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Bayesian Analysis for Weighted Mean-squared
Error in Dual Response Surface Optimization
In-Jun Jeong,a∗† Kwang-Jae Kimb and Dennis K. J. Linc

Dual response surface optimization considers the mean and the variation simultaneously. The minimization of mean-
squared error (MSE) is an effective approach in dual response surface optimization. Weighted MSE (WMSE) is formed
by imposing the relative weights, (k, 1−k), on the squared bias and variance components of MSE. To date, a few
methods have been proposed for determining k. The resulting k from these methods is either a single value or an
interval. This paper aims at developing a systematic method to choose a k value when an interval of k is given.
Specifically, this paper proposes a Bayesian approach to construct a probability distribution of k. Once the distribution
of k is constructed, the expected value of k can be used to form WMSE. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

R
esponse surface methodology consists of a group of techniques used in the empirical study between a response and a
number of input variables. For detailed descriptions on various response surface techniques, see, for example, Box and
Draper1 and Myers and Montgomery2. The conventional response surface methodology focuses on the mean of the response,

assuming that the variance of the response is constant. However, the constant variance assumption may not be valid in practice.
The dual response surface approach has received a great deal of attention for its attempt to tackle the non-equal variance

problem (Vining and Myers3). Suppose that there is a response y that is determined by k input variables, coded x1, x2,. . . , xk . The
dual response surface approach first fits models for the mean (�̂�) and the standard deviation (�̂�) as separate responses. A
quadratic (second-order) polynomial form is typically used for the model building:
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Various methods have been proposed for the optimization of the dual response surfaces (Del Castillo and Montgomery4, Lin
and Tu5, Copeland and Nelson6, Del Castillo et al.7, Kim and Lin8). Tang and Xu9 and Köksoy and Doganaksoy10 provide a good
review on these existing methods.

Lin and Tu5 propose an effective approach based on the mean-squared error (MSE) minimization:

Minimize
x

MSE= (�̂�−T )2 +�̂2
� (2)

where T is the target value for the mean and x= (x1,. . ., xk) is a vector of the input variables. It should be noted that Equation (2)
is the MSE minimization model for a nominal-the-best (NTB)-type response. The goal of the model is to have the mean response
at some target value with a minimum variation. MSE consists of two terms: the squared bias ((�̂�−T )2) and the variance (�̂2

�).
As noted in Lin and Tu5, a natural extension of MSE, viz., weighted MSE (WMSE) is formed by imposing the relative weights on
the squared bias and variance terms:

WMSE =�(�̂�−T )2 +(1−�)�̂2
� (3)

where � is a weighting factor (0≤�≤1).
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One reason to introduce the weighting to the MSE criterion is that one of the squared bias and variance could be more
important than the other. As an example, in the manufacturing process of tin plates, a kind of steel product, reducing the
variation of hardness is critical to quality. This is because the final products (e.g. beverage can) made of the plates with a high
variability are easy to crack, while the bias associated with the mean value does not significantly affect the likelihood of crack
formation (Kim et al.11). In this case, the variance is much more critical than the squared bias. In order to solve such a problem
appropriately, the relative importance of the squared bias and variance needs to be incorporated into the MSE criterion through
the weighting.

Another reason is that the MSE criterion does not consider the relative scale (or magnitude) of the squared bias and variance.
As mentioned in Kim and Lin8, the minimization of MSE can be driven mainly by one of the two components whichever has a
larger scale, although a small amount of the other might have a significant impact on the overall quality. In order to consider the
impact of the squared bias and variance in a balanced manner, the scale effect should be adjusted through a proper weight.

An appropriate value of � should be determined to make the WMSE criterion effective. To date, a few methods have been
proposed for determining �. Ding et al.12 propose a data-driven method to determine �. It first generates the ideal point in the
mean-standard deviation (�̂�, �̂�) space, which consists of the marginally optimal values of �̂� and �̂� obtained by individually

minimizing (�̂�−T )2 and �̂2
�, respectively. Then, it finds an efficient curve through minimizing WMSE for all possible � values

between 0 and 1. It has been shown that any optimal point must lie on such an efficient curve (corresponding to a specific value
of �). Finally, it identifies the point on the efficient curve that is closest to the ideal point and the corresponding � value. The
obtained � value is considered as an optimal choice.

Jeong et al.13 propose a preference-based method to determine �. The basic premise of this method is that � should be
congruent with a decision maker (DM)’s preference structure. The squared bias and variance values resulting from a process
setting of the input variables are considered to form a vector. The DM expresses his/her preference structure by providing the
rankings of such alternative vectors in a pairwise manner. Then, the method finds the � value(s) congruent with the given rankings
of the vectors.

The motivation of the data-driven method and the preference-based method is that the DM encounters difficulties in directly
specifying a value of �, which is a mathematical representation of the relative importance and/or scale of the squared bias and
variance. They focus on finding a value of � that is considered reasonable by the DM rather than having this as a user-specified
characteristic, and therefore facilitating the process through which he/she chooses a value of � systematically.

Unlike the Ding et al.12’s method, which always generates a single value of �, the Jeong et al.13’s method provides either a
single value or an interval of �, depending on the consistency of the preference structure expressed by the DM. In the single
value case, the generated value of � can be directly used to combine the squared bias and variance in WMSE. In the interval
case, a specific value of � in the interval needs to be chosen to form WMSE for practical use. The choice of � should be made
carefully, particularly when the optimal setting is sensitive with respect to the chosen � value.
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Figure 1. The context and scope of this paper
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A simple method to help to choose a � value is to narrow the interval, as mentioned in Jeong et al.13. The interval can
be narrowed by using additional pairwise rankings of new alternative vectors. The new alternative vectors can be predicted
by using the regression models in Equation (1) at various interpolated design points. If the interval is not sufficiently narrow,
mild extrapolations could be employed. This method would require a large number of iterations with the DM before reaching a
sufficiently narrow interval.

This paper aims at developing a systematic method to choose a � value when an interval of � is given. Specifically, this paper
proposes to construct a probability distribution of �, from which a meaningful choice of � can be made. A Bayesian approach is
used for this purpose. The lower and upper bounds of the � interval are employed as the sample information in the Bayesian
analysis. Once the (posterior) distribution of � is constructed, the expected value of � can be used to form WMSE. The Bayesian
approach is able to utilize the prior knowledge to construct the distribution of �. In addition, it can update the distribution of �
with the knowledge obtained through the sample information. The more the knowledge accumulates, the more the degree of
belief in the value of � increases.

Note that the proposed Bayesian approach is applicable in the single value case as well as in the interval case. However, it
is particularly important to handle the case where � is obtained as an interval but a single � value in the interval should be
chosen. Therefore, this study will focus on the interval case. The context and scope of this paper are shown in Figure 1. The
preference-based method is reviewed in the next section, and then the proposed Bayesian scheme is presented. The popular
‘printing process’ problem is used for a detailed illustration on how to apply the proposed scheme, followed by a sensitivity
analysis on various prior assumptions.

2. Review of the preference-based method

Consider m alternative vectors consisting of the squared bias and variance values. Let zi = (zi
1, zi

2)T(i=1, 2,. . ., m), where zi
1 and zi

2
are the squared bias and variance components, respectively. The WMSE value associated with zi is expressed as

WMSEi =kzi

where k= (�, 1−�). The basic premise of the preference-based method is that the pairwise ranking of zi ’s given by the DM should
be consistent with the corresponding WMSE values. For example, if the DM prefers zi to z j (denoted as zi �z j), kzi should be
less than kz j (kzi<kz j).

The elicitation process to obtain the pairwise rankings is basically the DM’s preference articulation process (Jeong et al.13).
Given zi and z j , the DM is asked to make a judgment as to which alternative is preferred to the other. In order to make such
a judgment, the DM would compare their squared bias and variance values and evaluate the tradeoffs in terms of the overall
quality. From a practical viewpoint, the DM would think of their implications on various quality indices, such as process capability,
proportion of rejects, quality loss, and the like. This judgment requires knowledge about the process/product under study. Here,
it should be noted that including the MSE value for judgment is improper, because the pairwise rankings based on MSE would
lead to the unweighting (i.e. �=0.5).

The preference-based method first extracts the pairwise rankings of z1, z2,. . ., zm from the DM. The pairwise ranking has three
types: (i) zi is preferred to z j (zi �z j); (ii) zi is less preferred to z j (zi ≺z j); and (iii) the comparison is to be held back (zi?z j). It
is worth mentioning that the DM may wish to refer to the unsquared bias and standard deviation for the pairwise comparison,
because it is easier to think in terms of actual units rather than squared units. In addition, the unsquared bias tells one whether
the bias is positive or negative, about which the DM may have a concern. The resulting pairwise rankings are summarized as an
index set of ordered pairs:

IP ={(i, j)|zi �z j}

where the subscript P denotes Preferred. The set IP is associated with the cases (i) and (ii). Note that (ii) can be easily transformed
to (i) by changing the position of zi and z j .

The extracted pairwise rankings are transformed to inequalities between the corresponding WMSE values:

kzi<kz j ∀(i, j)∈ IP (4)

By solving each inequality in Equation (4) for �∈ [0, 1], the individual set of �’s for the (i, j) pair (�(i,j)) is obtained as an interval.
The set of �’s satisfying all the inequalities (�) is obtained by intersecting �(i,j)’s, ∀(i, j). If � �=∅, the algorithm ends, and the
current solution � is the final set of �’s. The set �, obtained as an interval, is the set of �’s that are congruent with all the
current pairwise rankings. Otherwise, there exists an inconsistency among the pairwise rankings. The preference-based method
attempts to remove such an inconsistency through a revision process. (For detailed information on the revision process, see
Jeong et al.13—in particular, Steps 3 and 4 of the method.) If the inconsistency cannot be removed nevertheless, a single value
of �, which minimizes the degree of inconsistency, is obtained instead.
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3. Proposed Bayesian scheme

The Bayesian analysis combines the prior probability distribution on a parameter (�), which is unobservable, and the sample
information (x), which is observable, to construct the posterior probability distribution of � given x. In our work, � is regarded as
a parameter, and the lower and upper bounds of the � interval (say, � and �) serve as the sample information. Let 	(�) be the
prior probability density function (pdf) of �, and f (�,�|�) be the joint likelihood function of � and � given �. Then, the posterior
pdf of � given � and � is obtained as

p(�|�,�)= 	(�)f (�,�|�)∫
� 	(�)f (�,�|�) d�

(5)

In Equation (5), 	(�) needs to be determined based on the prior knowledge. Various methods have been proposed for this
purpose (Berger14). The likelihood function f (�,�|�) can be determined based on theoretical assumptions and available empirical
information on �, �, and �. In this study, the likelihood function is derived from the lower and upper bounds of �(i,j)’s in
conjunction with order statistics. (The derivation of the likelihood function will be described in more detail in Section 4.1.) Once
p(�|�,�) is constructed, the expected value of � given � and � is obtained as

E[�|�,�]=
∫

�
� ·p(�|�,�) d�

This expected value of � can then be used in Equation (3), instead of �, to form WMSE. In addition to the posterior expectation, a
sensitivity analysis can be performed by using the lower and upper percentiles (e.g. the 5th and 95th percentiles) of the obtained
distribution of � (Figure 1).

4. Illustrative example

The ‘printing process’ problem, which was originally discussed in Box and Draper1 (p. 247), is used here to illustrate the proposed
Bayesian scheme. The purpose of the problem is to improve the quality of a printing process (y) by controlling speed (x1),
pressure (x2), and distance (x3). The experiment was conducted in a 33 factorial design with three replicates. Table I shows the
data set, along with the unsquared bias and standard deviation values as well as the squared bias and variance values. In the
problem, the fitted response surfaces for the mean and the standard deviation are as follows (Vining and Myers3):

�̂� = 327.6+177.0x1 +109.4x2 +131.5x3 +32.0x2
1 −22.4x2

2 −29.1x2
3 +66.0x1x2 +75.5x1x3 +43.6x2x3 (T =500)

�̂� = 34.9+11.5x1 +15.3x2 +29.2x3 +4.2x2
1 −1.3x2

2 +16.8x2
3 +7.7x1x2 +5.1x1x3 +14.1x2x3

For this problem, Jeong et al.13 obtained an interval of � using the preference-based method. As previously mentioned, the
squared bias and variance values in Table I, resulting from the 27 experimental conditions of the input variables, might be used
to form the alternative vectors. However, only seven vectors (denoted as z1,. . ., z7 in Table I), which passed a screening test,
were finally used. The method extracted the initial pairwise rankings of z1,. . ., z7 from the DM and transformed them to the
inequalities between the corresponding WMSE values. The initial pairwise rankings are given in Table II. By solving the inequalities
for �∈ [0, 1], �(i,j)’s and � were obtained. But, the set � was null (i.e. �=∅). Then, the method removed inconsistent pairwise

rankings through the revision process. Specifically, it changed z3 ≺z5 into z3 �z5, and deleted z4 �z6. From the revised pairwise
rankings, �(i,j)’s and � were obtained again. Then, the set � was obtained as (0.064, 0.246). The intermediate and final results of
the example are summarized in Table III. In this paper, the closed interval [0.064, 0.246] is used for computational convenience.
The interval [0.064, 0.246] is the set of � values satisfying all the inequalities (i.e. all the pairwise rankings) in Table III. That is, any
value of � in this interval is congruent with the DM’s stated preferences and thus may be used in WMSE. However, at this point,
it is not clear which value is most desirable to form WMSE.

Figure 2 shows the optimal settings (Figure 2(a)), the corresponding squared bias and variance values (Figure 2(b)), and the
unsquared bias and standard deviation values (Figure 2(c)) for various � values within the obtained interval. The optimal settings
(x∗

2 and x∗
3 in particular) and the squared bias (unsquared bias) and variance (standard deviation) values do not show a stable

pattern within the interval. In order to make a meaningful choice of � in the interval, we construct a probability distribution of
� using the proposed Bayesian scheme, assuming the given interval serves as the sample information in the Bayesian analysis.

4.1. Construction of the posterior pdf of � given � and �

To construct the posterior pdf of � given � and � (i.e. p(�|�,�)), the prior pdf 	(�) and the joint likelihood function f (�,�|�) are
needed. In this example, we obtain f (�,�|�) as the product of the likelihood function of � given � (say, f1(�|�)) and the likelihood
function of � given � and � (say, f2(�|�,�)). Then, Equation (5) can be transformed into

p(�|�,�)= 	(�)f1(�|�)f2(�|�,�)∫
� 	(�)f1(�|�)f2(�|�,�) d�

Now, 	(�), f1(�|�), and f2(�|�,�) are to be determined.

4
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Table I. The printing process study data

(ȳi −T ) si (ȳi −T )2

(unsquared (standard (squared (si)2

i x1 x2 x3 yi
1 yi

2 yi
3 ȳi bias) deviation) bias) (variance) Code

1 −1 −1 −1 34 10 28 24.00 −476.00 12.49 226 576.00 156.00
2 0 −1 −1 115 116 130 120.33 −379.67 8.39 144 146.78 70.33
3 1 −1 −1 192 186 263 213.67 −286.33 42.83 81 986.78 1834.33
4 −1 0 −1 82 88 88 86.00 −414.00 3.46 171 396.00 12.00
5 0 0 −1 44 178 188 136.67 −363.33 80.41 132 011.11 6465.33

6 1 0 −1 322 350 350 340.67 −159.33 16.17 25 387.11 261.33 z1

7 −1 1 −1 141 110 86 112.33 −387.67 27.57 150 285.44 760.33
8 0 1 −1 259 251 259 256.33 −243.67 4.62 59 373.44 21.33
9 1 1 −1 290 280 245 271.67 −228.33 23.63 52 136.11 558.33
10 −1 −1 0 81 81 81 81.00 −419.00 0.00 175 561.00 0.00
11 0 −1 0 90 122 93 101.67 −398.33 17.67 158 669.44 312.33

12 1 −1 0 319 376 376 357.00 −143.00 32.91 20 449.00 1083.00 z2

13 −1 0 0 180 180 154 171.33 −328.67 15.01 108 021.78 225.33

14 0 0 0 372 372 372 372.00 −128.00 0.00 16 384.00 0.00 z3

15 1 0 0 541 568 396 501.67 1.67 92.50 2.78 8556.33 z4

16 −1 1 0 288 192 312 264.00 −236.00 63.50 55 696.00 4032.00

17 0 1 0 432 336 513 427.00 −73.00 88.61 5329.00 7851.00 z5

18 1 1 0 713 725 754 730.67 230.67 21.08 53 207.11 444.33
19 −1 −1 1 364 99 199 220.67 −279.33 133.82 78 027.11 17908.33
20 0 −1 1 232 221 266 239.67 −260.33 23.46 67 773.44 550.33

21 1 −1 1 408 415 443 422.00 −78.00 18.52 6084.00 343.00 z6

22 −1 0 1 182 233 182 199.00 −301.00 29.44 90 601.00 867.00

23 0 0 1 507 515 434 485.33 −14.67 44.64 215.11 1992.33 z7

24 1 0 1 846 535 640 673.67 173.67 158.21 30 160.11 25 030.33
25 −1 1 1 236 126 168 176.67 −323.33 55.51 104 544.44 3081.33
26 0 1 1 660 440 403 501.00 1.00 138.94 1.00 19303.00
27 1 1 1 878 991 1161 1010.00 510.00 142.45 260 100.00 20 293.00

T =500.

Table II. The Initial pairwise rankings on the illustrative example

z1 z2 z3 z4 z5 z6 z7

z1

z2 ?
z3 ∗ ∗
z4 ≺ ≺ ≺
z5 ≺ ≺ � ?
z6 � ∗ � ≺ �
z7 � � ? � ∗ ?
∗The blank cell indicates that the pairwise comparison is not made due to a dominance relationship

between the corresponding vectors.

First, 	(�) should be determined based on, if any, the prior knowledge on � as mentioned in Section 3. However, we have
no prior knowledge in this problem. Therefore, we assume that any weighting of the squared bias or variance is equally valued.
That is, 	(�) is determined as the uniform pdf on [0, 1]:

	(�)=1, 0≤�≤1

This pdf is called a ‘noninformative’ prior pdf in the Bayesian literature. The use of a noninformative prior pdf is a common
practice when no prior knowledge is available. The underlying idea behind adopting the noninformative prior pdf is that the
likelihood functions play a dominant role in the construction of the posterior pdf (Raghunathan15). A thorough sensitivity analysis
will be conducted in a later section to assess the impact of the choice of the prior pdf.

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 417--430
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Table III. The intermediate and final results on the illustrative example

Pairwise rankings

(i, j) Initial Revised Inequalities �(i,j)

(1, 2) z1?z2 z1?z2 — —
(1, 4) z1 �z4 z1 �z4 kz1<kz4 [0, 0.246)
(1, 5) z1 �z5 z1 �z5 kz1<kz5 [0, 0.275)
(1, 6) z1 ≺z6 z1 ≺z6 kz1>kz6 (0.004, 1]
(1, 7) z1 ≺z7 z1 ≺z7 kz1>kz7 (0.064, 1]
(2, 4) z2 �z4 z2 �z4 kz2<kz4 [0, 0.268)
(2, 5) z2 �z5 z2 �z5 kz2<kz5 [0, 0.309)
(2, 7) z2 ≺z7 z2 ≺z7 kz2>kz7 (0.043, 1]
(3, 4) z3 �z4 z3 �z4 kz3<kz4 [0, 0.343)

(3, 5) z3 ≺z5 z3 �z5 kz3<kz5 [0, 0.415)
(3, 6) z3 ≺z6 z3 ≺z6 kz3>kz6 (0.032, 1]
(3, 7) z3?z7 z3?z7 — —
(4, 5) z4?z5 z4?z5 — —

(4, 6) z4 �z6 z4?z6 — —
(4, 7) z4 ≺z7 z4 ≺z7 kz4>kz7 [0, 0.969)
(5, 6) z5 ≺z6 z5 ≺z6 kz5>kz6 [0, 0.909)
(6, 7) z6?z7 z6?z7 — —

�= (0.064, 0.246)

Next, f1(�|�) and f2(�|�,�) are determined using the lower and upper bounds of �(i,j)’s as the sample information. In the
preference-based method, the set � is obtained by intersecting �(i,j)’s. That is, the maximum among the lower bounds and

minimum among the upper bounds of �(i,j)’s become the lower and upper bounds of � (i.e. � and �), respectively. Then, a

specific value between � and � is chosen as �. Here, the lower bounds (or upper bounds) of �(i,j)’s can be viewed as a sample
from a continuous distribution on [0,�] (or [�, 1]) when � is known.

The individual sets �(i,j)’s are based upon IP , which is derived from the sample squared biases and variances, and the DM’s
opinions. In an experiment, the value of a response variable depends on the level of input variables (factors). The input levels are
purposely designed by an experimental objective. Therefore, it cannot be assured that the response values (resulting from the
designed input levels) and corresponding squared biases and variances are random samples. Moreover, it is not known exactly
how the DM might construct IP . Therefore, under current circumstances, we cannot conclude that the lower bounds (or upper
bounds) of �(i,j)’s are a ‘random’ sample. However, for the purpose of facilitating a theoretic development, they will be treated
as a random sample.

Suppose that �1,�2,. . . ,�n are a sample of lower bounds randomly selected from the uniform distribution on [0,�]. Here a
uniform distribution is assumed as a typical Bayesian practice when the relevant information is vague. Let �(1) ≤�(1) ≤·· ·≤�(n)
be the ordered values. Here, the nth-order statistic �(n) is considered as �. The pdf of � becomes f1(�|�):

f1(�|�)=g(�|�, n)=n(G(�|�))n−1g(�|�)=n

(
�

�

)n−1(1

�

)
= n�n−1

�n , 0≤�≤� (6)

where g(�|�) and G(�|�) are the uniform pdf and cumulative density function (cdf) of � given �, respectively:

g(�|�)=
(

1

�

)
and G(�|�)=

(
�

�

)
, 0≤�≤�

Likewise, suppose that �1,�2,. . . ,�n are a sample of upper bounds randomly selected from the uniform distribution on [�, 1].
Then, let �(1) ≤�(1) ≤·· ·≤�(n) be the ordered values. Here, the first-order statistic �(1) is �. The pdf of � becomes f2(�|�,�):

f2(�̄|�,�)=h(�̄|�,�, n)=n(1−H(�̄|�,�))n−1h(�̄|�,�)=n

(
1− �̄−�

1−�

)n−1(
1

1−�

)
= n(1− �̄)n−1

(1−�)n , �≤�≤ �̄≤1 (7)

where h(�̄|�,�) and H(�̄|�,�) are the uniform pdf and cdf of � given � and �, respectively:

h(�̄|�,�)=
(

1

1−�

)
and H(�̄|�,�)=

(
�̄−�

1−�

)
, �≤�≤ �̄≤1

4
2

2

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 417--430



I.-J. JEONG, K.-J. KIM AND D. K. J. LIN

80

100

20

40

60

-40

-20

0

-100

-80

-60

642.0460.0 0.071

4000

45001.5

2500

3000

3500
1.0

1x

2x

3x

1000

1500

2000

0.0

0.5

0

500

642.0460.0
-0.5

642.0460.0 0.071 0.071

2* )ˆ( T−

2*)ˆ(

*)ˆ(

* )ˆ( T−

(a) (b)

(c)

Figure 2. The optimal settings, the corresponding squared bias and variance values, and the unsquared bias and standard deviation values for �∈ [0.064, 0.246]:
(a) the optimal settings versus �; (b) the squared bias and variance values versus �; and (c) the unsquared bias and standard deviation values versus �. This

figure is available in colour online at www.interscience.wiley.com/journal/qre

For detailed descriptions on the distribution of order statistics, see, for example, David and Nagaraja16, Rohatgi17, and Hogg
et al.18.

The right-hand side of f2(�|�,�) in Equation (7) does not include �. The lower and upper bounds � and � are not independent
in general because of the basic relationship between them, namely, �>�. However, once � is given, the information on � is
essentially redundant in f2(�|�,�) since �̄≥�≥�. Thus, � does not influence � when � is given. In a way, they are ‘conditionally’
independent.

Then, p(�|�,�) is constructed as

p(�|�,�)=p(�|�,�, n)=

(
n�n−1

�n

){
n(1− �̄)n−1

(1−�)n

}
∫ �

�

(
n�n−1

�n

){
n(1− �̄)n−1

(1−�)n

}
d�

=
1

{�(1−�)}n∫ �

�

1

{�(1−�)}n d�

= 1

k

1

{�(1−�)}n , �≤�≤�

where

k =
∫ �

�

1

{�(1−�)}n d�, 0<�≤�≤�<1

In the example, � and � were obtained as 0.064 and 0.246, respectively. They were made from the 12 lower and upper bounds
of �(i,j)’s given in Table III. Then, with �=0.064, �=0.246, and n=12, p(�|�=0.064,�=0.246, n=12) is obtained as

p(�|�=0.064,�=0.246, n=12)= 1

k

1

{�(1−�)}12
, 0.064≤�≤0.246
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where

k =
∫ 0.246

0.064

1

{�(1−�)}12
d�

Figure 3 plots 	(�) and p(�|�=0.064,�=0.246, n=12) versus �. As shown in this figure, p(�|�=0.064,�=0.246, n=12) drastically
decreases as � moves from 0.064 to 0.246. This form of p(�|�=0.064,�=0.246, n=12) can be attributed to the assumed likelihood
functions given in Equations (6) and (7). In f1(�|�), the smaller the given � value is, the larger the pdf value is. In f2(�|�,�), the
larger the given � value is, the larger the pdf value is. Such properties of f1(�|�) and f2(�|�,�) collectively make the unique form
of p(�|�=0.064,�=0.246, n=12).

The results discussed above are based upon the assumption that �1,�2,. . . ,�n and �1,�2,. . . ,�n follow a uniform distribution.
It should be noted that other distributions can be used as appropriate. A beta distribution would be a good alternative in the
sense that it can produce various distribution shapes by changing its parameters. However, in the case of a beta distribution, the
posterior pdf, p(�|�,�), is not obtained in a closed form, but in a numerical manner.

4.2. Expected value of �

The expected value of � given �=0.064, �=0.246, and n=12 is obtained as

E[�|�=0.064,�=0.246, n=12]=
∫ 0.246

0.064
� ·p(�|�=0.064,�=0.246, n=12) d�=

∫ 0.246

0.064
�·
(

1

k

)[
1

{�(1−�)}12

]
d�=0.071

Using the obtained expected value of �, the WMSE criterion can be posed as the following optimization problem:

minimize
x

WMSE= (0.071)(�̂�−T )2 +(1−0.071)�̂2
� (8-1)

subject to �̂� ≥0 (8-2)

−1≤xi ≤1, i=1, 2, 3 (8-3)

(8)

It should be noted that Equation (8-2) represents a constraint that the standard deviation response should be non-
negative. Expressing log �̂� as a linear model instead of �̂� in Equation (1) can also ensure the positiveness of �̂�. This
standard log-linear model has been used in Chiao and Hamada19. The optimal setting resulting from Equation (8) is
(x∗

1 , x∗
2 , x∗

3)=(1.000,−0.331,−0.175). The corresponding squared bias (unsquared bias) and variance (standard deviation) values are
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Figure 3. The uniform prior pdf and the corresponding posterior pdf. This figure is available in colour online at www.interscience.wiley.com/journal/qre

Table IV. Comparison with other � values

Method � (x∗
1 , x∗

2 , x∗
3) (�̂∗

� −T )2 (�̂∗
� −T ) (�̂∗

�)2 (�̂∗
�)

Lin and Tu5 0.5 (1.000, 0.074, −0.252) 28.20 −5.31 1976.87 44.46
Ding et al.11 0.6 (1.000, 0.089, −0.255) 12.67 −3.56 1995.50 44.67
Proposed scheme 0.071 (1.000, −0.331, −0.175) 3424.59 −58.52 1457.10 38.17

4
2

4
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(�̂∗
�−T )2=3424.59 ((�̂∗

� −T )=−58.52) and (�̂∗
�)2 =1457.10 (�̂∗

� =38.17), respectively. If an arbitrary value of � between 0.064 and
0.246 were used to form WMSE, the optimal setting would be different as manifested by the changes in x∗

2 and x∗
3 as shown in

Figure 2. Consequently, (�̂∗
� −T )2 could have changed from 4117.79 to 248.38 (from −64.17 to −15.76 for (�̂∗

� −T )) and (�̂∗
�)2

from 1407.00 to 1867.71 (from 37.51 to 43.22 for �̂∗
�).

For comparison purposes, we solved the optimization model of Equation (8) for �=0.5 and �=0.6. These � values are the
ones that were obtained in Lin and Tu5 and Ding et al.12, respectively. The results are summarized in Table IV, along with that
from �=0.071. As expected, the optimal setting, and the corresponding squared bias (unsquared bias) and variance (standard
deviation) values show important differences depending upon the value of �. The value of 0.071 is considered as a meaningful
choice in the sense that it is the consequence of utilizing all the relevant information available, namely, the prior knowledge on �
and the interval of � congruent with the DM’s preference structure. Note that, when �=0.071, the variance (standard deviation)
value is significantly reduced, although the squared bias (unsquared bias) value is much sacrificed. In the next section, a sensitivity
analysis will be performed for various prior distributions.

5. Sensitivity analysis

In the previous section, the uniform pdf was used as 	(�). In this section, we investigate how sensitively p(�|�,�) changes when
	(�) varies. We employ a beta pdf as 	(�) with parameters 
>0 and �>0. The beta pdf of � is defined as

	(�)= �(
+�)

�(
)�(�)
�
−1(1−�)�−1, 0≤�≤1 (9)

where �(
) is the gamma function. The beta distribution has a random variable space [0, 1], which coincides with the range
of �. Thus, the beta distribution is suitable for the prior probability distribution on �. The likelihood functions and the sample
information are the same as those in the Illustrative Example section.

5.1. Construction of the posterior pdfs

To consider a variety of beta pdfs, we employ 10 combinations of 
 and �, which represent five and two different values for
� and �, respectively. The values of � are 0.03, 0.064, 0.155, 0.246, and 0.5. The value 0.03 is about half of the lower bound,
0.064 the lower bound itself, 0.155 the center between the lower and upper bounds, 0.246 the upper bound itself, and 0.5 about
twice larger than the upper bound. The values of � are 0.1 and 0.02, which represent relatively high and low variability levels,
respectively. The 10 beta pdfs are summarized in Table V.

Combining 	(�), f1(�|�), and f2(�|�,�), p(�|�,�) is constructed as

p(�|�,�) = p(�|�,�, n)

=

{
�(
+�)

�(
)�(�)
�
−1(1−�)�−1

}(
n�n−1

�n

){
n(1− �̄)n−1

(1−�)n

}
∫ �

�

{
�(
+�)

�(
)�(�)
�
−1(1−�)�−1

}(
n�n−1

�n

){
n(1− �̄)n−1

(1−�)n

}
d�

Table V. E[�|�=0.064, �=0.246, n=12]’s and E[L]’s from the 10 beta prior pdfs

	(�)

(
, �) ⇔ (�, �)∗ E[�|�, �, n] E[L]

Case 1 (0.057, 1.853) (0.03, 0.1) 0.072 0.083
Case 2 (0.319, 4.671) (0.064, 0.1) 0.071 0.084
Case 3 (1.875, 10.22) (0.155, 0.1) 0.071 0.084
Case 4 (4.317, 13.23) (0.246, 0.1) 0.074 0.082
Case 5 (12.00, 12.00) (0.5, 0.1) 0.138 0.047

Case 6 (2.153, 69.60) (0.03, 0.02) 0.069 0.086
Case 7 (9.521, 139.2) (0.064, 0.02) 0.069 0.086
Case 8 (50.60, 275.8) (0.155, 0.02) 0.128 0.050
Case 9 (113.8, 348.9) (0.246, 0.02) 0.224 0.072
Case 10 (312.0, 312.0) (0.5, 0.02) 0.246 0.091
∗�=
 / (
+�) and �2 =
� / ((
+�)2(
+�+1)).
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=
�(
+�)

�(
)�(�)
n2{�(1− �̄)}n−1 �
−1(1−�)�−1

{�(1−�)}n

�(
+�)

�(
)�(�)
n2{�(1− �̄)}n−1

∫ �

�

�
−1(1−�)�−1

{�(1−�)}n d�

= 1

k

�
−1(1−�)�−1

{�(1−�)}n , �≤�≤�

where

k =
∫ �

�

�
−1(1−�)�−1

{�(1−�)}n d�, 0<�≤�≤�<1
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Figure 4. The beta prior pdfs and the corresponding posterior pdfs: (a) Case 1: 
=0.057, �=1.853 (�=0.03,�=0.1); (b) Case 2: 
=0.319, �=4.671 (�=0.064,�=0.1);

(c) Case 3: 
=1.875, �=10.22 (�=0.155,�=0.1); (d) Case 4: 
=4.317, �=13.23 (�=0.246,�=0.1); (e) Case 5: 
=12.00, �=12.00 (�=0.5,�=0.1); (f) Case 6:


=2.153, �=69.60 (�=0.03,�=0.02); (g) Case 7: 
=9.521, �=139.2 (�=0.064,�=0.02); (h) Case 8: 
=50.60, �=275.8 (�=0.155,�=0.02); (i) Case 9: 
=113.8,

�=348.9 (�=0.246,�=0.02); and (j) Case 10: 
=312.0, �=312.0 (�=0.5,�=0.02). This figure is available in colour online at www.interscience.wiley.com/journal/qre
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(f ) (g)

(h) (i)

(j)

Figure 4. Continued

Then, with �=0.064, �=0.246, and n=12, p(�|�=0.064,�=0.246, n=12) is obtained. Figure 4 plots 	(�) and p(�|�=
0.064,�=0.246, n=12) versus � for the 10 cases. Figure 5 shows the superimposed p(�|�=0.064,�=0.246, n=12)’s for the
10 cases.

As shown in Figures 4 and 5, when the variability of 	(�) is relatively high, the mean of 	(�) has little effect on p(�|�=
0.064,�=0.246, n=12). When the variability is relatively low, on the other hand, the mean seems to have a significant effect.
When �=0.1 (Figures 4(a) to 4(e)), the form of p(�|�=0.064,�=0.246, n=12) stays unchanged regardless of � except for Case 5.
Moreover, this form is almost the same as that constructed from the noninformative prior pdf in Figure 3. However, when
�=0.02 (Figures 4(f) to 4(j)), the form of p(�|�=0.064,�=0.246, n=12) changes sensitively with respect to �. The pdf value of
p(�|�=0.064,�=0.246, n=12) increases with � when � is 0.5 (Case 10), while it decreases when � is 0.03 and 0.064 (Cases 6
and 7). As expected, 	(�) with a lower variability has a stronger impact on p(�|�=0.064,�=0.246, n=12).

Here, as the reviewer suggested, some additional advice on the appropriate choice of 	(�) would be helpful. When there is
no prior knowledge about �, any value of � in [0, 1] is equally desirable. In this case, the two parameters of 	(�) in Equation (9)
should be set at 
=�=1 (Type I), with which the beta distribution reduces to the uniform distribution on [0, 1]. If both weight
values are known to be equal a priori, the value of � is desired to be set at 0.5 and 
=�>1 (Type II). The specific value of 
 (or
�) depends on the variability of �. As the variability gets lower, the value of 
 (or �) gets larger. If the weight of the squared bias
is greater than that of the variance, the value of � is set at the value over 0.5 and 
>� (Type III). In the opposite case, it is set at

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 417--430
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Figure 6. The pattern of L’s for various values of �∗
within [0.064, 0.246] and E[�|�=0.064, �̄=0.246, n=12]=0.138 (Case 5). This figure is available in colour

online at www.interscience.wiley.com/journal/qre

the value under 0.5 and 
<� (Type IV). For both cases, the specific values of 
 and � depend on the (conjectured) distribution
shape of �.

Among the 11 prior pdfs used in Sections 4 and 5, the uniform pdf corresponds to Type I (Figure 3), Cases 5 and 10 of the
beta pdfs to Type II (Figures 4(e) and 4(j)), and Cases 1–4 and 6–9 to Type IV (Figures 4(a)–4(d) and Figures 4(f)–4(i)). In essence,
the goodness of the choice of 	(�) should be evaluated by how accurately the chosen 	(�) displays the prior knowledge about
� (Iversen20).

5.2. The goodness of the expected value of �

Using the obtained posterior pdfs, E[�|�=0.064,�=0.246, n=12]’s are computed. They are summarized in Table V. Then, we check
how good the obtained E[�|�=0.064,�=0.246, n=12] is as an estimate of the true � (say, �∗). The value of �∗ is unknown, but
it would be reasonable to assume that �∗ exists within [0.064, 0.246]. In this work, the ‘absolute error loss’ is employed as a
measure of the goodness (Berger14, pp. 62–63). The absolute error loss (L) is defined as

L=|�∗−E[�|�=0.064,�=0.246, n=12]|
As an example, if �∗ =0.155 and E[�|�=0.064,�=0.246, n=12]=0.138, which is the expected value of � in Case 5, then

L=0.017 (=|0.155−0.138|). However, �∗ is unknown, and assumed to lie in [0.064, 0.246]. Thus, L can also change with respect to
�∗. Figure 6 plots the pattern of L’s for various values of �∗ within [0.064, 0.246]. Here, suppose �∗ follows a uniform distribution
on [0.064, 0.246]. Then, the ‘expected absolute error loss’ can be obtained as

E[L]=
∫ 0.246

0.064
|�∗−E[�|�=0.064,�=0.246, n=12]|·

(
1

0.246−0.064

)
d�∗ =

∫ 0.246

0.064
|�∗−0.138|·

(
1

0.246−0.064

)
d�∗ =0.047
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Figure 7. A three-dimensional plot of the E[L], �, and �. This figure is available in colour online at www.interscience.wiley.com/journal/qre

For E[�|�=0.064,�=0.246, n=12]’s in Table V, E[L]’s are obtained under the uniform distribution assumption on �∗, and shown
in the rightmost column in Table V. In this table, E[L] decreases as E[�|�=0.064,�=0.246, n=12] gets close to 0.138. Specifically,
E[L] is minimized when E[�|�=0.064,�=0.246, n=12]=0.155. Figure 7 shows a three-dimensional plot of the E[L], �, and �. This
figure shows E[L]’s obtained from 	(�)’s with various pairs of � and � in [0.03, 0.5] and [0.02, 0.1], respectively, including the
original 10 cases in Table V.

6. Conclusion

Dual response surface optimization considers the mean and the variation simultaneously. The minimization of MSE is an effective
approach in dual response surface optimization. WMSE is formed by imposing the relative weights, (�, 1−�), on the squared bias
and variance terms of MSE. To date, quite a few methods have been proposed for determining �. The resulting � from these
methods is either a single value or an interval. In the interval case, a value of � in the interval needs to be chosen to form WMSE.

This paper has developed a systematic method to choose a � value when an interval of � is given. Specifically, this paper has
proposed a Bayesian scheme to construct a distribution of �, from which a meaningful choice of � can be made. The lower and
upper bounds of the � interval are employed as the sample information in the Bayesian analysis. Once the posterior distribution
of � is constructed, the expected value of � can then be used to form WMSE. The Bayesian approach has an advantage in that
it can utilize the prior knowledge to construct the distribution of �. In addition, it can update the distribution of � with the
knowledge obtained through the sample information. The more the knowledge accumulates, the more the degree of belief in
the value of � increases.

The proposed Bayesian scheme has been illustrated through an example with a noninformative prior distribution. Furthermore,
a sensitivity analysis has been conducted for a variety of beta prior distributions.
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