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Constitutive Equation of Lung Tissue Elasticity 
A constitutive equation for the lung tissue elasticity is formulated under the hypotheses 
of a simplified alveolar geometry and a pseudo-strain-energy function for the inter-
alveolar septa. The resulting equation contains four material constants. The theoretical 
result has been tested against published data on uniaxial and triaxial loadings, and is 
tested critically here with respect to new experimental results on biaxial loading. Com
parison between theory and experiments shows that a general agreement is obtained in 
an approximate sense. The model fits our biaxial experimental data with most correla
tion coefficients above 0.995. Some details not predicted by the theory are discussed. 
Since the theory is derived for triaxial loading and the biaxial test is a severe one, the 
formula should be applicable to the triaxial case at least to the same degree of approxima
tion. The form of the theoretical formula is convenient to use in analytic studies of 
lung mechanics. Additional key words: mechanical behavior of the lung; stress-
strain relationship; strain energy; alveolus model; distortion; interdependence; pressure 
volume curves. 

introduction 
The blood flow and ventilation in the lung is influenced by the 

stress and strain in the lung. In view of the very complex struc
ture of the lung, a great simplification can be obtained if we con
sider the macroscopic stress and strain, defined on volumes much 
larger than the individual alveolus, separately from the micro
scopic details of stress and strain in the alveoli. For human lung 
the macroscopic results apply only for volumes where the linear 
dimensions are several millimeters or larger. The macroscopic 
approach does not determine microscopic stress distributions 
which may be important, for example, in understanding the be
havior of alveolar ducts. The relationship between the macro
scopic stress and strain is called the constitutive equation. The 
macroscopic stress is composed of two parts: one part is due to 
the elastic tissue in the interalveolar septa, the other is due to the 
interfacial tension between air and lung tissue. Correspondingly 
the constitutive equation can be separated into two parts, one 
for the elasticity and another for' the surface tension. The 
present paper is concerned with the former. 

In an earlier paper [6], a theoretical relationship between the 
macroscopic stress and strain is derived. To test the hypotheses 
on which the theory is based, the results can be compared with 
experiments. Limiting to the case in which the surface tension 
is eliminated, we have shown before [6] that the qualitative re
sults of uniaxial tests of Fukaya, et al. [2] and Radford [13], 
and the triaxial tests of Hoppin, et al. [9] correlate well with our 
theory. A more critical test, however, is desired. We choose the 
severe test of biaxial loading. The philosophy of our approach 
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and the results of the experiments are described in [20]. The 
comparison with theory is given in the forthcoming. It is shown 
that the agreement is satisfactory in an approximate sense. Thus 
the theory can be used with some confidence. In particular, we 
can use it to analyze the behavior of an intact lung with realiza
ble boundary conditions, and use the experimental results to 
determine the material constants of the lung tissue in the intact 
state, including the surface tension effects. The greatly sim
plified theory, however, cannot be expected to account for the 
complex behavior of the lung in every detail. The areas of dis
agreement are discussed in detail. 

Since the present article is concerned with the elastic stress 
only, a derivation, simpler than that in reference [6] is possible. 
This is presented in the forthcoming in order to show our hy
pothesis more clearly. 

Formulation of the Constitutive Equation 
It is well known that if the energy state of a material is deter

mined uniquely by its strain state, then the stress-strain rela
tionship can be derived from a strain energy function. Since the 
lung shows hysteresis, relaxation, and creep, a strain energy 
function cannot exist in the strict sense. Fung [3, 4] has argued 
for the existence of a pseudo strain energy function for living soft 
tissues. The basic argument is the relative insensitivity of hys
teresis of these tissues to strain rate. In a cyclic process the 
stress-strain curves in loading and unloading are individually 
virtually independent of the strain rate, and the stress-strain 
relationships are formally derivable from two pseudo-strain 
energy functions: one for loading (inflation of the lung) and 
another for unloading (deflation). The experimental results 
presented in reference [20] show that the lung parenchyma falls 
into this category, and the existence of a pseudo-strain energy 
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function can be assured. The use of the pseudo-strain energy 
function greatly simplifies data reduction and further analysis 
of the lung by the method of finite elements. 

To derive the pseudo-strain energy function of the lung tissue, 
we need information about the elasticity of the interalveolar 
septa, and a model of the way these septa are put together to 
form the lung parenchyma. A simple mathematical model is the 
cubic alveoli of Fung [6], In this model, as is shown in Fig. 1, 
the interalveolar septa are arranged in rectangular arrays. In 
the resting state (unstressed saline-filled lung, with surface ten
sion eliminated) each alveolus is a cube of edge length A. Under 
stress the alveoli are deformed into rectangular parallelopipes 
with edge lengths \XA, \yA, XZA. The directions of the edges 
of the rectangular parallelopiped are called the principal direc
tions of stretch, and a set of rectangular cartesian coordinates x, 
y, z is used to indicate these directions. The X's are called the 
principal stretch ratios. By means of this simple model a stress-
strain relationship can be derived for the lung tissue. 

We now introduce two major hypotheses: 1 The elasticity 
of the interalveolar septa can be described by the pseudo-strain 
energy function given by equation (1) infra. 2 The constitu
tive equation of the real lung is of the same form as that of the 
mathematical cubic alveoli. We seek to justify these hypotheses 
experimentally. 

According to the first assumption, we assume that the inter
alveolar septa also have a pseudo-strain energy function, and 
that that function has the form assumed by Fung [6] and Tong 
and Fung [16]. I t is assumed that each alveolar wall is thin and 
behaves as a membrane. Consider first those membranes per
pendicular to the 2-axis, i.e., parallel to the x-y plane. These are 
labeled " 1 " in Fig. 1. For these membranes the following pseudo-
strain energy function is assumed: 

M„W<u = ( C / 2 ) exp {axE^ + a,E^ + 2atExEv) (1) 

where M0 is the mass of the interalveolar septa per unit area of 
the membrane in the resting (unstressed) state, Wa) is the strain 
energy per unit mass of the interalveolar septa, Ex, E„ are the 
strains in the x and y directions as defined by Green, and C", 
ai, Oi, at are material constants. Green's strains are related to the 
stretch ratios Xx and Xu as follows: 

Ex = (Xx2 - l ) /2 , Ey = (X„2 - l ) / 2 (2) 

Because the chosen coordinate axes are aligned along the prin
cipal directions of stretch of the membranes, the macroscopic 
stretch ratios of the lung tissue and the alveolar stretch ratios 
are indentieal and need not be differentiated. 
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Fig. 1 Geometric model of alveoli; the principal directions of stretch 
are x, y, and z 

Stress Resultants in the Interalveolar Septa. The stress result
ants (force/unit length) in these interalveolar septa, denoted by 
Fx

a) and F„(1), are related to the strain energy function by 

Fxm 
aXx 

F„«) = 
6% 

[M0W
W] (3) 

I t should be noted that these are forces per unit undeformed 
length, and hence, are defined in the Lagrangian sense. Noting 
that on account of equation (2), we have d/d\x = Xxd/dEx; 
d/d\y = Xyd/dEy; hence, 

Fx™ = C'MaiEx + atEv) exp (a^E* + a^Ey1* + 2aiExEy) (4) 

This equation shows that the constant C" determines the oveiall 
stress level, whereas ai and at determine the rate of change of stress 
with increasing stretch, and ai determines the coupling between 
two perpendicular directions. 

For interalveolar septa parallel to the x-z plane (labeled "2"), 
the strain energy function Wa) is given by replacing the sub
script y by z in equation (1), and interpreting Ez as (\? — l ) / 2 . 
In doing so, we are assuming all interalveolar septa to be equiv
alent, so that the stretching in the x direction will cause the 
same distortion in the z direction in membrane "2" as it does in 
the y direction in membrane " 1 . " A similar expression gives the 
strain energy function for those septa parallel to the y-z plane 
(labeled "3") . 

These functions yield the membrane stress resultants Fx
m, 

Fv
a>; FJ2), Fa™, FyW, F/v. All F's have the same form as in 

equation (4); they can be obtained as follows: 

•Nomenclature-

y, * = 

oi, o2, a\ = material constants for the interalveolar septa, 
see equation (1) Tx, Tv, Tz 

Aox, Aou = reference areas in x and y directions, re
spectively, for frozen specimens 

C", C = material constants in the strain-energy func
tion and the constitutive equation, re- W^, W(v, 
spectively; C = C'/A 

EXI EVt Ez = Green's strains in x, y, z directions, re
spectively; Ex = (XJ - i ) / 2 , etc. x 

FJU, Fy
a) = forces in x and y directions, respectively, per 

unit undeformed length, in alveolar mem
branes parallel to the x-y plane XX1 

Fx
a), Fz

a) = forces in x and z directions, respectively, per 
unit undeformed length, in alveolar mem
branes parallel to the x-z plane 

Fv
w, Fz<-S) = forces in y and z directions, respectively, per 

unit undeformed length, in alveolar mem
branes parallel to the y-z plane 

M„ = mass of interalveolar septa per unit area of 

A 
Xy, X, 

(Tx, a,. 

PoW 

the membrane in the resting (unstressed) 
state 

Lagrangian stresses in the x, y, z directions, 
respectively, calculated from the mathe
matical model 

initial volume 
pseudo-strain energy per unit mass for mem

branes in x-y, x-z, and y-z planes, re
spectively 

directions of constant velocity stretch, lat
eral servo, and thickness, respectively 

alveolar spacing in resting state 
stretch ratios in x, y, z directions, respectively 
Lagrangian stress, Fx/Aox, Fv/Aay, re

spectively, measured in the triaxial experi
ments 

pseudo-strain energy per unit volume of 
lung tissue 

material constants defined in equation (7) 
strain invariants defined in equation (8) 
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To obtain Fv
a), change subscript 1 to 2, x to y, y to x, in equa

tion (4). 
To obtain FJ2\ FS2', change subscript y to z in F/l\ F^u, 

respectively. 
To obtain Fu

w, F®\ change subscript x to z in /<'„<», Fxw, 
respectively. 

Macroscopic Stress-Strain Relationship of the Lung Tissue. N o w 
we are ready to analyze the lung parenchyma as a structure. The 
force per unit area acting on any section perpendicular to the x-
axis will be denoted by Tx. If the area used in the defintion is the 
area of the parenchyma in the resting (unstressed) state, then 
Tx is called stress defined in the sense of Lagrange which is the 
one used in the forthcoming. 

The force acting on a unit undeformed area of parenchyma 
must be the resultant of the forces in the interalveolar septa. If 
the distance between membranes is A when the membranes are 
at rest, then there are 1/A membranes per unit length. Thus 
in a unit area perpendicular to the :c-axis there are 1/A mem
branes parallel to the x-y plane, in which the stress resultant is 
Fx

a), and there are 1/A membranes parallel to the x-z plane, in 
which the stress resultant is /<V'2>. Humming up all the contribu
tions, we obtain 

Tx = [FZV + FXM]/A 

- CXx(aiEx + aSv) exp (aifiV + a%Ev
2 + 2a,iExE„) 

+ CXAa.E,: + atEz) exp (aiEJ + a-tf? + 2atExEz) (5) 

where C = C'/A. Ty and Tz can be formed by appropriate sub
stitutions. This is the desired three-dimensional result. 

Equation (5) can be derived by differentiating a pseudo strain 
energy function p0W with respect to Xx: 

1 
p„W = - C exp [tuEJ + w,EuK+ 2aiExEy\ (6) 

+ symmetrical terms by permutation 

in which p0 is the density of the lung in the reference state, W is 
the pseudo-strain energy per unit mass, and the "symmetrical 
terms by permutation" means the sum of all terms obtained by 
cyclic permutation of the subscripts, x, y, of E by y, z, and x. 
Ty and Tz can be obtained by differentiating p0W with respect 
to \ y and \„ respectively. 

Question of Compressive Strain and Buckling. Interalveolar 
septa are thin elastic membranes. All thin membranes buckle 
under edge compression when the compressive stress exceeds a 
critical value. Because we know virtually nothing about how 
the interalveolar septa behave under compressive stress or strain, 
two alternatives were proposed in reference [6]: 

(a) We assume that the septa can carry compressive stress and 
strain without buckling and that the constitutive equation, 
equation (1), applies equally well to compression as to tension. 

(6) We assume that the septa are so thin and the elastic modu
lus so low at the resting state tha t they buckle essentially at zero 
compressive load. 

Under the first alternative equations (4) and (5) are valid for 
both tension and compression. Under the second alternative the 
membrane stresses must be set to zero when the strain in the 
membrane becomes compressive. In other words, in equations 
(4) and (5), Ez, Ev, or Ez is set to zero whenever \x, \ „ , or X2 

becomes less than one, respectively. 
Recent experiments by Vawter [18] on dog's lung in the 

neighborhood of the resting state indicate that the interalveolar 
septa can sustain a small compressive load, because a lung com
pressed to a size slightly smaller than the resting state can slowly 
return to the resting state (asymptotically in 10 or 15 min). The 
amount of compression that can be carried must depend on the 

length-to-thickness ratio of the interalveolar septa, which j8 

species dependent. For those animals with relatively thick 
interalveolar septa, buckling stress would be finite, and use of 
alternative 1 would be reasonable. 

Specialization to Biaxial or Uniaxial Loading. In biaxial loadW 
experiments in the x-y plane Tx and T„ are varied while J1 

remains zero. In uniaxial loading in the x direction Tx is varied 
while Ty = Tz = 0. The general three-dimensional stress-strain 
relationship equation (5) can be easily specialized into these 
cases. The reduction depends on which of the two alternatives' 
with regard to the compressive strain is used. Under the first, 
alternative, one must set Tz = 0, solve the resulting equation 
for X2 (or Es), and substitute the solution back into the expres. 
sions for T, and Tv to obtain finally formulas for Tx and Ty J 
functions of \x, \ only. Under the second alternative, with as
sumed zero buckling load, it is necessary only to delete terms in-' 
volving Ez in p„W, Tx and Ty, because in biaxial stretching Ez\f 
negative and the strain energy associated with this state will be"! 
negligibly small. Since the second alternative is much simpler,' 
and is believed to be closer to the truth, it is adopted herein. ~" 

Note that when the general three-dimensional stress-straiif 
relationship (equation (5)) is specialized into the biaxial loadings 
case under the second alternative (zero buckling load), the physical', 
meaning of the material constants C, Oi, ai and 04 remains tfo 
same in the biaxial case as in the triaxial case. This is certainly a 
great advantage. a%, ai, a, are the exponential constants for the 
interalveolar septa. C is the elastic constant of the septa divided I 
by the alveolar spacing. ; 

The Question of Isotropy Isotropy of the membrane is not 
assumed in the foregoing formulation although the cubic structure! 
is assumed uniform. Anisotropy of the tissue is revealed by the" 
difference in the constants m, a2. If 01 and a% were set as equal,' 
then the stress-strain relationship for a membrane becomes 
isotropic. The real lung tissue is probably anisotropic. I t is I 
shown later in Table 1 that the correlation between the mathe- •; 
matical expression and the experimental data is better if the tissue' 
is treated as anisotropic (compare numbers in column 7 of Table j 
1 with those in column 12). I t can not be determined using this' 
simplified model whether apparent anisotropy is due to alveolar j 
anisotropy or to geometrical nonuniformity from point to point.', 

In actual application of the stress-strain relationship to 
pulmonary mechanics, it is, however, very inconvenient to use 
anisotropic law becasue we have little information on the , 

. . . . Hi 

anisotropy of the lung. A great simplification can be obtained if. 
the lung tissue can be assumed to be isotropic in the initial, re-" 
laxed, and unstressed state. If initial isotropy is assumed, how--
ever, we can remove easily the cubic structure hypothesis which j 
was used to derive equations (5) and (6). We consider a large en
semble of alveoli, and assume that the ensemble average is ai 
sphere in the initial state. A tissue subjected to a macroscopic "j 
strain would distort the ensemble average alveolus into an ellip-j 
soid. From the same membrane property (equation (1), with 
ai = az), we can derive the formula 

PoW = - C exp {ah* + Ph], (7) \ 

where h, Iz are the strain invariants: , 

Ii — Exx + Eyy + Ezl 

h = ExxEyy + EvyEzz + EZIEXX - Exy* - Ey? ~ Ezx\ (8) : 

and C, a, ft are constants. The details are given in reference [7]. ' 
Numerically, equations (6) and (7) give essentially similar re- \ 
suits. In the present paper, the comparison between theory and ; 
experiment is based on equation (6). 

Determination of the material Constants C, ai, a., and a(. The : 
constants were determined by minimizing the least-squares er
rors between observed and calculated stresses. Tx and Ty errors j 
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Table 1 Best-fit material constants of dog's lung tissue elasticity in loading process (stretching), without surface tension—normal saline bath 
20°C, pH 6.7 

Sp. 
No. 

4081 

4181 

5191 

6021 

F 
y 

Newtons 

0 
0.1 
0.2 
0.5 

0 
0.1 
0.2 
0.5 

0 
0.1 
0.2 
0.5 

0 
0.1 
0.2 
0.5 

A . T i s s u e C 

C 

(Pascals) 

74 
147 
225 

1210 

58.4 
86.7 

100 
289 

56.4 
420 
802 
741 

160.7 
274 
565 
938 

o n s i d e r e d Ania 

a . 
1 

2 . 8 4 
1 .44 
1 .27 
0 .481 

3 . 5 1 
2 . 1 8 
2 . 1 2 
1 .33 

2 . 9 5 4 
0 . 8 0 7 
0 .524 
0 .762 

3 . 7 5 
1.46 
0 .945 
0 .697 

a , 
2 

* 
4 . 6 7 
3 . 7 1 
0 .860 

* 
4 . 7 1 
3 . 8 9 
2 . 2 8 

* 
1.95 
1 .37 
2 . 6 0 

* 
4 . 4 2 
2 . 4 3 
1 .94 

o t rop i c 

C 
a 

4 

* 
0.522 
0 .569 
0 .177 

* 
0 .920 
0 .976 
0 .427 

* 
0 .641 
0 .477 
1.02 

* 
0 .613 
0 . 7 8 8 
0 .673 

o r r e l a t i o n 
B a s e d on 

T & T 
x y 

. 9 9 5 

. 9 9 6 

. 9 9 5 

. 972 

. 9 9 8 

. 9 9 7 

. 9 9 6 

. 9 6 6 

. 9 9 7 

. 9 9 5 

. 9 9 9 

. 9 8 9 

. 9 9 9 

. 9 9 4 

. 9 9 5 

. 9 9 0 

B . T i s s u e Cone 

C 

(Pascals ) 

74.0 
88.0 

141.3 
571.3 

58.4 
50.2 

122^5 
313.2 

56.4 
120.5 
199.9 
909.4 

160.7 
233.8 
582.9 
611.6 

i d e r e d I s o t r o p i c 

a . = a . 
1 2 

2 . 8 4 0 
1 .705 
1.512 
0 .732 

3 . 514 
2 . 5 8 7 
1.962 
1 .259 

2 . 9 5 4 
1 .397 
1 .093 
0 . 6 8 8 

3 . 7 4 9 
1 .560 
0 . 9 1 7 
0 . 9 4 1 

a . 
4 

* 
5. 049 
1 .688 
0 .427 

* 
4 . 0 6 3 
0 .879 
0 .613 

* 
4 . 0 8 4 
1 .978 
0 . 7 8 5 

* 
4 . 4 8 6 
0 . 9 8 5 
0 .769 

C o r r e 
B a s e d on 

T 
X 

. 9 9 5 

. 9 9 7 

. 9 9 6 

. 9 9 2 

. 9 9 8 

. 9 9 9 

. 9 9 7 

. 9 9 8 

. 9 9 7 
. 9 9 9 
. 9 9 8 
. 9 9 9 

. 9 9 9 

. 9 9 8 

. 9 9 9 

. 9 9 6 

l a t ion 
B a s e d on 
T & T 

x y 

* 
. 932 
. 9 3 4 
. 7 6 6 

* 
. 9 7 3 
. 9 7 6 
. 8 6 3 

* 
. 9 3 5 
. 8 9 8 
. 7 6 9 

* 
. 9 8 2 
. 9 7 4 
. 7 8 2 

a and a canno t be d e t e r m i n e d f r o m u n i a x i a l load ing e x p e r i m e n t s . 

were simultaneously minimized when the material was assumed 
anisotropic. If isotropy was assumed, so that oi = cii, the con
stants were determined by minimizing the sum of the squares 
of the difference between observed and calculated values of Tx 

alone. The minimization procedure was an iterative method 
based on the method of steepest descent. A standard software 
routine GAUSSHAUS, available on the UCSD Burroughs 6700, 
was used for minimization. 

Note that under the hypothesis that all the interalveolar septa 
have the same constitutive equation, a set of four constants 
(C, «i, a-i, at) is sufficient to describe the lung. Biaxial tests can 
yield all the four material constants; uniaxial tests cannot. Hence 
it is insufficient to do only uniaxial tests if one's objective is to 

identify the constitutive equation. However, the preparation of 
the test specimens in biaxial tests inevitably introduces con
siderable trauma to the tissue. For that reason we advocate the 
use, of intact lung for the determination of the constants C, Oi, 
ai, and a^ Biaxial tests are used only to the extent of validating 
equations (5) and (6). 

Results 
Curve fittings were made for five specimens, each at four 

lateral loading conditions, with ascending and descending limbs 
fitted separately. Two specimens (5191 and 6021) were each 
fitted at two different pH values. Specimen 6231 was fitted at 

Table 2 Best-fit material constants of dog's lung tissue elasticity in unloading process (releasing), without surface tension—normal saline 
bath, 20°C, pH 6.7 

Sp. 

No. 

4081 

4181 

6191 

6021 

F 
y 

Newtons 

.0 
0.10 
0.20 
0.50 

0 
0.10 
0.20 
0.50 

0.0 
0.10 
0.20 
0.50 

0.0 
0.10 
0.20 
0.50 

A. T i s s u e 

C 

Pascals 

13.0 
45.7 
SO.7 
35.7 

23.9 
29.5 
13.3 

40.7 

14.7 
67.0 
63.7 

109 

47.9 
66.6 

143 
153 

C o n s i d e r e d A n i s o t r o p i c 

a l 

4 . 4 8 1 
1 .95 
1.79 
1 .99 

4 . 1 4 
2 . 8 9 
3 . 6 3 
2 . 56 

4 . 1 2 
1.70 
1.55 
1.72 

5 .49 
2 . 3 4 
1 .67 
1 .63 

a 2 

# 
1 0 . 5 

8 .0 
5 .88 

* 
1 1 . 3 
1 1 . 5 

6 . 0 7 

* 
8. 56 
9 . 6 5 

1 0 . 7 

* 
2 5 . 0 

8 .73 
6 . 6 1 

a 4 

* 
0 . 6 5 1 
1.09 
0 .755 

* 
1.15 
2 . 3 0 
0 . 5 33 

* 
1.02 
1 .18 
2 . 4 1 

* 
0 .807 
1.29 
1.51 

C o r r e l a t i o n 

B a s e d on 
T & T 

x y 

. 9 8 9 

. 9 9 2 

. 9 9 2 

. 9 9 3 

. 9 9 8 

. 9 8 7 

. 9 9 3 

. 9 9 0 

. 9 9 3 

. 9 8 4 

. 9 9 3 

. 9 8 1 

. 9 9 4 

. 9 8 9 

. 9 8 4 

. 9 8 5 

B . T i s s u e 

C 

Pascals 

13.0 
20.5 
46.7 

166.2 

23.9 
14.7 
10.8 
78.0 

14.7 
47.3 
50.0 

121.2 

47.9 
60.2 

143.6 
266.7 

C o n s i d e r e d 

a r a
2 

4 . 4 8 
2 . 4 4 
2 . 0 9 
1 .25 

4 . 1 4 
3 .46 
3 .82 
2 . 0 1 

4 . 1 2 
1 .83 
1.66 
1 .57 

5 .49 
2 . 4 1 
1.60 
1 .37 

I s o t r o p i c 

a 4 

* 
1 0 . 9 7 

5 .04 
0 .479 

* 
1 0 . 0 3 

4 . 3 0 
1.14 

* 
6 .19 
3 . 2 5 
3 . 6 1 

* 
1 0 . 2 5 

2 . 7 1 
0 . 4 5 5 

C o r r e l a t i o n 

B a s e d on 
T 

X 

. 9 8 9 

. 9 9 3 

. 9 9 1 

. 9 9 1 

. 9 9 8 

. 9 9 6 

. 9 9 7 

. 9 9 6 

. 9 9 3 

. 9 9 8 

. 9 9 3 

. 9 9 9 

. 9 9 4 

. 992 

. 9 9 7 

. 9 9 4 

B a s e d on 
T & T 

x y 

* 
. 9 7 7 
. 8 9 5 
. 552 

* 
. 9 8 3 
. 9 2 1 
. 7 2 5 

* 
. 9 6 7 
. 9 2 8 
. 6 3 2 

* 
. 9 8 9 
. 9 4 4 
. 5 7 5 

a and a cannot be d e t e r m i n e d f r o m un iax i a l load ing e x p e r i m e n t s . 
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20°C and also 37°C In order to minimize computer time usage, 
curves were fitted using only every tenth data point, which 
proved sufficient to obtain reliable parameter values. In all 
figures given in the forthcoming, every fourth data point is 
plotted. The experimental data used for the curve fitting are tab
ulated in reference [17], which also contains many more plotted 
curves. 

The best-fit physiological material constants determined for 
specimens in a normal saline bath at 20°C are listed in Tables 1 
and 2 for several values of lateral loading, and under both 
isotropic and anisotropic assumptions. Table 1 is for stretching— 
increasing load in the x direction. Table 2 is for releasing-—de
creasing load. The correlation coefficients, or the coefficients of 
determination, are defined as the correlation of the pairs of num
bers representing the experimental data and their theoretic 
predictions. They are listed in the last columns in Tables 1 and 
2. Under the anisotropy hypothesis the full set of experimental 
data are used to compute the correlation coefficients. Under the 

isotropy hypothesis two correlation coefficients are presented; 
one calculated from T. data alone, the other for both Tx and 
Ty data. These correlations coefficients show that the fit be-
tween the observed data and the theoretical formula is quite 
good for each loading condition. The fit is better if isotropy is 

not assumed. 
In Tables 3 and 4 the mean values of the material constants for 

each specimen in different temperatures and pH values are shown. 
As the lateral load increases the calculated values for Oi and 

a< decrease while C increases. There is no consistent trend in the 
variation of the coupling term a4. Values of oi and a2 are higher 
for unloading curves while C is lower, as is expected from the 
shape of hysteresis curves (reference [20]). 

Since each loading condition yields a different set of constants 
it is of interest to assess the ability of the constants calculated 
from one loading condition to fit the experimental data generated 
by a different loading condition. Figs. 2-5 show the assessment 
for Specimen 4181. In each figure one set of experimental data 

Table 3 Mean values of lung elasticity material constants in loading process 

(A) LUNG TISSUE CONSIDERED ANISOTROPIC 

ec imen 
N o . 

4081 
4181 
5191 
5191 
6021 
6021 
6231 

T ° C 

2 0 
2 0 
2 0 
2 0 
2 0 
2 0 
37 

P H 

6 . 7 
6 . 7 
6 . 7 
8 . 1 
7 . 3 
8 . 3 

6 . 7 

C ± S.D. 
(Pascals) 

414 ± 534 
134 t 105 
505 i 343 
324 ± 217 
484 ± 347 
387 i 104 
192 ± 177 

± S.D. ± S. D. ± S.D. 

1 

2 
1 
1 

1 
1 

0 

1 

51 ± 0 
29 ± 0 
26 ± 1 
22 ± 0 
71 ± 1 
62 ± 1 
83 ± 0. 

69 ± 0 

9 8 
90 
13 

37 

39 
01 

56 

39 

3 
3 
1 

3 
2 
3 
2 

2 

0 8 
63 

97 
22 

93 
2 8 
6 0 

77 

± 

± 
± 
± 

± 
± 
± 

± 

1.98 
1.24 
0 .61 
1.43 
1.31 
0 .20 
1.45 

0.67 

0.42 ± 
0.77 ± 
0 .71 ± 
0.76 ± 
0.69 ± 
0 .73 ± 
0 .28 ± 

0.62 ± 

0 .21 
0 .30 
0 .28 
0 .88 
0 .09 
0.12 
0.14 

0 .24 Mean (20°C, pH 6. 7 
Normal Saline bath) 

3. 51 ± 1. 88 

Specimen 
N o . 

4081 
4181 
5191 
6021 

T ° C 

2 0 

2 0 
2 0 
2 0 

p H 

6 . 7 
6 . 7 

6 . 7 
7 . 3 

C ± S.D. 
(Pascals) 

219 + 237 
136 ± 122 
322 + 396 
397 ± 233 

(B) LONG TISSUE CONSIDERED ISOTROPIC 

± S.D. 

1. 70 ± 0 .87 
2 .33 ± 0.96 
1. 53 ± 0. 99 
1.79 ± 1.34 

2 .39 ± 2 .39 
1 . 8 5 ± 1.92 
2 . 2 8 ± 1.67 
2 .08 ± 2 .09 

Table 4 Mean values of lung elasticity material constants in unloading process 

(A) LUNG TISSUE CONSIDERED ANISOTROPIC 

Specimen 
N o . 

4081 
4181 
5191 
5191 
6021 
6021 
6231 

T ° C 

20 
20 
2 0 
2 0 
2 0 
20 

37 

p H 

6 . 7 
6 . 7 
6 . 7 
8 . 1 
7 . 3 
8 . 3 

6 . 7 

C ± S.D. 
(Pascals) 

44 ± 28 
27 ± 11 
64 ± 39 
52 ± 39 

103 ± 53 
135 + 102 

14 ± 15 

a, ± S .D. 1 

2 . 5 5 ± 1.29 
3.31 ± 0 .71 
2 .27 ± 1.23 
1.97 ± 0.32 
2 . 7 8 ± 1.83 
3 . 03 ± 2 .79 
2 .21 ± 0 .61 

a 2 ± S - D -

8.13 ± 2. 31 
9.62 ± 3 .08 
9 .64 ± 1.07 

13.60 ± 7.02 
13.40 ±10. 00 

8.11 ± 2 .66 
7.24 ± 3.20 

a , ± S. D. 
4 

0. 83 ± 0.23 
1.33 ± 0.90 
1.54 ± 0 .76 
1.36 ± 0.47 
1.20 ± 0.36 
1.02 ± 0 .27 
0.69 ± 0.47 

Mean (at 20" C, pH t 
Norma l Saline 

Specimen 
No. 

4081 
4181 
5191 
6021 

T ' C 

2 0 
2 0 
2 0 

2 0 

. 7 
bath) 

p H 

6 . 7 
6 . 7 
6 . 7 
7 . 3 

0.45 ± 0.26 2 .71 ± 0. 50 9 13 ± 2 . 1 5 

(B) LUNG TISSUE CONSIDERED ISOTROPIC 

C S.D. a = a ± S .D. 
(Pascals) 

61.6 ± 71.2 2 .57 ± 1.37 
31.9 ± 31.3 3.36 ± 0 .94 
58.3 ± 44.9 2 .30 ± 1.22 

129.6 ± 100.8 2 .72 ± 1.90 

a_, ± S .D. 
4 

5.50 ± 5.26 
5.16 ± 4 .51 
4 . 35 ± 1.60 
4 .47 ± 5.13 

1,23 ± 0.26 

42 / Vol . 101, F E B R U A R Y 1979 Transactions of the ASME 
Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Experimental data when F • 0. 

SOLID CURVES' predicted for the case F„ = 0 
6 T . ' 

on the basis of constants determined 

from experiments in which-

X, (STRETCH RATIO Lx /L„) 
Fig. 2 Comparison of the predicted stress-strain curves for uniaxial 
loading with experimental data (shown in discrete square) of the uni
axial case. Stresses are predicted with four different sets of material 
constants. The constants are determined from the labeled experi
mental runs. Note that only curve 1, for which the material constants 
were determined from a uniaxial test, predict the behavior ade
quately. 

for a specific loading condition are plotted by discrete points; 
and four theoretical curves using four different sets of constants 
are shown for comparison. The theoretical curves are derived 
from material constants (C, ai, a2, ai) which are determined from 
four different experiments; one uniaxial and three biaxial tests 
with the lateral loads indicated in the figures. In the uniaxial 
ease we assumed a2 = ai and a* = 0. It is seen from Fig. 2 that 
only the curve 1, for which the material constants derived from 
a uniaxial experiment are used, fit the experimental data well. 
Curves 2, 3, and 4 in Fig. 2, derived with constants obtained from 
biaxial tests, do not fit the uniaxial data. Figs. 3, 4 and 5 show 
that the constants derived from different sets of biaxial tests can 
be used to predict another biaxial loading case quite well, but 

ion 

V) 

in 
a 
t -
to 

z 
«t 
o 
z 
1 
K 

O 

X 

CM 
E 

V 
7-

Experimentol data when F„ = O . I N 

SOLID CURVES- predicted for the case 

Fy = O. I N on the basis of constants 

determined from experiments in which> 

Fy = O . IN 

Fy = 0. 2 N 

0.8 

4' Fy = 0 . 5 N 

X, (STRETCH RATIO L. /L . . ) 
Fig. 3 This prediction uses the same four sets of constants as does 
F|g. 2 but now attempts to predict the response for a biaxial loading 
experiment with a lateral load of 0.1 N. Note that curves 2, 3, 4 fit well; 
nut curve 1, which is calculated with constants derived from the uni
axial test, does not fit well. 

the constants derived from a uniaxial test are inadequate to 
predict the outcome of a biaxial experiment. 

Discussion 
The theoretical formula for stress-strain relationship, derived 

from a very simple model, is able to fit the observed data very 
well for each given set of loading conditions. If isotropy is not 
assumed, the correlation coefficients of the experimental data 
with the theoretical predictions are generally greater than 0.990 
and the majority of coefficients are above 0.995. With the im
position of isotropy hypothesis the correlation is not so good. 
Values of o2 and ai are indeterminate under uniaxial loading since 

10 i 

VI 
<n 
UJ 

Z < 
I D 
*E 
«c 
IX. 
<9 
t 

m 
O 

X 

CM 

Z. 

B Experimental data when Fy » 0 . 2 N 

SOLID CURVES' predicted for the case 

Fy = 0 . 2 N on the basis of constants i ^ 

determined from experiments in which* 

I ' Fy » 0 

2' Fy = O.I N 

3 Fy = 0 . 2 N ' J" ' "3 

4' Fv = 0 . 5 N / Jr-~i 
' I w-—4 

X , (STRETCH RATIO L / L o x ) 

Fig. 4 Comparison of the predicted curves for the case of a biaxial 
loading with a lateral load of 0.2 N with experimental data of that case 
(discrete squares). Note that curves 2, 3, 4 fit well; but the one curve 
calculated with the constants derived from the uniaxial test does not 
fit well. 

v> H 
UJ 
oc x 
l -
c/> - r 

10 

8 -

6 -

1 
I 

E 

m Experimental data when Fy - 0. 5 N 

SOLID CURVES' predicted for the case 

Fy = 0 .5 N on the basis of constants 

determined from experiments in which' 

F y . O 

O.I N 

3' F, • 0. 2 N 

F » 0 .5N 
y 

•3 

X , (STRETCH RATIO L » / L 0 , ) 

Fig. 5 A comparison similar to Fig. 4 for the biaxial loading case with 
a lateral load of 0.5 N 

Journal of Biomechanical Engineering F E B R U A R Y 1979, Vo l . 101 / 43 

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the least squares equations determining them are identically 
zero. 

Values of f<2 are consistently larger than «i which might be a 
computational artifact. The parameters that affect the deter
mination of «2 most strongly are <r„ and A„. In the experiments 
analyzed a„ was always greater than 400 Pa and information 
about behavior at low stresses was not obtained. Biasing the 
curve fitting to higher stresses overestimates the values of the 
constants in the exponential function. This is also seen in the 
initial guesses for ch which only utilizes peak stretch. Initial 
guesses for a\ are usually 50 to 150 percent higher than the final 
calculated values. For this reason the reliability of a2 is doubted. 

The correlation coefficients for Tr data remain high under the 
assumption of isotropy because the constants C, (h = 12, a, are 
determined from these data; but the correlation coefficients for 
T,, data is poor under the isotropy hypothesis. We believe that 
the lung tissue is anisotropic, but can be treated as isotropic 
without too much error. A much more extensive study is re
quired in the future, however, in order to identify the degree of 
anisotropy in relation to the location and orientation in the lung 
for different animals. 

The existence of a stress-free state that can be used as a refer
ence state has been further demonstrated by Vawter [1.8], In the 
neighborhood of the reference state the stresses and strains are 
all small, deviations between theory and experiment in this 
neighborhood will not cause large deterioration in the correlation 
coefficient. Hence the comparison between theory and experi
ment is biased toward the higher stress side. If deviations were 
express d in terms of percentages (instead of absolute values), 
then there is probably a loss of percentage accuracy in the 
neighborhood of the reference state. 

Remaining Difficulties 

The greatly simplified theory may be fortunate enough to 
represent the major features of the lung elasticity., but it cannot 
be expected to account for the extremely complex and nonlinear 
behavior of the real lung in every detail. For this reason we are 
certain that the theory will be refined in the future to better 
represent the lung behavior. At the present let us point out the 
areas where the theory and experiment do not agree. 

The most perplexing feature revealed in the foregoing is the 
uniaxial test results. The uniaxial test seems to set itself apart 
from the general biaxial tests, although it is a special case of the 
latter. The reason for this could be related to the compressive 
strain in the lateral direction which occurs in uniaxial tests. The 
association of this compressive strain with the phenomenon of 
"cross over" is discussed at length in reference [20]. Our hypothe
sis of zero buckling stress for the interalveolar septa in compres
sion is probably the culprit. We do not fully understand the 
uniaxial tests. 

The difficulty with the uniaxial tests in the family of biaxial 
cases indicates that the biaxial test 'of our triaxial formula is one 
of special severity. The general agreement of the biaxial results 
with the three-dimensional theory gives us confidence in the 
validity of the latter at least to the same degree of approximation. 

The other difficulty is the change in the values of material 
parameters with lateral load. This is not surprising when one 
considers the simplicity of the mathematical model. The cubic 
geometric model does not allow for geometric reorientation of the 
alveoli and the resultant redistribution of loads within the struc
ture. A model of alveolar geometry in which the membranes are 
not aligned in the principal directions of stretch is necessary to 
allow membrane directional orientation changes as the lung is 
stretched. 

Another reason for the variation of material constants with 
test conditions is believed related to the need for "precondi
tioning." All authors on biorheology, including Fukaya, et al. 
[2], Hoppin, et al. [9] recognize the need for preconditioning to 
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get repeatable data. We believe that the reason is that biological 
tissues are not elastic. They do not have a unique, unchanging 
structure. They can be preconditioned into a homeostatic con-
dition under cyclic loading; but each homeostatic condition cor-
responds to a different material. In this sense the word "pseudo-
elastic," which was introduced by Fung [3, 4] to indicate that the 
tissue is viscoelastic but strain-rate insensitive, refers only to a: 
given homeostatic condition and not to the changing conditions,! 
A full analysis of changing homeostasis requires a much more: 
extensive study and is not the objective of the present paper. 

The existence of two pseudo strain energy functions, one for 
loading and another for unloading, is assured only for a given: 
cyclic loading of a preconditioned specimen. Alteration of the! 
loading cycle leads to a new state which must again be precon-; 
ditioned. In particular, the strain energy function for the release; 
curve cannot be independently determined, but depends on the: 
maximum stretch attained in the stretching phase. Changing; 
the peak stretch (\x) will certainly alter the constants for the! 
descending limb and possibly those of the ascending limb as well.. 

The material constants tabulated and used in Figs. 2-5 are] 
strictly applicable only for the cyclic loading paths for which-
they are computed. However, the ability of the model to predict-
adequately the behavior at a variety of lateral loading conditions: 
suggests the possibility to use mean values of the constants to! 
predict the lung behavior. Here again, however, we would like! 
to stress the desirability to determine the material constants! 
from the intact lung to avoid the trauma to the tissue associated \ 
with the preparation of the biaxial test specimens. An attempt; 
in this direction is given in [21]. 

Comparison With Other Works 

Of the more recent publications on lung elasticity, the paper: 
by Mead, et al. [12] is the most influential. As far as the stress-
strain relationship is concerned, they modeled the lung as a; 
network of springs but stopped short of a mathematical fomvular: 
tion of the constitutive equation. The mathematical formulation' 
was carried out shortly afterwards by Wilson [23] for a two-di-; 
mensional network of springs. Wilson's analysis is linearized, and] 
is valid only for a small perturbation of an equilibrium eon-j 
figuration. A further extension was made by Lambert and Wilson 
[10], in which the lung tissue is pictured as a number of inter-1 

connected, randomly oriented, plane, elastic membranes; but(| 
again linearized for small incremental variations of stresses andj 
strains about a state of uniform inflation. The incremental; 
stresses and strains obey Hooke's law, for which the concepts of 
Young's modulus and Poisson's ratio apply, but these constant^ 
vary with the state of equilibrium on which the perturbationsi 
are imposed. In particular, unless the state of equilibrium isj 
isotropic (as in a uniform inflation of a lung with material i 
isotropy) the incremental law is anisotropic. Only the isotropic 
case is evaluated by Lambert and Wilson [10]. ; 

Another perturbation analysis was one by Frankus and Lee,! 
[1]. This time the lung structure was modeled by an assemblage^ 
of dodecahedrons, and a numerical finite element method was i 
used. 

The methods used by these authors are quite different from 
that of Fung [5, 7] who starts with the histological geometry of* 
the alveoli and derives certain integrals which represents thej 
macroscopic stresses. Pie then derives a statistical relationship! 
between the macroscopic strains and the strains in the individual"-
intervalveolar septa by means of a mathematical concept of &; 
statistical mean alveolus. Linearization is quite unnecessary in ! 
Fung's approach. Two examples are given in [5]: In one an j 
initial spherical mean alveolus is deformed into an ellipsoid, in \ 
another a cubic mean alveolus is deformed into a rectangular i 
parallelopiped. Analytical results are obtained for both cases;J 
the analysis being simpler than that of [1, 10, 23]. The cubic 
case is by far the simplest. I t was then discovered tha t the final! 
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constitutive equation does not change very much with the 
shape of the mean alveolus. ' Hence in his later paper [6], the 
cubic mean alveolus was adopted as a major hypothesis. I t is to 
the testing of the results of [6] that the present paper is addressed. 

In all these studies it is necessary to know the stress-strain 
relation of the interalveolar septa. Setnikar [14] has proposed a 
formula for the Young's modulus of the interalveolar septa in 
the form 

where l0, l»n, and k are constants, and I is the length of the tissue. 
West and Matthews [22] and Vawter, et al. [19] used a Hooke's 
law with a Young's modulus which is a modification of Setnikar's 
law, and a constant Poisson's ratio, to represent an incremental 
law for the lung parenchyma. Wilson [23], Lambert and Wilson 
[10], Frankus and Lee [1] used the test results of Fukaya, et al. 
[2] in their analysis. Fung [5, 6] used an exponential constitutive 
equation which is in common with other soft tissues such as the 
skin and the mesentery [4, 16]. See equation (1). I ts adopta
bility is the second major hypothesis of the present paper. 

Triaxial experiments were made by Hoppin, et al. [9]. Their 
results were analyzed by Lee and Frankus [11] who expressed 
the strain-energy function as a polynomial of 8th degree in 
stretch ratios. Isotropy was assumed so tha t the strain com
ponents in the polynomial were grouped into strain invariants. 
Although their approach is certainly valid, the present approach 
appears easier to interpret based on the following comparisons: 

(a) The variation of the coefficients of the polynomial (which 
are material constants of the lung) is not easy to understand. 
These coefficients cannot be related to the properties of the 
interalveolar septa and the alveolar size in a simple manner. 

(b) The expression is strictly isotropic. I t is not clear how 
can the expression be generalized to represent an anisotropic ma
terial. 

(c) I t is not clear how can the polynomial be specialized to 
represent the mechanical behavior of the lung tissue in biaxial 
tension, with the stress in the third dimension zero. Hence we do 
not know how to evaluate their polynomial against the experi
mental data presented in the foregoing. 

Concluding Remarks 

The theoretical constitutive equation derived in [6] is shown 
to be valid in an approximate sense under the severe test of 
biaxial loading. The constitutive equation can then be used for 
the analysis of pulmonary physiology. We believe, however, 
that the material constants of the tissue (C, oi, a2, Oi) should be 
redetermined by intact lung experiments. To do this, we must 
first predict the results of possible intact lung experiments in 
terms of the constitutive equation. The constants can then be 
determined by comparing the prediction with the experimental 
data. In this process the assumed form of the constitutive equa
tion is very important. The objective of the present paper is to 
validate this form by means of in-vitro experiments. 

In experimenting with the intact lung, the effect of surface 
tension must be considered. A constitutive equation with respect 
to surface tension is derived in reference [7]. 
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