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Constitutive Equation of Lung Tissue Elasticity

A constitutive equation for the lung tissue elasticity ts formulated under the hypotheses
of a simplified alveolar geometry and a pseudo-sirain-energy function for the inter-
alveolar septa. The resulting equation contarns four material constants. The theoretical
result has been tested against published data on uniazial and triaxial loadings, and is
tested critically here with respect to new experimental results on biaxial loading. Com-
parison between theory and expertments shows that a general agreement is obtained in
an approvimate sense. The model fits our biaxial experimental data with most correla-
tion coeflictents above 0.995. Some detatls not predicted by the theory are discussed.
Stnce the theory is derived for triczial loading and the biaxtal test is o severe one, the

Jormauda should be applicable to the triazial case at least to the same degree of approxima-

tton. The form of the theoretical formula is convenient to use in analytic studies of
lung mechanics. Additional key words: mechanical behavior of the lung; stress-
strain relattonship; strain energy; alveolus model; distortion,; interdependence; pressure

volume curves.

Introduction

The blood flow and ventilation in the lung is influenced by the
stress and strain in the lung. In view of the very complex strue-
ture of the lung, a great simplification can be obtained if we con-
sider the macroscopic stress and strain, defined on volumes much
larger than the individual alveolus, separately from the maicro-
scopic details of stress and strain in the alveoli. For human lung
the macroscopie results apply only for volumes where the linear
dimensions are several millimeters or larger. The macroscopic
approach does nof determin: microscopic stress distributions
which may be important, for example, in understanding the be-
havior of alveolar ducts. The relationship between the macro-
scopic stress and strain is called the constitutive equation. The
macroscopic stress is composed of two parts: one part is due to
the elastic tissue in the interalveolar septa, the other is due to the
interfacial tension between air and lung tissue. Correspondingly
the constitutive equation can be separated into two parts, one
for the elasticity and another for the surface tension. The
present paper is concerned with the former.

In an earlier paper [6], a theoretical relationship between the
macroscopic stress and strain is derived. To test the hypotheses
on which the theory is based, the results can be compared with
experiments. Limiting to the case in which the surface tension
is eliminated, we have shown before [6] that the qualitative re-
sults of uniaxial tests of Fukaya, et al. [2] and Radford [13],
and the triaxial tests of Hoppin, et al. [9] correlate well with our
theory. A more critical test, however, is desired. We choose the
severe test of biaxial loading. The philosophy of our approach
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and the results of the experiments are described in [20]. The
comparison with theory is given in the forthcoming. It is shown
that the agreement is satisfactory in an approximate sense. Thus
the theory can be used with some confidence. In particular, we
can use it to analyze the behavior of an intact lung with realiza-
ble boundary conditions, and use the experimental results to
determine the material constants of the lung tissue in the intact
state, including the surface tension effects. The greatly sim-
plified theory, however, cannot be expected to account for the
complex behavior of the lung in every detail. The areas of dis-
agreement are discussed in detail.

Since the present article is concerned with the elastic stress
only, a derivation simpler than that in reference [6] is possible.
This is presented in the forthcoming in order to show our hy-
pothesis more clearly.

Formulation of the Constitutive Equation

It is well known that if the energy state of a material is deter-
mined uniquely by its strain state, then the stress-strain reln-
tionship can be derived from a strain energy function. Since the
lung shows hysteresis, relaxation, and creep, a strain energy
function cannot exist in the strict sense. Fung {3, 4] has argued
for the existence of a pseudo strain energy function for living soft
tissues. The basic argument is the relative insensitivity of hys-
teresis of these tissues to strain rate. In a cyclic process the
stress-strain curves in loading and unloading are individually
virtually independent of the strain rate, and the stress-strain
relationships are formally derivable from two pseudo-strain
energy functions: one for loading (inflation of the lung) and
another for unloading (deflation). The experimental results
presented in reference [20] show that the lung parenchyma falls
into this category, and the existence of a pseudo-strain energy
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function can be assured. The use of the pseudo-strain energy
function greatly simplifies data reduction and further analysis
of the lung by the method of finite elements.

To derive the pseudo-strain energy function of the lung tissue,
we need information about the elasticity of the interalveolar
septa, and a model of the way these septa are put together to
form the lung parenchyma. A simple mathematical model is the
cubic alveoli of Fung [6]. In this model, as is shown in Fig. 1,
the interalveolar septa are arranged in rectangular arrays. In
the resting state (unstressed saline-filled lung, with surface ten-
gion eliminated) each alveolus is a cube of edge length A. Under
stress the alveoli are deformed into rectangular parallelopipes
with edge lengths A.A, NA, MA. The directions of the edges
of the rectangular parallelopiped are called the principal direc-
twons of stretch, and a set of rectangular cartesian coordinates z,
y, # is used to indicate these directions. The N’s are called the
proncepal stretch ratws. By means of this simple model a stress-
strain relationship can be derived for the lung tissue.

We now introduce two major hypotheses: 1 The elasticity
of the interalveolar septa can be described by the pseudo-strain
energy function given by equation (1) ¢nfra. 2 The constitu-
tive equation of the real lung is of the same form as that of the
mathematical cubic alveoli. We seek to justify these hypotheses
experimentally.

According to the first assumption, we assume that the inter-
alveolar septa also have a pseudo-strain energy function, and
that that function has the form assumed by IFung [6] and Tong
and Fung [16]. It is assumed that each alveolar wall is thin and
behaves as a membrane. Consider first those membranes per-
pendicular to the 2-axis, i.e., parallel to the z-y plane. These are
labeled “1” in Fig. 1. For these membranes the following pseudo-
strain energy function is assumed:

M,W® = (C'/2) exp (B2 + wE2 + 20B,E,) (1)

where M, is the mass of the interalveolar septa per unit area of
the membrane in the resting (unstressed) state, WO is the strain
energy per unit mass of the interalveolar septa, £, E, are the
strains in the x and y directions as defined by Green, and C',
a1, @y, a¢ are material constants. Green’s strains ave related to the
stretch ratios A, and A, as follows:

B, = ()\22 - 1)/2y

Because the chosen coordinate axes are aligned along the i)rin—
cipal directions of stretch of the membranes, the macroscopic
stretch ratios of the lung tissue and the alveolar stretch ratios
are indentical and need not be differentiated.

E, = 0\112 — 1)/2 (2)
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Fig.1 Geometric model of alveoli; the principal directions of stretch
are x, y, and z

Stress Resultants in the Interalveolar Septa. The stress result-
ants (force/unit length) in these interalveolar septa, denoted by
F.® and F,®, are related to the strain energy function by

FAD = 9 (M, Wy,

F,0 =
OAx v

9 .
o, LWL )

It should be noted that these are forces per unit undeformed
length, and hence, are defined in the Lagrangian sense. Noting
that on account of equation (2), we have 3/3\, = \.0/9E.;
d/9N, = N,0/0E,; hence,

F.0 = O\ (iE, + asE,) exp (B2 + a:E2 + 2aE.E,) (4)

This equation shows that the constant C' determines the overall
stress level, whereas a, and az determine the rate of change of stress
with wncreasing stretch, and a: determines the coupling between
two perpendicular directions.

TFor interalveolar septa parallel to the z-z plane (labeled 2°"),
the strain energy function W® is given by replacing the sub-
seript ¢ by 2 in equation (1), and interpreting E, as (A2 — 1)/2.
In doing so, we are assuming all interalveolar septa to be equiv-
alent, so that the stretching in the z direction will cause the
same distortion in the z direction in membrane 2"’ as it does in
the y direction in membrane “1,”” A similar expression gives the
strain energy function for those septa parallel to the y-z plane
(labeled “3"").

These functions yield the membrane stress resultants F, O,
F, 0, F,® F.® F.® F.®  All F’s have the same form as in
equation (4); they can be obtained as follows:

Nomenclature

material constants for the interalveolar septa,
see equation (1)

ai, g, Gy =

Aoqy Aoy = reference areas in x and y directions, re-
spectively, for frozen specimens
(', ¢ = material constants in the strain-energy func-
tion and the constitutive equation, re-
spectively; C = C'/A
E., E,, E, = Green’s strains in z, y, z directions, re-

spectively; B, = (A2 — 1)/2, ete.

F,0, F,0 = forces in z and y directions, respectively, per
unit undeformed length, in alveolar mem-
branes parallel to the z-y plane

forces in  and z directions, respectively, per
unit undeformed length, in alveolar mem-
branes parallel to the z-z plane

Fy®, F.® = forces in y and 2 directions, respectively, per
unit undeformed length, in alveolar mem-
branes parallel to the y-z plane

mass of interalveolar septa per unit area of

F® F® =

M, =
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the membrane in the resting (unstressed)
state

T., T, T. = Lagrangian stresses in the =z, y, z directions,
respectively, calculated from the mathe-
matical model

V, = initial volume

pseudo-strain energy per unit mass for mem-
branes in z-y, a-z, and y-z planes, re-
spectively '

directions of constant velocity stretch, lat-

a9
WO, 7o, W =

Lr” y} z =
eral servo, and thickness, respectively
A = alveolar spacing in resting state
Az Ay, A. = stretch ratiosin z, y, z directions, respectively
0., 0y, = Lagrangian stress, F./A.., Fy/Aey, re-
spectively, measured in the triaxial experi-
ments
poW = pseudo-strain energy per unit volume of
lung tissue
a, 8 = material constants defined in equation (7)
I, I, = strain invariants defined in equation (8)
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To obtain I, change subseript 1 10 2, z to y, ¥ to , in equa-
tion (4).

To obtain F ®, F,@ change subscript ¥ to z in F.®, F, O,
respectively.

To obtain F,®, F.®, change subscript  to z in F,®, F,@,
respectively.

Macroscopic Stress-Strain Relationship of the Lung Tissue. Now
we are ready to analyze the lung purenchyma as a structure. The
force per unit area acting on any section perpendicular to the a-
axis will be denoted by 7. If the area used in the defintion is the
area of the parenchyma in the resting (unstressed) state, then
T, is called stress defined wn the sense of Lagrange which is the
one used in the forthcoming,

The force acting on o unit undeformed area of parenchyma
must be the resultant of the forces in the interalveolar septa. If
the distance between membranes is A when the membranes are
al rest, then there are 1/A membranes per unit length. Thus
in a unit area perpendicular to the z-axis there are 1/A mem-
branes parallel to the z-y plane, in which the stress resultant is
I,®, and there are 1/A membranes parallel to the z-z plane, in
which the stress resultant is F,®. Summing up all the contribu-
tions, we obtain

[F.D 4 F.®]/A
= Ckx(alE‘s -+ a-lE'u) exp (alEx2 + a'ZEy2 -+ 2a4EzEv)
+ CNmE; + aiE.) exp (B2 + aE2 + 20,E,E.) (5)

i

T,

where C = C'/A. T, and T, can be formed by appropriate sub-
stitutions. This is the desired three-dimensional result.

Equation (5) can be derived by differentiating a pseudo strain
energy function p, W with respect to A,:

1
pW = 5 Cexplali + @B} + 20.B.E,] (6)

4+ symmetrical terms by permutation

in which p, is the density of the lung in the reference state, W is
the pseudo-strain energy per unit mass, and the “symmetrical
terms by permutation’” means the sum of all terms obtained by
cyclic permutation of the subscripts, z, y, of E by v, z, and =.
T, and T. can be obtained by differentiating p,W with respect
to A, and A,, respectively.

Question of Compressive Strain and Buckling. Interalveolar
septa are thin elastic membranes. All thin membranes buckle
under edge compression when the compressive stress exceeds a
critical value. Because we know virtually nothing about how
the interalveolar septa behave under compressive stress or strain,
two alternatives were proposed in reference [6]:

(a¢) We assume that, the septa can carry compressive stress and
strain without buckling and that the constitutive equation,
equation (1), applies equally well to compression as to tension.

(b) We assume that the septa are so thin and the elastic modu-
lus so low at the resting state that they buckle essentially at zero
compressive load.

Under the first alternative equations (4) and (5) are valid for
both tension and compression. Under the second alternative the
membrane stresses must be set to zero when the strain in the
membrane becomes compressive. In other words, in equations
(4) and (5), E., Ey, or E, is set to zero whenever A, \,, or A,
becomes less than one, respectively.

Recent experiments by Vawter [18] on dog’s lung in the
neighborhood of the resting state indicate that the interalveolar
septa can sustain a small compressive load, because a lung com-
pressed to a size slightly smaller than the resting state can slowly
return to the resting state (asymptotically in 10 or 15 min). The
amount of compression that can be carried must depend on the
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length-to-thickness ratio of the interalveolar septa, which j,
species dependent, Tor those animals with relatively thick
wmteralveolar septa, buckling stress would be finite, and use o
alternative 1 would be reasonable.

Specialization to Biaxial or Uniaxial Loading. 1n biaxial loadinx
experiments in the z-y plane 7', and 7', are varied while 7.
remains zero. In uniaxial loading in the ® direction 7'; is varigg
while T, = 7', = 0. The general three-dimensional stress-straiy
relationship equation (5) can be easily specialized into thesy
cases. The reduction depends on which of the two alternativeg
with regard to the compressive strain is used. Under the firg
alternative, one must set 7', = 0, solve the resulting equatioy
for A. (or E.), and substitute the solution back into the expres.
sions for 7", and 7', to obtain finally formulas for 7', and T, ng
functions of A, A, only. Under the second alternative, with as
sumed zero buckling load, it is necessary only to delete terms in.
volving B, in p,W, 7'; and T, because in biaxial stretching E, i
negative and the strain energy associated with this state will be
negligibly small. Since the second alternative is much simpler,
and is believed to be closer to the truth, it is adopted herein,

Note that when the general three-dimensional stress-strain
relationship (equation (5)) is specialized into the biaxial loading
case under the second alternative (zero buckling load), the physical
meaning of the material constants C, a1, ax and ay, remains the
same in the biaxial case as in the triaxial case. This is certainly a
great advantage. ai, as, a4 are the exponential constants for the
interalveolar septa. C is the elastic constant of the septa divided
by the alveolar spacing.

The Question of Isotropy  Isotropy of the membrane is not
assumed in the foregoing formulation although the cubic structurs
is assumed uniform. Anisotropy of the tissue is revealed by the
difference in the constants @i, az. If @1 and a; were set as equal,
then the stress-strain relationship for a membrane becomes
isotropie. The real lung tissue is probably anisotropic. It is
shown later in Table 1 that the correlation between the mathe-
matical expression and the experimental data is better if the tissue
is treated as anisotropic (compare numbers in column 7 of Table
1 with those in column 12). It can not be determined using this
simplified model whether apparent anisotropy is due to alveolar
anisotropy or to geometrical nonuniformity from point to point.

In actual application of the stress-strain relationship to
pulmonary mechanics, it is, however, very inconvenient to use
anisotropic law becasue we have little information on the
anisotropy of the lung. A great simplification can be obtained if
the lung tissue can be assumed to be isotropic in the initial, re-
laxed, and unstressed state, If initial isotropy is assumed, how-
ever, we can remove easily the cubic structure hypothesis which
was used to derive equations (5) and (6). We consider a large en-
semble of alveoli, and assume that the ensemble average is a
sphere in the initial state. A tissue subjected to a macroseopic
strain would distort the ensemble average alveolus into an ellip-
soid. From the same membrane property (equation (1), with
a1 = a3), we can derive the formula,

1
pW = 2 C exp {alxz -+ B[z}, (7

where Ii, I, are the strain invariants:

Il = Exz + Em/ + b,

I‘l = EzzEyu + Eu:/E.ez + EzzEzz - E:y“" - Eyzz - Eezz- (8)
and C, «, B are constants. The details are given in reference [7}.
Numerically, equations (6) and (7) give essentially similar re-
sults. In the present paper, the comparison between theory and
experiment is based on equation (6).

Determination of the material Constants C, aj, @, and as. The
constants were determined by minimizing the least-squares er-
yors between observed and calculated stresses. 7', and T, errors
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Table 1 Best-fit material constants of dog’s lung tissue elasticity in loading process (stretching), without surface tension—normal saline bath

20°C, pH 6.7

A. Tissue Considered Anisotropic B, Tissue Considered Isotropic
Sp. F C Correlation C Correlation
Y a a a Based on a,=a a Based on Based on
No.  newtons (Pascals) 1 2 4 T & T (Pascals) 172 4 T T &T
X y x X y
4081 0 74 2.84 * * . 995 74.0 2.840 * . 995 *
0.1 147 1.44 4.67 0.522  ,996 88.0 1,705 5, 049 . 997 .932
0.2 225 1.27 3.74  0.569  ,995 141.3 1.512 1.688 .996 .934
0.5 1210 0,481 0.860 0.177 .972 571.3 0.732 0,427 .992 . 766
4181 0 58.4 3.51 * * .998 58.4 3,514 * .998 *
0.1 86.7 2.18 4,71 0.920 ,997 50.2 2.587 4,063 . 999 . 973
0.2 100 2,42 3.89 0.976 .996 122.5 1.962 0.879 997 . 976
0.5 289 1.33  2.28 0.427 .966 313.2 1,259 0.613 .998 . 863
5191 0 56.4 2.954 * * . 997 56.4 2.954 ® . 997 ®
0.1 420 0,807 1.95 0.641 ,995 120.5 1,397 4,084 999 . 935
8-2 802 0.524 1.37 0.477 .999 199.9 1.093 1.978 998 . 898
-5 741 0.762 2.60 1.02 . 989 908.4 0.688 0.785 . 999 . 769
6021 0 160.7 3.75 * * . 999 160.7 3,749 * . 999 *
0.1 274 1,46 4.42 0,613  ,994 233.8 1,560 4,486 . 998 .982
0.2 565 0.945 2.43 0.788 .995 582.9 0,917 0.985 . 999 . 974
0.5 938 0.697 1.94 0.673 .990 611.6 0.941 0.769 . 996 . 782
*aZ and ay cannot be determined from uniaxial loading experimenta,

were simultaneously minimized when the material was assumed
anisotropic. If isotropy was assumed, so that a1 = as, the con-
stants were determined by minimizing the sum of the squares
of the difference between observed and calculated values of T,
alone. The minimization procedure was an iterative method
based on the method of steepest descent. A standard software
routine GAUSSHAUS, available on the UCSD Burroughs 6700,
was used for minimization.

Note that under the hypothesis that all the interalveolar septa
have the same constitutive equation, a set of four constants
(C, ay, s, as) is sufficient to describe the lung. Biaxial tests can
yield all the four material constants; uniaxial tests cannot. Hence
it is insufficient to do only uniaxial tests if one’s objective is to

identify the constitutive equation. However, the preparation of
the test specimens in biaxial tests inevitably introduces con-
siderable trauma to the tissue. For that reason we advocate the
use_of intact lung for the determination of the constants C, ay,
@, and a,. Biaxial tests ave used only to the extent of validating
equations (5) and (6).

Results

Curve fittings were made for five specimens, each at four
lateral loading conditions, with ascending and descending limbs
fitted separately. Two specimens (5191 and 6021) were each
fitted at two different pI values. Specimen 6231 was fitted at

Table 2 Best-fit material constants of dog’s lung tissue elasticity in unloading process (releasing), without surface tension—normal saline

bath, 20°C, pH 6.7

A, Tissue Considered Anisotropic B. Tissue Considered Isotropic
Sp. F (] a a a Correlation C a,=a a Correlation
No. y 1 2 4 Basged on 1 2 4 Based on Based on
Newtons Pascals T & T Pascals T T & T

x 'y x 'y

4084 .0 13.0  4.481 * * . 989 13.0 4,48 * . 989 *

0.10 45.7 1,95 10.5 0.654 . 992 20.5 2.44 10.97 . 993 . 977

g gg 80.7 1,79 8.0 1.09 .992 122-; 2.09 5.04 .991 . 895

35.7 4,99 5.88 0,755 .993 : 1,25 0.479 . 991 . 552

4181 0 23.9 4,14 * * . 998 23.9 4.14 * . 998 *

g;g 29.5 2,89 14,3 1,45 .987 14.7 3.46 10. 03 .996 .983

92 13.3 3,63 11,5 2.30 . 993 §gg 3.82 4,30 . 997 . 924

: 40.7 2,56 6.07 0.533 . 990 : 2,01 1,14 .996 .725

5191 0.0 14.7  4.12 * * .993 14.7 4,12 * . 993 *®

0.10 67.0 4,70 8.56 1.02 . 984 47.3 1,83 6,19 .998 . 967

0.20 63.7 1,55 9.65 1.18 .993 50.0 1.66 3,25 .993 .928

0.50 109 1.72 10.7 2.44 . 981 121.2 1.57 3. 61 . 999 . 632

6021 0.0 47.9 5,49 * * . 994 47.9 5,49 * . 994 ®

0.10 66.6 2,34 25.0 0.807 . 989 60.2 2,44 10.25 .992 . 989

0.20 143 1,67 8.73 1.29 . 984 143.6 1.60 2. M . 997 . 944

0.50 153 1,63 6.614 1,51 . 985 266.7 1.37 0.455 . 994 . 575

»*
a, and a, cannot be determined from uniaxial loading experiments,
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20°C and also 37°C. In order to minimize computer time usage,
curves were fitted using only every tenth data point, which
proved sufficient to obtain reliable parameter values. In all
figures given in the forthcoming, every fourth data point is
plotted. The experimental data used for the curve fitting are tab-
ulated in reference [17], which also contains many more plotted
curves.

The best-fit physiological material constants determined for
specimens in & normal saline bath al 20°C are listed in Tables 1
and 2 for several values of lateral loading, and under both
isotropic and anisotropie assumptions. Table 1 is for stretching—
increasing load in the @ direction. Table 2 is for releasing—de-
creasing load. The correlation coefficients, or the coefficients of
determination, are defined as the correlation of the pairs of num-
bers representing the experimental daia and their theoretic
predictions. They are listed in the Iast columns in Tables 1 and
2. Under the anisotropy hypothesis the full set of experimental
data are used to compute the correlation coefficients. Under the

isotropy hypothesis two correlation coefficients are presented:
one caleulated from T, data alone, the other for both 7. anq
T, data. These correlations coefficients show that the fit be.
tween the observed data and the theoretical formula is quite
good for each loading condition. The fit is better if isotropy ig
not assumed.

In Tables 3 and 4 the mean values of the material constants fop
each specimen in different temperatures and pH values are shown,

As the lateral load increases the calculated values for a; ang
a» decrease while C increases. There is no consistent trend in the
variation of the coupling term as. Values of a; and a, are higher
for unloading curves while C is lower, as is expected from the
shape of hysteresis curves (reference [20]).

Since each loading condition yields a different set of constants
it is of interest to assess the ability of the constants calculated
from one loading condition to fit the experimental data generated
by a different loading condition. Figs. 2-5 show the assessment
for Specimen 4181. In each figure one set of experimental daty

Table 3 Mean values of lung elasticity material constants in loading process
(A) LUNG TISSUE CONSIDERED ANISOTROPIC

Specimen T°C pH C t8.D. ay +* 8, D, a, + S, D. a, + 5. D.
No., (Pascals)
4081 20 6.7 414 + 534 1.54 £ 0,98 3,08 = 1,98 0.42 & 0,21
4181 20 6.7 134 * 105 2.29% 0,90 3.63 = 1,24 0,77+ 0,30
5191 20 6.7 505 * 343 1.26 £ 1,13 1.97 + 0.61 0,71+ 0,28
5191 20 8.1 324 * 217 1.22 = 0.37 3,22 * 1.43 0.76 + 0,88
6021 20 7.3 484 * 347 1.74 1,39 2.93 £ 4,31 0.69 = 0.09
6021 20 8.3 387 + 104 1.62 £1,01 3,28 = 0,20 0.73 + 0,12
6231 37 6.7 192 t 177 0.83 % 0, 56 2.60 + 1,45 0.28+ 0.14

Mean (20°G, pH 6.7 3.50 % 1.88 1,69 % 0,39 2.77 £ 0.67 0.62 % 0.24

Normal Saline bath)

(B) LUNG TISSUE CONSIDERED ISOTROPIC

Specimen T°C pH C + S.D. a, =a, +8,D, a, +S.D.
: 1 2 4
No. (Pascals)
4081 20 6.7 219 x 237 1.70 £+ 0, 87 2,39 % 2,39
4181 20 6.7 136 + 122 2.33 % 0.96 1.85x 1.92
5191 20 6.7 322 + 396 1.53 £ 0,99 2.28x 1,67
6021 20 7.3 397 * 233 1.79 % 1,34 2.08 2,09
Table 4 Mean values of lung elasticity material constants in unloading process
(A} LUNG TISSUE CONSIDERED ANISOTROPIC
Specimen T°C pH C * 8.D. a % S.D. a, & S.D. a, * S. D.
No. (Pascals)
4081 20 6.7 44 + 28 2,55 % 1,29 8.13 + 2,31 0.83 + 0,23
4181 20 6.7 27 + 11 3,3+0.71 9.62 + 3,08 1.33 £ 0,90
5491 20 6.7 64 £ 39 2.27+14.23 9,64 + 1,07 1.54 = 0,76
5491 20 8.1 52 £ 39 1,97 = 0,32 13.60+ 7,02 1.36 £ 0,47
6021 20 7.3 103 + 53 2,78%1,83 13.40 x40, 00 1.20 £ 0, 36
6021 20 8.3 135 + 102 3,03 %2,79 8.11 % 2, 66 1,02 £ 0,27
6231 37 6.7 14 * 15 2,21 % 0,61 7.24 + 3,20 0,69 + 0,47
Mean (at 20°C, pH 6.7 0.45 & 0,26 2.71 % 0,50 9.13£2.15 1,23 & 0,26

Normal Saline bath)

(B} LUNG TISSUE CONSIDERED ISOTROPIC

Specimen T°C pH ¢ S.D.

No. {Pascails)
4081 20 6.7 61.6 + 71.2
4181 20 6.7 31.9 + 31.3
5191 20 6.7 58.3 + 44.9
6021 20 7.3 129.6 * 100.8
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a1=a2:I:S.D. a4:1:S.D.
2.57+ 1,37 5.50 % 5.26
3.36 £ 0,94 5.16 = 4,51
2.30+ 14,22 4,35+ 1,60
2.72 +£1.90 4,47 % 5.13
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Fig. 2 Comparison of the predicted stress-strain curves for uniaxial
joading with experimental data (shown in discrete square) of the uni-
axial case. Stresses are predicted with four different sets of material
constants. The constants are determined from the labeled experi-
mental runs. Note that only curve 1, for which the material constants
were determined from a uniaxial test, predict the behavior ade-
quately.

for a specific loading condition are plotted by discrete points;
and four theoretical curves using four different sets of constants
are shown for comparison. The theoretical curves are derived
from material constants (C, @i, as, a4) which are determined from
four different experiments; one uniaxial and three biaxial tests
with the lateral loads indicated in the figures. In the uniaxial
case we assumed a; = a; and a4 = 0. It is seen from Fig. 2 that
only the eurve 1, for which the material constants derived from
a uniaxial experiment are used, fit the experimental data well.
Curves 2, 3, and 4 in Fig. 2, derived with constants obtained from
biaxial tests, do not fit the uniaxial data. Figs. 3, 4 and 5 show
that the constants derived from different sets of biaxial tests can
be used to predict another biaxial loading case quite well, but

101 & Experimental data when F,: O.IN
. -4 SOLID CURVES: predicted for the cose
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‘\t 8 4 determined from experiments in which:
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:'9- 3 This prediction uses the same four sets of constants as does
i9.2 but now attempts to predict the response for a biaxial loading
®Xperiment with a lateral load of 0.1 N. Note that curves 2, 3, 4 fit well;

ut curve 1, which is calculated with constants derived from the uni-
axial test, does not fit well,

Journal of Biomechanical Engineering

the constants derived from a uniaxial test are inadequate to
predict the outcome of a biaxial experiment.

Discussion

The theoretical formula for stress-strain relationship, derived
from a very simple model, is able to fit the observed data very
well for each given set of loading conditions. If isotropy is not
assumed, the correlation coefficients of the experimental data
with the theoretical predictions are generally greater than 0.990
and the majority of coefficients are above 0.995. With the im-

" position of isotropy hypothesis the correlation is not so good.

Values of a; and a4 are indeterminate under uniaxial loading since

10 1 ® Exporimental data when Fy =0.2N

—i . SOLID CURVES: predicted for the case

<\x° 8 T Fy =0.2N on the basis of constants [ 4
wr determined from experiments in which:

o m 1

we 1+ Fy= 0

Ex 671 2 0N

9P o -3
= E B 3 Fy =0.2N

<> 4 F

o Z y

=2 4 -

o

o

g .
=

td -

g 2

[V T T T T T
08 1.0 12 14 1.6 1.8

Ay (STRETCH RATIO L /Lg,)

Fig. 4 Comparison of the predicted curves for the case of a biaxial
loading with a lateral load of 0.2 N with experimental data of that case
(discrete squares). Note that curves 2, 3, 4 fit well; but the one curve
calculated with the constants derived from the uniaxial test does not
fit well.

IO =@ Experimental dato when Fy = 0.5N
| soLID CURVES: predicted for the casa | |
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Fig.5 A comparison similar to Fig. 4 for the biaxial loading case with
a. lateral load of 0.5 N
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the least squares equations delermining them are identically
7610,

Values of «, are consistently larger than ¢; which might be a
computational artifact. The parameters that affect the deter-
mination of @, most strongly are o, and A,. In the experiments
apalyzed o, was always greater than 400 Pa and information
about behavior at low stresses was not obtained. Biasing the
curve fitting to higher stresses overestimates the values of the
constants in the exponential function. This is also seen in the
initial guesses for a, which only utilizes peak stretch. Initial
guesses for @ are usually 50 to 150 percent higher than the final
caleulated values. For this reason the reliability of a, is doubted.

The correlation coeflicients for 7', data remain high under the
assumption of isotropy because the constants C, @y = a., @ ave
determined from these data; but the correlation coefficients for
7', data is poor under the isotropy hypothesis. We believe that
the lung tissue is anisotropic, but can be treated as isotropic
without too much error. A much more extensive study is re-
quired in the future, however, in order to identify the degree of
anisotropy in relation to the location and orientation in the lung
for different animals.

The existence of a stress-free state that can be used as a refer-
ence state has been further demonstrated by Vawter [18]. In the
neighborhood of the reference state (he stresses and strains are
all small, deviations between theory and experiment in this
neighborhood will not cause large deterioration in the correlation
coefficient. Hence the comparison between theory and experi-
ment is biased toward the higher stress side. If deviations were
express d in terms of percentages (instead of absolute values),
then there is probably a loss of percentage accuracy in the
neighborhood of the reference state.

Remaining Difficulties

The greatly simplified theory may be fortunate enough to
represent the major features of the lung elasticity, but it cannot
be expected to account for the extremely complex and nonlinear
behavior of the real lung in every detail. For this reason we are
certain that the theory will be refined in the future to better
represent the lung behavior. At the present let us point out the
areas where the theory and experiment do not agree.

The most perplexing feature revealed in the foregoing is the
uniaxial test results. The uniaxial test seems to set itself apart
from the general biaxial tests, although it is a special case of the
latter. The reason for this could be related to the compressive
strain in the lateral direction which oceurs in uniaxial tests. The
association of this compressive strain with the phenomenon of
“‘cross over” is discussed at length in reference [20]. Our hypothe-
sis of zero buckling stress for the interalveolar septa in compres-
sion is probably the culprit. We do not fully understand the
uniaxial tests.

The difficulty with the uniaxial tests in the family of biaxial
cases indicates that the biaxial test of our triaxial formula is one
of special severity. The general agreement of the biaxial results
with the three-dimensional theory gives us confidence in the
validity of the latter at least to the same degree of approximation.

The other difficulty is the change in the values of material
parameters with lateral load. This is not surprising when one
considers the simplicity of the mathematical model. The cubic
geometric model does not allow for geometrie reorientation of the
alveoli and the resultant redistribution of loads within the struc-
ture. A model of alveolar gcometry in which the membranes are
not aligned in the prineipal directions of stretch is necessary to
allow membrane directional orientation changes as the lung is
stretched.

Another reason for the variation of material constants with
test conditions is believed related to the need for “precondi-
tioning.” All authors on biorheology, including Fukaya, et al.
[2], Hoppin, et al. [9] recognize the need for preconditioning to
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get repeatable data. We believe that the reason is that biologica]
tissues are not elastic. They do not have a unique, unclmnging
structure. They can be preconditioned into a homeostatic con.
dition under eyclic loading; but each homeostatic condition cor.
responds to a different material. In this sense the word ‘“pseudo.
elastic,”’” which was introduced by Fung [3, 4] to indicate that the
tissue is viscoelastic but strain-rate insensitive, refers only to 4
given homeostatic condition and notto the changing conditions,
A full analysis of changing homeostasis requires a much more
extensive study and is not the objective of the present paper.

The existence of two pseudo strain energy functions, one for
loading and another for unloading, is assured only for a given
cyclic loading of a preconditioned specimen. Alteration of the
loading cycle leads to a new state which must again be precon-
ditioned. In particular, the strain energy function for the release
curve cannot be independently determined, but depends on the
maximum stretch attained in the stretching phase. Changing
the peak streteh (M;) will certainly alter the constants for the
descending limb and possibly those of the ascending limb as well,

The material constants tabulated and used in Figs. 2-5 arg
strictly applicable only for the cyclic loading paths for which
they are computed. However, the ability of the model to prediet
adequately the behavior at a variety of lateral loading conditions
suggests the possibility to use mean values of the constants to
predict the lung behavior. Here again, however, we would like
to stress the desirability to determine the material constanis
from the intact lung to avoid the trauma to the tissue associated
with the preparation of the biaxial test specimens. An attempt
in this direction is given in [21].

Comparison With Other Works

Of the more recent publications on lung elasticity, the paper
by Mead, et al. [12] is the most influential. As far as the stress-
strain relationship is concerned, they modeled the lung as a
network of springs but stopped short of a mathematical formula-
tion of the constitutive equation. The mathematical formulation
was carried out shortly afterwards by Wilson [23] for a two-di-
mensional network of springs. Wilson’s analysis is linearized, and
is valid only for a small perturbation of an equilibrium con-
figuration. A further extension was made by Lambert and Wilson
[10], in which the lung tissue is pictured as a number of inter-
connected, randomly oriented, plane, elastic membranes; but
again linearized for small incremental variations of stresses and
strains about a state of uniform inflation. The incremental
stresses and strains obey Hooke’s law, for which the concepts of
Young’s modulus and Poisson’s ratio apply, but these constants
vary with the state of equilibrium on which the perturbations
are imposed. In particular, unless the state of equilibrium is
isotropic (as in a uniform inflation of a lung with material
isotropy) the incremental law is anisotropic. Only the isotropic
case is evaluated by Lambert and Wilson {10].

Another perturbation analysis was one by Frankus and Lee
[11. This time the lung structure was modeled by an assemblage
of dodecahedrons, and a numerical finite element method was
used.

The methods used by these authors are quite different from
that of Fung [5, 7] who starts with the histological geometry of
the alveoli and derives certain integrals which represents the
macroscopic stresses. He then derives a statistical relationship
between the macroscopie strains and the strains in the individual
intervalveolar septa by means of a mathematical concept of &
statistical mean alveolus. Linearization is quite unnecessary in
Fung’s approach. Two examples are given in [5]: In one an
initial spherical mean alveolus is deformed into an ellipsoid, in
another a cubic mean alveolus is deformed into a rectangular
parallelopiped. Analytical results are obtained for both cases;
the analysis being simpler than that of {1, 10, 23]. The cubic
case is by far the simplest. It was then discovered that the final
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constitutive equation does not change very much with the
ghape of the mean alveclus. - Hence in his later paper [6], the
cubic mean alveolus was adopted as a major hypothesis. It is to
the testing of the results of [6] that the present paper is addressed.

In all these studies it is necessary to know the stress-strain
relation of the interalveolar septa. Setnikar [14] has proposed a
formula for the Young's modulus of the interalveolar septa in

the form

1 -1,
E= w1 ®

where l,, Iz, and k are constants, and ! is the length of the tissue.
West and Matthews [22] and Vawter, et al, [19] used a Hooke’s
law with a Young’s modulus which is a modification of Setnikar’s
law, and a constant Poisson’s ratio, to represent an incremental
law for the lung parenchyma. Wilson [23], Lambert and Wilson
[10], Frankus and Lee [1] used the test results of Fukaya, et al,
{2] in their analysis. Fung [5, 6] used an exponential constitutive
equation which is in common with other soft tissues such as the
skin and the mesentery [4, 16]. See equation (1). Its adopta-
hility is the second major hypothesis of the present paper.
Triaxial experiments were made by Hoppin, et al. [9]. Their
resulls were analyzed by Lee and Frankus [11] who expressed
the strain-energy function as a polynomial of 8th degree in
stretch ratios. Isotropy was assumed so that the strain com-
ponents in the polynomial were grouped into strain invariants,
Although their approach is certainly valid, the present approach
appears easier to interpret based on the following comparisons:

(a) The variation of the coefficients of the polynomial (which
are material constants of the lung) is not easy to understand.
These coefficients cannot be related to the properties of the
interalveolar septa and the alveolar size in a simple manner.

(b) The expression is strictly isotropic. It is not clear how
can the expression be generalized to represent an anisotropic ma-
terial.

(¢) It is not elear how can the polynomial be specialized to
represent the mechanical behavior of the lung tissue in biaxial
tension, with the stress in the third dimension zero. Hence we do
not know how to evaluate their polynomial against the experi-
mental data presented in the foregoing.

Concluding Remarks

The theoretical constitutive equation derived in [6] is shown
to be valid in an approximate sense under the severe test of
biaxial loading. The constitutive equation can then be used for
the analysis of pulmonary physiology. We believe, however,
that the material constants of the tissue (C, a1, as, a1) should be
redetermined by intact lung experiments. To do this, we must
first predict the results of possible intact lung experiments in
terms of the constitutive equation. The constants can then be
determined by comparing the prediction with the experimental
data. In this process the assumed form of the constitutive equa~
tion is very important. The objective of the present paper is to
validate this form by means of in-vitro experiments.

In experimenting with the intact lung, the effect of surface
tension must be considered. A constitutive equation with respect
to surface tension is derived in reference [7}.
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