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Abstract

Using the density matrix renormalization-group technique, we calculate the impurity energy levels for

two different effective models of off-chain doping for quasi-one-dimensional Heisenberg chain compound

Y2 Ba Ni O5: ferromagnetic bond doping and antiferromagnetic site spin-1/2 doping. Thresholds of

the impurity strength for the appearance of localized states are found for both models. However, the

ground-state and low-energy excitations for weak impurity strength are different for these two models

and the difference can be detected by experiments.
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In the last fifteen years many theoretical and experimental efforts have been devoted to testing

Haldane's original conjecture M that the excitation spectrum for integer spin Heisenberg antiferro-

magnetic (AF) chains has a finite energy gap above the ground state while it is gapless for half-integer

cases. The experiments on NENP and Y2 Ba Ni O5 have shown explicitly the gap's existence. The gap

value can also be estimated by numerical studies, e.g., for isotropic spin-1 AF Heisenberg chain, a gap

A Prf 0.41 J (where J is the exchange integral) has been obtained by density matrix renormalization-

group PI' ™ (DMRG) technique as well as by exact diagonalization with proper extrapolation W.

However, the knowledge of these spin chains is still far from complete, especially regarding the im-

purity effects. Recently, the interest in the impurity problem has been revived due to the doping

experiment performed on the linear chain compound Y2 Ba Ni O5 ™' ^6'. Several theoretical studies

have been carried out to study the doping effect I7~9]. However, the off-chain doping (when Y 3 + is

replaced by Ca2 + or Mg2+) has not been fully studied. This is the subject of the present paper.

Y2 Ba Ni O5 contains one-dimensional chain structures composed of oxygen octahedra with Ni2+

ions at the center. The inelastic-neutron-scattering (INS) experiments on single crystals of this charge

transfer insulator show the chains are highly one dimensional with very weak interchain coupling

J'l {J2/J < 5 x 10"4),'-10-' where J is the intrachain coupling, and the Haldane gap at q = TT is

almost isotropic, so it is an ideal substance to confront experiment. Furthermore, the doping of this

compound can be in-chain as well as off-chain. The nonmagnetic Zn2+ ions substituting Ni2+ will

effectively severe the chain and produce free s= l /2 spins at the two ends, which can be explained by

the valence bond solid (VBS) model. I11! Though the specific-heat measurements displaying Schottky

anomaly '-1'2' seemed to contradict this picture, a recent DMRG numerical study shows this conflict can

be resolved by taking into account the chain length distribution. I131 On the other hand, the off-chain

substitution of Y 3 + by Ca2 + or Mg2+ will induce holes along the chain. The INS experiments show

the holes are localized mainly on the oxygen sites within the chains, ™ between the nearest two Ni2+

ions. Since the coupling of the two nearby Ni2+ ions is mediated by this oxygen, the doping affect can

be modeled in two different ways: one is that the coupling of the two Ni2+ is modified (bond doping),

the other is that an s= l /2 spin will be localized at the oxygen site, and the localized spin will be

coupled to the two Ni2+ (s=l /2 site doping). The Hamiltonian of these two effective doping models

can be written as

J V - l

and

J V - 1

TT T \ "* C C I J^i^i _l_ G 1̂ ('9>1

8 = 1

respectively. Here the periodic boundary condition (PBC) is adopted, N is the chain length, S denotes

the s=l spin; and in Eq.(2) , do represents the s= l /2 impurity , and here we have assumed that the

coupling of the two Ni2+ ions around the impurity are destroyed completely.



From the site-doping point of view, the induced s= l /2 spin couples antiferromagnetically with Ni2+

on both sides of it. Pictorially, the spin direction of the two Ni spins around the impurity site will

be antiparallel to the direction of the localized s= l /2 spin, that is, the two s=l Ni spins tends to

be in the same direction. So the effective coupling of the two site will be ferromagnetic instead of

antiferromagnetic. Generically, in the Hamiltonian (1), the coupling </' will be negative, while for the

site doping model in Hamiltonian (2), J" will be positive.

Several numerical studies have been carried out for the two Hamiltonians (1) and (2), t7 9>14>17]

but nearly all the calculations were done under the assumption that the impurity bond remains

antiferromagnetic. In this communication, we use the DMRG algorithm to calculate the energy

spectrum for the two doping models (1) and (2), especially for ferromagnetic bond doping model.

If J' (negative) is weak enough in Hamiltonian (1), an in-gap bound state is localized around the

impurity site. There is a threshold value J'c, above which there is no in-gap level or corresponding

localized state. We also calculate the spectrum for the impurity state for antiferromagnetic J" in

Hamiltonian (2). Combined with previous studies of other authors I14'17], the two Hamiltonians with

</' and J" AFM as well as FM coupling give a complete description for the spin-1 Heisenberg chain

doping models. Experimental data may distinguish which of the two models is more appropriate in

describing the off-chain doped Y2 Ba Ni O5 compound.

The DMRG scheme we used is similar to the one used in Ref. [9]. We keep 250 states up to

chain length 50 throughout all the calculation, and the largest truncation error in our calculation

is of the order of 10~6. Then the Shanks transformation M is used to obtain the final result. This

transformation has been proved to be valid for spin-1 Heisenberg chain by several authors I4'8'9!,

and we can trust the accuracy of this scaling approach. Before presenting the numerical results, a

physically intuitive analysis of the two doping models will be useful.

First, for Hamiltonian (1) of the bond doping cases, results in two limiting cases (</' —> 0~ and

J' —> — 00) can be obtained within the framework of the VBS picture. When J' = 0, the system

becomes an open Heisenberg chain, and the ground state will be fourfold degenerate, where the two

edge s = i- spins couple into a singlet and a triplet. The lowest excited state with S^ot = 2 is

separated from the ground state by the Haldane gap, and the continum spectrum starts there. When

the impurity bond intensity increases gradually (| </' |<< J, J' < 0 in perturbation regime), the two

edge spins will tend to form a triplet, while the singlet state will enter the Haldane gap and become an

in-gap state between the triplet ground state and the continuum spectrum. The perturbative result

obtained by S0rensen and Affleck '•7' (SA) is valid also for the negative </' case. On the other hand,

for the strong impurity doping strength, J' —> — 00, the two s = 1 spins at the ends of the impurity

bond cannot be reduced to s = | spins anymore. We must consider the reduced four sites model near

the impurity bond and write down the effective Hamiltonian as

H = Jeff(Ti • Si + J Si • S2 + Jeff S'2 ' ""2 , (3)

where Si and S2 are s = 1 spins, and <j\ and cr^ are s = | spins due to the VBS picture (the remaining



part of the periodic chain can be viewed as a length L - 2 open chain).

In fact, the model Hamiltonian (3) can account for the essential features of the Hamiltonian (1) for

all values of J', from positive to negative beyond the assumption that J e / / is positive. Its spectrum

contains two singlets, four triplets, three quintets and one septet. Out of the ten states, only a few

are important to our discussion: the ground state for </' > 0 and that for </' < 0, the quintets, which

are the low excitation states for some values of J ' < 0. The energy of these states versus the impurity

coupling </' (in units of Jeff) is shown in Fig. 1.

For the J' < 0 case on the left part of Fig. 1, we see that the ground state is a triplet for all J'. When

J' —> — oo, the first excited state is a quintet instead of a singlet. This is an interesting phenomenon

for the ferromagnetic impurity doping case, that is, there will be a possible energy crossover between

the singlet and quintet for larger \J'\. Since the energy difference of this quintet to the ground state

is nonzero, we can expect either one bound state for small Jeff (more if Jeff is small enough) or no

bound states for larger Jeff within the bulk gap A = 0.41048(2). We will show later that for large

\J'\ there is no such crossover from our DMRG calculation, and there are no in-gap states for long

chains. Therefore, Jeff is large enough. Since we know very little about Jeff
 a t the present stage, it

is impossible to conclude which case will occur without more detailed computation.

For J' > 0, the AFM doping case on the right part of Fig. 1, only two states are important:

the singlet ground state and the first triplet excitation state. For J' = 0 and </' —> oo, the energy

difference is zero, so the gap state can be expected for both weak and strong impurity bond strength.

Detailed numerical results for this case can be found in previous studies. [7~91

Now we present DMRG results for Hamiltonian (1) with FM bond doping. The dependence of the

relative energy of the lowest excited state with respect to the ground state on the impurity bond is

shown in Fig. 2. From the figure, we see clearly that a threshold J'c exists above which the in-gap state

disappears. For weaker impurity bond, the impurity level increases linearly with the bond strength,

which agrees with SA's perturbative argument ^ for the weak coupling limit. The relation between

the splitting of the ground state and the singlet excitations is AE = —a'2J', where AE= 0.112J for

J '= -0 .U , which is also in excellent agreement with the theoretical work for the AFM case ^ . When

the impurity bond strength becomes bigger, the energy of the in-gap state deviates from linear and

enters the continuum spectrum at last at a critical point for bond strength near J' = — 0.7J. The

simple four-site model based on the VBS picture discussed above shows a crossover between the singlet

state (in-gap state for some values of J' ) and the quintet state, which remains at the bottom of the

continuum spectrum. We did not find such a feature in the calculation, so there is no energy crossover

taking place, this is due to the interaction between the singlet state and the continuum spectrum,

which keeps the singlet state as the lowest-energy excitation state for longer chain length.

The local bond energy (Sj-S8-+i)mp —(Sj-S8-+i)i- for different impurity bond strengths is presented in

Fig. 3 (here m represent the total spin and p is the parity of the state). The mp = 2+ state corresponds

to the one-magnon excitation L15>16J. It changes very little when the impurity bond strength changes

from very weak (-0.1J) up to very strong (4.0J)(this is different from the positive </' case, because



for J '=1.0J, this is a two-magnon states I15'16!). On the other hand, the rnP = 0+ state is an edge

excitation localized around the impurity bond for weak </'. When </' becomes bigger, this excitation

is delocalized and shows a single-magnon-like behavior in the strong coupling region. This is also

consistent with the absence of the in-gap impurity states in this region.

We also calculate the ground state and the first excited state (the subgap state) pair correlations

of the site nearest to the impurity bond for different J' , that is, (S8- • S50), which is presented in Fig.

4. For J' = 0, the open chain case, we see that for i > 25, the pair correlations for the two states are

in phase, but for i < 25, they are out of phase. This phase difference which keeps the orthogonality

of the two states is due to the different coupling of the two chain-end 1/2 spins. In contrast, for

strong </', the correlations are almost identical except those i in the middle of the chain where the

one-magnon amplitude is the biggest. I15'16] The correlations for the two states are both independent

of J' for i > 25, while for S^ot = l, the ground state, the correlations for i < 25 will become larger,

and for S%ot = 0, the first excited state, the correlation will change its phase when increasing </'. The

orthogonality of the two states will mainly come from those sites in the middle of the chain. This

also means that the edge excitation (near the impurity bond) when </' is weaker will become a bulk

excitation (far away from the impurity bond) when </' is stronger.

Secondly, we analyze the spectrum of Hamiltonian (2). The impurity coupling J" is positive. Let

us reduce the Hamiltonian (2) to a three sites effective Hamiltonian around the impurity s = 1/2:

H = Jeff(tTl • (To + (To • (Tjv)- (4)

Here a\ and CN are the effective s = 1/2 edge spins from the bulk of the chain, and (To is the impurity

spin. As we analyzed above, here we have J e / / > 0. In the perturbation regime (Jeff ~ 0), we know

that Hamiltonian (4) has a doublet ground state, a doublet first excited state, and a quartet highest

excited state. '•7' For the original Hamiltonian (2), as Jeff increases, we could see that the doublet

ground state will not change, while the two in-gap states given by the reduced Hamiltonian increase

linearly with Jeff- By DMRG calculation, we find J" in Eq. (2) has two critical impurity coupling

J['c and J"o which correspond to the points where the doublet and the quartet enter the continuum

spectrum, respectively.

For the site doping Hamiltonian (2), we consider both the ferromagnetic coupling (</" < 0) and the

antiferromagnetic coupling case (J" > 0). The ground state is a quartet for the former while a doublet

for the latter. Two in-gap states are found in the weak coupling regime in each of the two cases, and its

energy spectrum is shown in Fig. 5. The thresholds where the in-gap state enters the continuum are

J"c = -0.25J, J"c = -1-4J and J['c = 0.3J, J"c = °-5>/ for the ferromagnetic and antiferromagnetic

impurity coupling, respectively. These results are consistent with the previous calculation. '•7'

In summary, we have considered two kinds of effective models for off-chain doping in a one-

dimensional Heisenberg chain using the DMRG algorithm. Thresholds of the impurity bond strength

are found for both ferromagnetic bond doping model and antiferromagnetic s = 1/2 site doping model.

The ground states of the two kinds of effective models are of total spin 1 and total spin 1/2, respec-
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tively. The in-gap states that appear for the weak impurity bond are also different for the two models.

A singlet impurity state for ferromagnetic bond doping and a doublet along with a quartet for AF

site s = 1/2 doping. We believe these properties of the spectrum for different effective doping models

can be distinguished by experiments. The doped holes in the off-chain doping case can contribute to

the transport properties of the Haldane chain systems. This issue was discussed by other authors '-17'

and is not addressed here.
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FIG. 1. The low-energy spectrum of the reduced bond doping Hamiltonian (3).

FIG. 2. The energy spectrum of the bond doping Hamiltonian (1) when the impurity bond is ferromagnetic.
The dotted line indicates the Haldane gap of a pure spin-1 Heisenberg chain.

FIG. 3. The local bond energy (S; • S;+i)mp — (S; • S j + i ^ - for different ferromagnetic doping bond J ' ,
where mp equals 0+ and 2 + .

FIG. 4. The pair correlations (S8 • S50} of the ferromagnetic bond doping for the ground state 1 and the
first excitation state 0 + .

FIG. 5. The energy spectrum of the site doping Hamiltonian (2). The dotted line indicates the Haldane
gap of the pure spin-1 Heisenberg chain.
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