et al. (2000) during the RSI preceding switch 

trials in comparison to repetition trials. This suggests that this difference between 

repetition and switch ERP’s is due to the prepared trials within the switch condition. 

The LRP data for the visual task show that the prepared – non-prepared states 

predicted by the mixture model are associated with a distinct and interpretable 

physiological difference during the RSI. Recall that in a given block, each task was 

assigned to either the left or the right hand. Part of switching tasks is therefore 

switching hands. Because either possible response to a stimulus on a specific trial is 

mapped to the same hand, subjects know with which hand they must respond on the 

next trial; this depends on the position of the trial in the AABB sequence, not on the 

as yet unknown stimulus. During a repetition RSI, motor attention is already focussed 

on the correct hand for the next trial; that is, the response set concerning the keys for 

that hand will have been activated as part of a completed task-set reconfiguration. 

Responses on switch trials require that motor attention must shift to the previously 

unused hand. The theories in section 1.3 concerning preparation suggest that this shift, 

or change in activated response-representations, may occur prior to stimulus 

presentation. In this case, the same stimulus must be re-mapped to different response 

keys. Due to our choice of response keys and the change in task - hand mapping 

halfway through the experiment, we were able to use the LRP as a measure for task-

set reconfiguration.
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The LRP results for the visual condition suggest that when the odds of preparation 

provided by the mixture model are high for a given trial, subjects had switched to the 

new task-set prior to stimulus presentation. In contrast, the rhythm data do not show 

differences in the LRP due to preparation. Other measures to be discussed below also 

indicate a difference in the kind of preparation that takes place for the two kinds of 

tasks. Perhaps the relative benefit of pre-activating the response hand is lower in the 

more complex rhyme task, leading the LRP to be relatively independent of 

preparation for this task.

4.3. Amplitude data

Figures 3.3.2 and 3.3.3 show a selection some of the more interesting amplitude time 

courses that were marked as significant by the PSA method (figure 3.3.1). The 12 

subplots contain the data for the ROI’s. The numbering of ROI’s is provided in the 

Method section (figure 2.1). The horizontal and vertical axes of each subplot represent 

time in ms and frequency respectively. The mapping of values on the vertical axis to 

frequency means is given in figure 3.3.1. Amplitude is color coded, the specific 

coding being given in the color bar over each plot. We expected the results for the 

different response hands to be similar, but this was not the case. Six subjects are very 

likely not to be sufficient for PSA to provide reliable results The level of significance 

was the highest achievable with the number of subjects we could eventually use: 

0,016. Given the amount of tests used, obviously this does not control for overall 

alpha. The time courses in figures 3.3.2 and 3.3.3 reveal three kinds of differences 

picked up by PSA. In 3.3.2 A (rhyme task), the 5 Hz prepared amplitude curve over 

visual cortex crosses over the non-prepared curve: up to 650 msec post-response the 

amplitude is lower for preparation, from 650 msec onwards the preparation curve lies 

above that for non-preparation. Figure 3.3.2. B (rhyme task) shows a relative decrease 

of 10 Hz amplitude around 900 msec post response over regions in the left 

hemisphere during preparation. Figure 3.3.3 A (visual task) shows a sharp 42 Hz peak 

at 650 msec over left and dorsal anterior regions. It is suggestive that this is the same 

time as the increase of delta activity at irrelevant areas found for the rhyme task.
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Figure 3.3.1. Time courses marked as significant by PSA

The values on the vertical axis represent frequency means as follows. The standard 

deviations in frequency of each band were 1 Hz for 5 Hz, 2 Hz for 10 and 12 Hz, and 

3 Hz for all following frequency bands.

1: 5 Hz 2: 10 Hz 3: 12 Hz 4: 15 Hz 5: 18 Hz 6: 21 Hz

7: 24 Hz 8:  27 Hz 9: 30 Hz 10: 33 Hz 11: 36 Hz 12: 39 Hz

13: 42 Hz

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.3.2. Low-frequency amplitude time courses contrasting rhyme prepared – 

non-prepared

The following curves were marked as significant by PSA at an individual significance 

level of 0,016. The horizontal axis is time, the vertical amplitude. The vertical scale is  

determined by the maximum value, which covers the vertical distance between plots.

B. Rhyme, 10 Hz, rhyme = right
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A. Rhyme, 5 Hz, rhyme = left



Figure 3.3.3. Low-frequency amplitude time courses contrasting visual prepared – 

non-prepared

A. Visual, 42 Hz, rhyme = left

B. Visual, 12 Hz, rhyme = right
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Figure 3.4 shows the complete power plots acquired by subtracting the non-prepared 

from the prepared data for both tasks, for both response-hands. Figure 3.5 shows the 

results of normalization per frequency, where the values are z-scores based on the 

standard deviation over the samples and regions at each frequency mean. 

Normalization may reveal different patterns by enhancing variability at higher 

frequency bands, which have lower amplitudes, to the same scale as the lower 

frequencies. With these data, normalization did not seem to clarify much. The most 

prominent effects were those identified by PSA.

Figure 3.4. Contrasts between prepared and non-prepared conditions
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A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.5. Contrasts, normalized per frequency

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right

4.4. PLV data

The PLV data in figure 3.7 are based on a pseudo-statistical representation of the data, 

where z-scores are calculated based on the standard deviation of all data points, and 

only values above a criterion are plotted. These values represent a synchrony between 

two regions that are represented spatially, the point of view looking down on the head. 

Frontal positions are plotted at the top. Color now codes frequency (see figure 3.3.1 

for the coding of frequency values to frequency means). Figure 3.8 shows the results 

of EFA for synchrony (positive values for the relationship coding described in section 
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2.6), figure 3.9 for desynchronization (negative values). The most significant results 

are shown as lines with an arrow indicating the time at which the significance 

difference occurred. The ratio of the time from the start of the RSI to the occurrence 

to the total period is equal to the ratio of the distance between the (arbitrary) starting 

point of the line and the tip of the arrow to the total length of the line. That is, an 

arrow on the middle of the line indicates an occurrence halfway through the RSI, one 

near the starting point an occurrence soon after the start of the RSI, etc. The EFA 

criteria were 100 and 15 for the Friedman and post-hoc procedures respectively. The 

post-hoc criteria with the current method could not be set to an acceptable level of 

significance without losing all resolution. The EFA results therefore should be seen as 

a display of earmarked connections, that is, the most significant connections 

attainable. In this and the following section the post-hoc criterion was set at a level at 

which the results were selective and sensitive enough for comprehensible patterns to 

be seen. These results should be taken as examples of the type of data that wavelet 

analysis provides; they are by no means intended to be seen as statistically significant.

Four trends can be seen in these data. First, for both tasks significant EFA results 

were almost exclusively found for the right-handed condition (only one significant 

connection was found when the response was left-handed). This suggests that 

responding with the non-dominant hand is either hard to prepare for, or requires a 

non-systematic kind of preparation. Second, long-range synchrony is common at all 

frequencies. Third, prefrontal areas were often involved in connections in the EFA 

patterns. Every right-handed connection was either between a prefrontal area and 

some other area or between two areas of which one had a significant connection to 

prefrontal cortex. Fourth, artefactual synchrony due to muscle activity doesn’t seem to 

be a problem as synchronies were found at specific frequency bands.
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Figure 3.7. Pseudo-statistical representation of PLV results

Criterion = 5.0.

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.8. EFA results: synchrony

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.9. EFA results: desynchronization

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right

4.5. QPL data

The QPL data will be presented in the same fashion as the PLV data above. Note that 

in the pseudo-statistical representation the criterion is 4.0. No connections were 
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selected at 5.0. The EFA criteria were 100 and 18 for the Friedman and post-hoc 

procedures respectively. 

In the visual condition, the pseudo-statistical contrast provides an interesting view, 

high level frequency occuring around prefrontal and motor areas. Almost uniquiely in 

these data, the different response hands showed similar and even partly mirrored 

patterns. The right-handed rhyme condition was also interesting but completely 

different. The ipsilateral motor area was involved with an alpha band synchrony, 

which fits well with the putative antagonistic relation of alpha coherence with local 

processes. The EFA results show less consistent trends than for PLV, although, again, 

prefrontal cortex is often involved, long-range synchronies are common and results 

are found for specific frequency bands. The alpha band desynchronization in the right-

handed visual contrast concerned with parietal areas fits well with their putative 

importance in task-switching (e.g. Sohn et al., 2000).
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Figure 3.10. Pseudo-statistical representation of QPL results

Criterion = 4.0.

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.11. EFA results: synchrony

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right
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Figure 3.12. EFA results: desynchronization

A. Visual prepared – visual non-prepared, rhyme = left

B. Visual prepared – visual non-prepared, rhyme = right
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C. Rhyme prepared – rhyme non-prepared, rhyme = left

D. Rhyme prepared – rhyme non-prepared, rhyme = right

4.6. Discussion of the results

As far as they can be taken seriously, the data seem promising. First, the trends in the 

phase-locking measures supported the idea that synchrony plays a part in the anterior-

posterior transient connections suggested in the introduction. Second, conspicuous 

effects on various measures were found which could be related to each other and 

interpreted together in a meaningful way. Recall that the pseudo-statistical QPL 
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results indicated different preparation styles for the two tasks. Preparation for the 

visual task seems to involve selection for action whereas preparation for the rhyme 

task is reflected by a process that may prevent the completion of local processes over 

irrelevant motor cortex. Together with the selectively visual LRP effect and the alpha 

burst in both conditions, the data seem to converge on the possibility that subjects 

prepare more actively for the visual task, which they must release or suppress as a 

kind of negative preparation for the rhyme task. It is uncertain whether this 

convergence will replicate, but it illustrates the way the various measures can provide 

an integrated view of underlying processes.

The prepared – non-prepared contrast, as mentioned above, is a complex measure 

because the non-prepared condition is not neutral. Differences may be caused either 

by switching processes in the prepared condition or oscillation and synchronies due to 

a residual task-set. The results presented here should, for proper data, be 

complemented by the results for the prepared and non-prepared conditions separately. 
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5. Discussion
It seems that wavelet analysis has the potential to be a valuable tool in the analysis of 

EEG signals. A domain of coding that the brain evidently uses is made available to 

analysis without violating the assumption of stationarity, or being forced to use 

relatively inelegant methods to work around such a violation whilst still using 

techniques which fundamentally depend on it. Results are embedded in a set of related 

psychophysiological models (cell assemblies, working with memory, the local / global 

theory) and anatomical / physiological theories and data (e.g. the corticothalamic 

pacemaker), which could enhance both the interpretability of results and their 

integration over experiments, researchers and disciplines. 

Nevertheless, wavelet analyses are no better than the tools used to extract relevant 

information from their results. During our internship we were made aware of the way 

statistics are involved with every aspect of experimentation. This goes beyond the 

critical issues of replicability and statistical power. Because hypotheses are 

formulated using statistical concepts, the theories we can test come from a mental 

space delimited by our ability to determine meaningful stochastics. For instance, 

especially during the development of EFA (as we were more involved with working 

out the details of that method than principal spline analysis (PSA)) we felt as if we 

were using a more powerful approach than when we were simply using off-the-peg 

techniques such as repeated measures analysis into which our data "fitted". Our 

experience was no doubt partly based on maths deprivation due to different emphases 

laid in the path of our education. Nevertheless, deciding on what and how we would 

test in the detail necessary for implementation not only made vagueness impossible 

but also led us to think about the data and our own assumptions in new, more abstract 

ways. The EFA stochastics, unlike, for instance, repeated measurements performed on 

curves over time, make explicit the zero-sum (win - lose) situation between 

connections, perhaps a game played by fickle grandmothers (section 1.1.4), suggested 

by the theoretical function of specificity. This suggests that the application of game 

theory to the study of synchrony in the brain might prove insightful, whether or not 

EFA itself turns out to be a successful method.
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A necessary improvement to the analysis train concerns the choice of ROI' s. During 

the present study, ROI' s were chosen based on rough approximations of the location 

of globally defined areas of the brain. One improvement would be to formulate 

hypotheses concerned only with certain electrodes, perhaps based on results from 

imaging methods with better spatial resolution. This approach has the advantages of 

specificity and data reduction. However, it may overlook important synchronies, and 

provides little or no information on specificity - finding synchrony between electrodes 

A an B may simply be the consequence of a global increase in synchrony. An 

alternative approach is data-driven selection such as in the following preliminary 

proposal. Following a CSD analysis, the data indicate proximity to a current source or 

sink. Current sources could then be estimated by adding sources at locations and with 

densities such that the explained current density variance is maximized, until the 

additional explained variance falls below a specified percentage, perhaps that which 

would be explained given a random current density distribution. The electrodes 

closest to the sources would then be selected for further analysis. Whilst we feel that 

such data-driven approaches provide an open-minded approach that may maximize 

statistical power, more work is required to determine their suitability. 

In conclusion, the hypotheses described in this paper and its appendix remain to be 

properly tested. However, we have been able to formulate more specific hypotheses, 

and provide a priori interpretations of possible findings concerning oscillatory and 

synchronous activity. Most of the necessary methodology has been implemented, with 

the exception of the more powerful post-hoc EFA procedure and a measure for global 

changes in coherence, which seems especially interesting in the alpha band. 

Application of PSA to curves based on the sum of PLV / QPL (and perhaps the 

classical coherence measure) over ROI-pairs would provide a nonparametric method 

for the testing of differences in the time course of global coherence, with a number of 

tests equal to the number of frequencies. Given reasonable results concerning short-

term visual memory, perceptual binding and preparation / selection in task-switching, 

wavelet analysis could be used to systematically work on a comprehensive theory of 

the role of synchrony in working with memory and the memory that is worked with. 

An important question such a theory should answer is how instructions lead to 

synchronies that result in the correct selection for action - if synchrony does indeed 

play that part.
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7. Appendix A. Pilot tasks

7.1. Introduction

One of our two pilot tasks was a replication of an experiment by Tallon-Baudry and 

Bertrand (1998). The other was an elaboration of their design based on theory and 

evidence presented in section 1.1. Our data were unusable due to malfunctions and it 

would be worthwhile to acquire new data for these tasks. The designs are less 

complex than the task-switching paradigm and would have been, and still would be, 

good starting points for exploring rhythmic responses to stimuli in well-known 

psycho(-physio-)logical paradigms.

7.2. Replication: matching task

In this task, two wobbly-circle stimuli around a fixation cross were presented with a 

separating delay. The matching task was to remember the first stimulus and determine 

whether the second was identical. In the control task, subjects had only to detect 

infrequent dimmings of the fixation cross. In the original study, a burst of 30 Hz 

activity was found during the delay of the matching task, that was absent during the 

control task. In our replication we also looked at phase-locking between groups of 

electrodes. Tallon-Baudry (1998) provide further details of the design, including the 

polar equation used to calculate the wobbly circles (mathematically, Lagrange 

polynomials).

The reason for using wobbly circles was that we expected specific forms to be hard to 

store verbally, making an iconic strategy more likely. The most important 

hypothesized synchronies were thus between putative working-with-memory 

(Moscovitch, 1992; Burgess, 2000) areas and visual cortex, most importantly the 

prefrontal - occipital connection. The control task was intended to provide visual 

attention without rehearsal in working memory. However, the stimulus to be detected 

in the control condition is presented after a known delay. Subjects didn't actually have 

to pay attention during the delay, only towards the end before the dimming might 

occur. Perhaps using a variable delay would make the control condition a stronger 

test. The control task was also reported by subjects to be intensely boring; some even 
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mentioned strange visual effects like shifting walls and a kind of tunnel vision. A lot 

of breaks, more than the four we used, seem to be necessary.

7.3. Extension: property binding

A visual scene containing two wobbly circles is built up of two positions and two 

shapes. We expect synchrony to be likely to transiently connect the positions and 

shapes within each of the two forms, and to separate them from each other. Occipital 

and posterior temporal areas are known to represent object information, whereas 

location is represented in parietal cortex (e.g. Posner & Peterson, 1990). Therefore, 

we expect a pattern of synchrony to occur involving these three areas when a complex 

stimulus consisting of two Lagrange polynomials must be retained during a delay.

Our design to test this was similar to the matching experiment described above. 

However, instead of a matching and a control condition we used three different kinds 

of matching conditions. Matching forms, locations and both form and location of the 

stimuli were the matching criteria. To test for the effect of task-difficulty we included 

a more difficult version of the form-matching condition in which the wobbly circles 

had less pronounced characteristics. When only forms or only locations had to be 

retained, we expected synchrony between anterior (especially prefrontal) and occipital 

/ posterior temporal and parietal areas respectively. When both forms and locations 

were to be matched, we expected to find synchrony between the object-related and 

location-related areas, and anterior regions.
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