
COHOMOLOGY FOR BICOMODULES. SEPARABLE AND
MASCHKE FUNCTORS.

L. EL KAOUTIT AND J. VERCRUYSSE

Abstract. We introduce the category of bicomodules for a comonad in a Grothendieck
category whose underlying functor is right exact and preserves direct sums. We char-
acterize comonads with a separable forgetful functor by means of cohomology groups
using cointegrations into bicomodules. We present two applications: the character-
ization of coseparable corings stated in [11], and the characterisation of coseparable
coalgebras coextensions stated in [16].

Introduction

In [13] D. W. Jonah studied the second and the third cohomology groups of coalgebras

defined in a, not necessary abelian, multiplicative category (see also [1]). M. Kleiner

gave in [14] a cohomological characterization of separable algebras using integrations.

Another approach via derivations was given by M. Barr and G. Rinehart in [2]. This last

one has been dualised to the case of coseparable coalgebras by Doi [5]. Nakajima [16]

showed that Doi’s results can be extended to the coalgebra extensions (or co-extension)

with a co-commutative base coalgebra. In [11], F. Guzman used Jonah’s methods to

generalize Doi’s characterization for corings over an arbitrary base-ring and unified this

with a dualisation of Kleiner’s approach of cointegrations. This gives rise to a nice

characterization of coseparable corings in terms of cohomology, derived functors and

both cointegrations and coderivations. Unfortunately this last characterization can not

be applied to coalgebra co-extensions, and Nakajima’s results is not recovered.

The commun framework behind Guzman’s and Nakajima’s approach is the fact that

both coseparable corings and coseparable coalgebra co-extensions can be interpret as

comonads with a separable forgetful functor (in the sense of [17], see below). In all

situations discussed before, the base-category was additive with cokernels and arbitrary

direct sums, and the (co)monad functor was right exact and preserved direct sums. In

the present paper we will approach the problem by this comonad point of view. We work

with a comonad over a Grothendieck category whose underlying functor fits the above

mentioned class of functors. These functors were studied in relation with corings in [9],

see also [8] and references sated there. We will present a generalisation of Guzman’s

characterization in this situation, and as a particular application we also give, under

diferent assumption, Nakajima’s result.

We will start by defining the category of bicomodule over this comonad as in [13],

and we consider its universal cogenerator [7] (i.e. the universal adjunction defining the
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comonadic structure) in order to prove that the forgetful functor in this universal ad-

junction is separable ([17], see below) if and only if the forgetful functor in bicomodules

is Maschke ([4], see below) if and only if the comultiplication splits in the category

of bicomodules. This will be the main result of section 1 (Theorem 1.6). In section

2 we define cointegrations and coderivations, we also establish, as in [11], an isomor-

phism between the abelian group of cointegrations into a comonad and the group of all

coderivations. This will serve to show that the comultiplication splits as a morphism of

bicomodules if and only if the universal cointegration is inner if and only if the universal

coderivation is inner (Corollary 2.4). Section 3 is devoted to the relative cohomology

for bicomodules defined as in [13] using a relative resolution with respect to the injec-

tive class of sequences in the category of bicomodules which are cosplit after forgetting

the left coaction. Up to isomorphisms, cointegrations appear as 1-cocycles and inner

cointegrations as 1-coboundaries. The relative injectivity is thus interpreted by the fact

that all into-cointegrations are inner. This happens for all bicomodules if and only if the

comultiplication splits in the category of bicomodules (Theorem 3.5). The last section

presents two applications of this last theorem, the first one makes use of the comonad

defined by tensor product over algebras [11], and the second uses cotensor product over

coalgebras over fields [16].

Notations and Basic Notions: Given any Hom-set category A , the notation

X ∈ A means that X is an object of A . The identity morphism of X will be denoted

by X itself. The set of all morphisms f : X → X ′ in A , is denoted by HomA

(
X, X ′

)
.

The identity functor of A will be denoted by 11A : A → A . A natural transformation

between two functor F , G : A → B, is denoted by β− : F → G. If H : B → C , and

I : D → A are other functors. Then, βI(−) (or βI) denotes the natural transformation

defined at each object Z ∈ D by βI(Z) : FI(Z) → GI(Z), while Hβ− (or Hβ) denotes

the natural transformation defined at each object X ∈ A by H(βX) : HF(X) →
HG(X).

Any covariant functor F : A → B leads to a (bi)functor

HomB(F(−),F(−)) : A op ×A → S et.

In particular, the identical functor 11A : A → A gives rise to

HomA (−,−) : A op ×A → S et.

So we find natural a natural transformation induced by F ,

F : HomA (−,−) → HomB(F(−),F(−));

defined by FX,X′(f) = F(f), for any arrow f : X → X ′ in A . Recall from [17] that

the functor F is called separable if and only if F has a left inverse, i.e. there exists a

natural transformation

P : HomB(F(−),F(−)) → HomA (−,−)
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such that P ◦F = 11HomA (−,−). If in addition F has a right adjoint functor G : B → A

with unit η− : 11A → GF . Then, it is well known from [18], that F is separable if and

only if there exists a natural transformation µ : GF → 11A such that µ ◦ η = 11A .

Let F : A → B be again a covariant functor. Recall from [4], that an object M ∈ A

is called relative injective (or F-injective) if and only if for every morphism i : X → X ′

in A , such that F(i) : F(X) → F(X ′) has a left inverse j in B (i.e. F(i) is a split

monomorphism or just split-mono) and for every f : X → M in A we can find a

morphism g : X ′ →M in A such that g ◦ i = f . The functor F is said to be a Maschke

functor if every object of A is relative injective. If in addition F has a right adjoint

functor G : B → A with unit η− : 11A → GF . Then, by [4, Theorem 3.4], an object

M ∈ A is F -injective if and only if ηM has a left inverse. In particular F is a Maschke

functor if and only if for every object M ∈ A , ηM has a left inverse.

Assume that a preadditive category A is given. Following to [13], a sequence

E : X
i // X

j // X ′′

(i.e. j ◦ i = 0) is said to be co-exact if i has a cokernel and if in the commutative

diagram

X
i // X ′ j //

ic

��

X ′′

Coker(i)

l

88pppppp

l is a monomorphism. If in addition l is a split-mono, then E is said to be cosplit.

The exact and split sequence are dually defined by using kernels. The notations of

sequences, coexact, cosplit,... are extended to long diagrams simply by applying them

to each consecutive pair of morphisms. One can prove that the above notions of exact

and coexact sequences coincide with the usual meaning of exact sequences in abelian

categories. In case of diagrams of the form

E ′ : 0 // X // X ′ // X ′′ // 0

(i.e. short sequence) in the category A , we have by [13, Lemma 2.1], that E ′ is cosplit

if and only if it is split. Let E be a class of sequences in A , then an object X ∈ A is

said to be E -injective if HomA (E,X) is an exact sequence of abelian groups, for every

sequence E in E . The class of all E -injective objects is denoted by IE . Conversely,

given I a class of objects of A , a sequence E of morphism of A is said to be I -

exact if HomA (E, Y ) is an exact sequence of an abelian groups, for every object Y in

I . The class of all I -exact sequences is denoted by EI . A class of sequences E in

A is said to be closed whenever E coincides with EIE
. A injective class is a closed

class of sequences E such that, for every morphism X → X ′, there exists a morphism

X ′ → Y with Y ∈ IE and with X → X ′ → Y in E . If in addition the category A

poses cokernels, then one can check that the class E0 of all cosplit sequences form an

injective class and IE0 is exactly the class of all objects of A . Given any adjunction

F : A
//
B : Goo with F is left adjoint functor to G (we use the notation F a G ),
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and a class of sequences E ′ in B. Denote by E = F−1(E ′) the class of sequences E in

A such that F (E) is in E ′. The Eilenberg-Moore Theorem [13, Theorem 2.9] asserts

that E is an injective class whenever E ′ is.

1. Bicomodules and Separability

Let A and B two Grothendieck categories, we denote by Funt(A, B) the class of all

(additive) covariant functors F : A → B such that F preserves cokernels and com-

mutes with direct sums. Thus F commutes with inductive limits. By [6, Lemma 5.1],

the natural transformations between two objects of the class Funt(A, B) form a set.

Henceforth, Funt(A, B) is a Hom-set category (or Set-category).

A comonad in a category A is a three-tuple F = (F, δ, ξ) consisting of an endo-functor

F : A → A and two natural transformations δ : F → F 2 = F ◦ F and ξ : F → 11A such

that

(1.1) δF ◦ δ = Fδ ◦ δ, Fξ ◦ δ = ξF ◦ δ = F,

where we denote the identical natural transformation F → F again by F .

It is well known from [12, 7, 15], that any adjunction S : B // A : Too with S a T ,

leads to a comonad in A given by the three-tuple (ST, SηT , ζ), where η : 11B → TS and

ζ : ST → 11A are, respectively, the unit and the counit of this adjunction.

Let F = (F, δ, ξ) be a comonad in A with F ∈ Funt(A, A). We define the category

of (B,F)-bicomodules BM F by the following data:

• Objects : A B-F bicomodule is a pair (M,m) consisting of a functor M ∈ Funt(B, A)

and natural transformation m : M → FM satisfying

(1.2) δM ◦ m = Fm ◦ m, ξM ◦ m = M.

• Morphisms : A morphism f : (M,m) → (M′,m′) is a natural transformation f : M → M′

satisfying

(1.3) m′ ◦ f = F f ◦ m.

It is easily seen that (FM, δM) is an object of the category BM F, for every object

M ∈ Funt(B, A). This in fact establishes a functors F : Funt(B, A) → BM F with a

left adjoint the forgetful functor O : BM F → Funt(B, A).

Similarly, we can define the category of (F,B)-bicomodules denoted by FMB, using

this time the objects of the category Funt(A, B).

Remark 1.1. Given any adjunction M : B // A : Noo such that M a N with counit

ζ and unit η. Then [10, Proposition 1.1] establishes an one-to-one correspondences

between natural transformations m : M → FM satisfying equation (1.2) and homomor-

phisms of comonads from (MN,MηN, ζ) to F, and a natural transformations s : N → NF

satisfying the dual version of equation (1.2). When N and M are both right exact

and preserve direct sums, then the previous correspondence can be interpreted in our

terminology as follows: There are bijections between the bicomodule structures on
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(M,m), the bicomodule structures on (N, s), and the homomorphisms of comonads from

(MN,MηN, ζ) to F.

Take now G = (G, ϑ, ς) another comonad in B with G ∈ Funt(B, B), we define the

category of (G,F)-bicomodules GM F as follows:

• Objects : A G-F bicomodule is a three-tuple (M,m, n) consisting of a functor M ∈
Funt(B, A) and two natural transformations m : M → FM , n : M → MG such that

(M,m) ∈ BM F and (M, n) ∈ GMA, that is

(1.4) δM ◦m = Fm ◦m, ξM ◦m = M and Mϑ ◦ n = nG ◦ n, Mς ◦ n = M

with compatibility condition

(1.5) mG ◦ n = Fn ◦ m.

In other words m is a morphism of GMA, equivalently, n is a morphism of BM F,

where (FM, Fn) ∈ GMA and (MG,mG) ∈ BM F.

• Morphisms : A morphism f : (M,m, n) → (M′,m′, n′) is a natural transformation

f : M → M′ such that f : (M,m) → (M′,m′) is a morphism of BM F and f : (M, n) →
(M′, n′) is a morphism of GMA, that is

(1.6) n′ ◦ f = fG ◦ n and m′ ◦ f = F f ◦m.

It is clear that 11BM F = BM F and GM 11A = GMA, where 11A and 11B are endowed

with a trivial comonad structure.

Remark 1.2. It is easily seen that Funt(A, A) is a strict monoidal category (or multi-

plicative category), taking the composition of functors as the tensor product and 11A
as the unit object. To any coalgebra in a monoidal category one can associate in a

canonical way a category of bicomodules, see [13, Section 1]. If we consider F as a

coalgebra in Funt(A, A), then the category of F-F bicomodules as defined above coin-

cides exactly with this canonical one. However, if we consider G-F bicomodules and

thus the base-category is changed, the monoidal arguments fail. In that case one must

consider the 2-category of Grothendieck categories, additive functors that preserve in-

ductive limits and natural transformations. Observe that F and G are comonads inside

this 2-category (see [8] for elementary treatment).

By the observation that the bicomodules as introduced above coincide with bicomod-

ules in a 2-category, we can immeadiately state the following lemma as a consequence

from classical results. Laiachi – Do you know a reference for this ? Perhaps

Lack & Street ? (or Benabou ?)

Lemma 1.3. Let A (respectively B) be a Grothendieck category, and F = (F, δ, ξ)

(respectively G = (G, ϑ, ς)) a comonad in A (respectively in B) whose underlying func-

tor F (respectively G) is right exact and commutes with direct sums. The category of

(F,G)-bicomodule FM G has cokernels and arbitrary direct sums.
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Consider the categories of bicomodules BM F and GM F. There are two functors

connecting those categories. The left forgetful functor S : GM F → BM F, which

sends any (G,F)-bicomodule (M,m, n) to the (B,F)-bicomodule (M,m) and which is

identical on the morphisms. Secondly, the functor T : BM F → GM F which sends

(M′,m′) → (M′G,m′
G,M

′ϑ) and f → fG. These functors form an adjunction, more

precise we have

Lemma 1.4. For every pair of objects
(
(N, r, s), (M,m)

)
of GM F × BM F, there is a

natural transformation

HomGMF

(
(N, r, s), T (M,m)

)
ΦN, M // HomBMF

(
S (N, r, s), (M,m)

)
f

� // Mς ◦ f
gG ◦ s g.�oo

That is S is a left adjoint functor to T .

Laiachi – Do you agree with this way to introduce the category AF ? I

think it is more elegant to derive it as a special case of the notion of a

category of bicomodules GMF. Moreover the universal property might be

induced by the universal property of the single object category. it might

be worth to make a remark on this, I don’t know wether this is ever been

observed before...

Let X be the one-object category, then the category XM F can be described as follows.

A functor X : X → A is completely determined by the image X of the single object

in X . A natural transformation x : X → FX is completely determined by a morphism

dX : X → F (X). In this way, we can identify an object in XM F with a pair (X, dX)

consisting of an object X ∈ A and a morphism dX : X → F (X) satisfying

δX ◦ dX = F (dX) ◦ dX , ξX ◦ dX = X.

Similary, a morphism f : (X, dX) → (X ′, dX
′
) in XM F is completely determined by a

morphism f : X → X ′ of A such that

dX
′ ◦ f = F (f) ◦ dX .

Under this identification, we will denote this category by AF. Denote by S : AF → A
the forgetful functor and T : A → AF,T(Y ) = (F (Y ), δY ), T = F (f), for every object

Y and morphism f of A. Then we obtain an adjunction S a T, with ST = F satisfying

a universal property, see [7, Theorem 2.2].

Remark 1.5. It is well known that AF is an additive category with direct sums and

cokernels, admitting (F (U), δU) as a sub-generator, whenever U is a generator of A.

However, AF is not necessarily a Grothendieck category. But, if we assume that F is

an exact functor and that A poses a generating set of finitely generated objects, then

one can easily check that AF becomes a Grothendieck category.

The main results of this section is the following
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Theorem 1.6. Let A be a Grothendieck category. Consider a comonad F = (F, δ, ξ) in

A whose functor F preserves cokernels and commutes with direct sums. The following

are equivalent

(i) S : AF −→ A is separable functor;

(ii) S : FM F −→ AM F is a Maschke functor;

(iii) δ : (F, δ, δ) −→ (F 2, δF , F δ) is a split monomorphism in the category FM F.

Proof. (i) ⇒ (iii). The unit of the adjunction S a T is given by

(1.7) η(X, dX) : (X, dX)
dX

// TS(X, dX) = (F (X), δX)

for every object (X, dX) of AF. By hypothesis there is a natural transformation ψ :

TS → 11AF such that ψ ◦ η = 11AF . Let us denote by ∇ : F 2 → F the natural

transformation given by the collection of morphisms∇X = S(ψ(F (X), δX)), where X runs

through the class of object of A. By construction ∇ ◦ δ = F and ∇ : (F 2, δF ) → (F, δ)

is a morphism of the category AM F. Since ψ is a natural transformation and δX :

(F (X), δX) → (F 2(X), δF (X)) is morphism in AF, we have the following commutative

diagram

F 3
SψF2 // F 2

F 2
SψF //

Fδ

OO

F

δ

OO

Therefore δ◦∇ = ∇F ◦Fδ, which means that ∇ : (F 2, δF , F δ) → (F, δ, δ) is a morphism

in the category FM F. Thus δ is a split monomorphism of the category FM F.

(iii) ⇒ (ii). Let us denote by Λ : (F 2, δF , F δ) → (F, δ, δ) the left inverse of δ :

(F, δ, δ) → (F 2, δF , F δ), i.e. Λ ◦ δ = F , in the category FM F. Let (M,m, n) be any F-

bicomodule. The unit of the adjunction S a T stated in lemma 1.4, at this bicomodule

is given by

(1.8) Θ(M,m, n) : (M,m, n)
n // T ◦S (M,m, n) = (MF,mF ,Mδ).

Consider the natural transformation defined by the following composition

υ : MF
nF // MF 2 MΛ // MF

Mξ // M .

It is easily seen that υ ◦ n = M. The implication will be established if we show that υ

is a morphism in the category of bicomodules FM F. We can compute

m ◦ υ = m ◦Mξ ◦MΛ ◦ nF

= FMξ ◦mF ◦MΛ ◦ nF , m− is natural

= FMξ ◦ FMΛ ◦mF 2 ◦ nF , m− is natural

= FMξ ◦ FMΛ ◦ FnF ◦mF , by (1.5)

= F
(
Mξ ◦MΛ ◦ nF

)
◦mF

= Fυ ◦ nF ,
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which proves that υ is a morphism in AM F. On the other hand, we have

n ◦ υ = n ◦Mξ ◦MΛ ◦ nF

= MFξ ◦ nF ◦MΛ ◦ nF , n− is natural

= MFξ ◦MFΛ ◦ nF 2 ◦ nF , n− is natural

= MFξ ◦MFΛ ◦MδF ◦ nF , by (1.4)

= MFξ ◦Mδ ◦MΛ ◦ nF , by (1.6)

= MΛ ◦ nF ,

and

υF ◦Mδ = MξF ◦MΛF ◦ nF 2 ◦Mδ

= Mξ ◦MΛF ◦MFδ ◦ nF , n− is natural

= MξF ◦M(ΛF ◦ Fδ) ◦ nF

= MξF ◦Mδ ◦MΛ ◦ nF , by (1.6)

= MΛ ◦ nF .

Therefore υF ◦ Mδ = n ◦ υ and υ is a morphism of F-bicomodules. Hence S is a

Maschke functor.

(ii) ⇒ (i). Given (M,m, n) an F-bicomodule, we denote by

Γ(M,m, n) : T S (M,m, n) = (MF,mF ,Mδ) // (M,m, n)

the splitting morphism of Θ(M,m,n) in the category of F-bicomodules. Here Θ− is the

unit of the adjunction S a T . Since (F, δ, δ) is F-bicomodule, we put γ := Γ(F, δ, δ),

thus γ◦δ = F . For any object (X, dX) of the category AF, we consider the composition

φ(X, dX) : F (X)
F (dX)

// F 2(X)
γX // F (X)

ξX // X .

We claim that φ− is a natural transformation which satisfies φ− ◦ η− = 11AF , where η−
is the unit of the adjunction S a T given in (1.7). First of all, we have

φ(X, dX) ◦ η(X, dX) = ξX ◦ γX ◦ F (dX) ◦ dX

= ξX ◦ γX ◦ δX ◦ dX

= ξX ◦ dX = (X, dX),

for every object (X, dX) of AF. To see that φ(X, dX) is a morphism in AF, we can

compute on one hand

dX ◦ φ(X, dX) = dX ◦ ξX ◦ γX ◦ F (dX)

= ξF (X) ◦ F (dX) ◦ γX ◦ F (dX), ξ− is natural

= ξF (X) ◦ γF (X) ◦ F 2(dX) ◦ F (dX), γ− is natural

= ξF (X) ◦ γF (X) ◦ Fδ ◦ F (dX)

= ξF (X) ◦ δX ◦ γX ◦ F (dX), by (1.6)

= γX ◦ F (dX)
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and secondly,

Fφ(X, dX) ◦ δX = FξX ◦ FγX ◦ F 2(dX) ◦ δX
= FξX ◦ FγX ◦ δF (X) ◦ F (dX), δ− is natural

= FξX ◦ δX ◦ γX ◦ F (dX), by (1.6)

= γX ◦ F (dX).

Therefore, Fφ(X, dX)◦δX = dX◦φ(X, dX). Lastly, if we consider a morphism f : (X, dX) →
(Y, dY ) in AF, then

f ◦ φ(X, dX) = f ◦ ξX ◦ γX ◦ F (dX)

= ξY ◦ F (f) ◦ γX ◦ F (dX), ξ− is natural

= ξY ◦ γY ◦ F 2(f) ◦ F (dX), γ− is natural

= ξY ◦ γY ◦ F (dY ) ◦ F (f)

= φ(Y, dY ) ◦ F (f),

which shows that φ− is a natural transformation. �

2. Coderivations and Cointegrations

Let F = (F, δ, ξ) be a comonad in A with underlying functor F ∈ Funt(A, A).

Consider a bicomodule (M,m, n) ∈ FM F. A coderivation from M to F is a natural

transformation g : M −→ F such that

(2.1) δ ◦ g = Fg ◦m + gF ◦ n.

The set of all coderivations from (M,m, n) is an additive group which we denote by

Coder(M, F ). A coderivation g ∈ Coder(M, F ) is said to be inner if the exists a natural

transformation λ : M → 11A such that

(2.2) g = λF ◦ n − Fλ ◦m.

The sub-group of all inner coderivations will be denoted by InCoder(M, F ).

Let (M,m, n) and (M′,m′, n′) be two F -bicomodules. A left cointegration from (M,m, n)

into (M′,m′, n′) is a natural transformation h : M → M′F which satisfies

(2.3) m′
F ◦ h = Fh ◦m, M′δ ◦ h = n′F ◦ h + hF ◦ n.

The first equality means that h : S (M,m, n) = (M,m) → S T S (M,m, n) = (M′F,m′
F )

is a morphism in the category AM F. Right cointegrations are defined in a similar

way. Since we are only concerned with the left ones, we will not mention the word

“left” before cointegration. The additive group of all cointegrations from (M,m, n) into

(M′,m′, n′) will be denoted by Coint(M,M′). A cointegration h ∈ Coint(M,M′) is said

to be inner if there exists a natural transformation ϕ : M → M′ which satisfies

(2.4) m′ ◦ ϕ = Fϕ ◦m, h = ϕF ◦ n − n′ ◦ ϕ.

The first equality means that ϕ : (M,m) → (M′,m′) is a morphism in the category

AM F. The sub-group of all inner cointegrations will be denoted by InCoint(M,M′).
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The following proposition was first stated for bimodule over ring extension in [14] and

for bicomodules over corings in [11]. For the sake of completeness, we give the proof.

Proposition 2.1. For (M,m, n) any F-bicomodule, there is a natural isomorphism of

additive groups

Coint(M, F )
∼ // Coder(M, F )

h
� // ξF ◦ h

Fg ◦m g�oo

whose restriction to the inner sub-groups gives again an isomorphism

InCoint(M, F ) ∼= InCoder(M, F ).

Proof. We only show that the mutually inverse maps are well defined. Let h ∈ Coint(M, F ),

and put g := ξF ◦ h. We have

δ ◦ g = δ ◦ ξF ◦ h

= ξF 2 ◦ Fδ ◦ h, δ− is natural

= ξF 2 ◦
(
δF ◦ h + hF ◦ n

)
= (ξF ◦ δ)F ◦ h + ξF 2 ◦ hF ◦ n

= h + ξF 2 ◦ hF ◦ n

and

FξF ◦ Fh ◦m + ξF 2 ◦ hF ◦ n = FξF ◦ δF ◦ h + ξF 2 ◦ hF ◦ n = h + ξF 2 ◦ hF ◦ n.

That is g ∈ Coder(M, F ). Conversely, given g ∈ Coder(M, F ), we put h = Fg ◦m. We

find

δF ◦ h = δF ◦ Fg ◦m

= F 2g ◦ δM ◦m, δ− is natural

= F 2g ◦ Fm ◦m, by (1.4)

= Fh ◦m,

which shows the first equality of equation (2.3). Now,

Fδ ◦ h = Fδ ◦ Fg ◦m

= Fδ ◦ δ ◦ g − Fδ ◦ gF ◦ n

= δF ◦ δ ◦ g − gF 2 ◦Mδ ◦ n, g− is natural

= δF ◦ δ ◦ g − gF 2 ◦ nF ◦ n, by (1.5) and (1.4)

= δF ◦ δ ◦ g − δF ◦ gF ◦ n + δF ◦ gF ◦ n− gF 2 ◦ nF ◦ n

= δF ◦
(
δ ◦ g − gF ◦ n

)
+

(
δF ◦ gF − gF 2 ◦ nF

)
◦ n

= δF ◦
(
δ ◦ g − gF ◦ n

)
+

(
δ ◦ g − gF ◦ n

)
F
◦ n

= δF ◦ Fg ◦m + FgF ◦mF ◦ n

= δF ◦ h + hF ◦ n
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which proves that h = Fg ◦m ∈ Coint(M, F ). �

Following [11], we will give in the next step the notion of universal cointegration and

that of universal coderivation.

Given (M,m, n) any F-bicomodule, consider the F-bicomodule (MF,mF ,Mδ), which

is the image of (M,m, n) under the functor T S . We call it the bicomodule induced by

M. Since n : (M,m, n) → (MF,mF ,Mδ) is a morphism of F-bicomodules, we obtain by

lemma 1.3 the following sequence of F-bicomodules

(2.5) 0 // (M,m, n)
n // (MF,mF ,Mδ)

nc
// (K (M), u, v) // 0 ,

where (K (M), u, v), nc denotes the cokernel of n. Consider the natural transformation

w′ := MF − n ◦Mξ : MF −→ MF

It is easily checked that mF ◦ w′ = Fw′ ◦ mF , thus w′ is a morphism in the category

AM F. Also, w′ satisfies w′ ◦ n = 0. So, by the universal property of cokernels, there

exists a morphism in the category AM F, w : (K (M), v) → (MF,mF ) which makes the

following diagram commutative

(2.6) M
n // MF

nc
//

w′

��

K (M)

w
wwo o o o o o

MF

Thus w ◦ nc = w′, and so nc ◦ w ◦ nc = nc. Hence nc ◦ w = K (M), since nc is an

epimorphism. Furthermore, we have

Proposition 2.2. The morphism w is a cointegration into M (i.e. w ∈ Coint(K (M),M))

which satisfies the following universal property. For every F-bicomodule (M′,m′, n′)

and every cointegration h ∈ Coint(M′,M), there exists a morphism of F-bicomodules

f : (M′,m′, n′) → (K (M), u, v) such that h = w ◦ f. Moreover, the following are

equivalent

(i) The sequence

0 // (M,m, n)
n // (MF,mF ,Mδ)

nc

(K (M), u, v) // 0

splits in the category of bicomodules FM F.

(ii) The universal cointegration w : K (M) → MF is inner.

Proof. For the first statement, it is enough to show that w′ is cointegration into M, since

nc is an epimorphism. By definition w′ satisfies the first equality in (2.3). The second

equality in (2.3), is given as follows

Mδ ◦ w′ = Mδ −Mδ ◦ n ◦Mξ = Mδ − nF ◦ n ◦Mξ

and

nF ◦ w′ + w′
F ◦Mδ = nF − nF ◦ n ◦Mξ + Mδ − nF ◦MξF ◦Mδ

= Mδ − nF ◦ n ◦Mξ

= Mδ ◦ w′
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The fact that w is universal follows from the following isomorphism of additive groups

(2.7) Hom FMF

(
M′, K (M)

)
∼ // Coint(M′,M)

ϕ � // w ◦ ϕ
nc ◦ h h

�oo

whose proof is an easy computation. Now we check the equivalent statements.

(i) ⇒ (ii). Let us denote by λ : (K (M), u, v) → (MF,mF ,Mδ) the right inverse of nc in

the category FM F, i.e. nc ◦ λ = K (M). Define the composition

ϕ : K (M)
λ // MF

Mξ // M .

Then we have

m ◦ ϕ = m ◦Mξ ◦ λ = FMξ ◦m ◦ λ = FMξ ◦ Fλ ◦ u = F
(
Mξ ◦ λ

)
◦ u = Fϕ ◦ u,

which entails that ϕ is morphism in AM F. The cointegration w is inner by ϕ. Namely,

ϕF ◦ v− n ◦ ϕ = MξF ◦ λF ◦ v− n ◦Mξ ◦ λ
= MξF ◦Mδ ◦ λ− n ◦Mξ ◦ λ
= λ− n ◦Mξ ◦ λ

=
(
MF − n ◦Mξ

)
◦ λ

= w ◦ nc ◦ λ = w.

(ii) ⇒ (i). Suppose that there exists β : K (M) → M a morphism in AM F such that

w = βF ◦ v− n ◦ β. Consider the natural transformation

Γ : K (M)
v // K (M)F

βF // MF .

Then we find nc ◦ Γ = nc ◦ βF ◦ v = nc ◦ w + nc ◦ n ◦ β = nc ◦ w = K (M).

Furthermore, Γ is a morphism in the category of bicomodules FM F, as the following

commutative diagrams shown

K (M)
v //

u

��

K (M)F
βF //

uF

��

MF

mF

��
FK (F )

Fv
// FK (M)F

FβF

// FMF

K (M)
v //

v

��

K (M)F
βF //

K (M)δ
��

K (M)F

Mδ
��

K (M)F
vF

// K (M)F 2

βF2

// MF 2

Therefore the sated sequence splits in the category FM F. �

The cointegration w from Proposition 2.2 will be referred to as the universal cointe-

gration into M.

From now on w denotes the universal cointegration into the F-bicomodule (F, δ, δ).

That is w : K (F ) → F 2 with property w ◦ δc = F 2 − δ ◦ Fξ, where

0 // (F, δ, δ)
δ // (F 2, δF , F δ)

δc
// (K (F ), u, v) // 0

is the canonical sequence. Consider the natural transformation d : K (F ) → F defined

by d : = Fξ ◦ w − ξF ◦ w.
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Lemma 2.3. The morphism d is a coderivation with the following universal property.

For every F-bicomodule (M,m, n) and every coderivation g ∈ Coder(M, F ), there exists

a natural transformation g′ : M → K (F ) such that d ◦ g′ = g.

Proof. On one hand, we have

δ ◦ d ◦ δc = δ ◦ Fξ ◦ w ◦ δc − δ ◦ ξF ◦ w ◦ δc

= δ ◦ Fξ − δ ◦ Fξ ◦ δ ◦ Fξ − δ ◦ ξF + δ ◦ ξF ◦ δ ◦ Fξ
= δ ◦ Fξ − δ ◦ Fξ − δ ◦ ξF + δ ◦ Fξ
= −δ ◦ ξF + δ ◦ Fξ

on the other hand, we have

(
Fd ◦ u + dF ◦ v

)
◦ δc = Fd ◦ u ◦ δc + dF ◦ v ◦ δc

= F 2ξ ◦ Fw ◦ u ◦ δc − FξF ◦ Fw ◦ u ◦ δc

+FξF ◦ wF ◦ v ◦ δc − ξF 2 ◦ wF ◦ v ◦ δc

= F 2ξ ◦ Fw ◦ Fδc ◦ δF − FξF ◦ Fw ◦ Fδc ◦ δF
+FξF ◦ wF ◦ δcF ◦ Fδ − ξF 2 ◦ wF ◦ δcF ◦ Fδ

= F 2ξ ◦ F
(
w ◦ δc

)
◦ δF − FξF ◦ F

(
w ◦ δc

)
◦ δF

+FξF ◦
(
w ◦ δc

)
F
◦ Fδ − ξF 2 ◦

(
w ◦ δc

)
F
◦ Fδ

= F 2ξ ◦ F
(
F 2 − δ ◦ Fξ

)
◦ δF − FξF ◦ F

(
F 2 − δ ◦ Fξ

)
◦ δF

+FξF ◦
(
F 2 − δ ◦ Fξ

)
F
◦ Fδ − ξF 2 ◦

(
F 2 − δ ◦ Fξ

)
F
◦ Fδ

= F 2ξ ◦ δF − ξF 2 ◦ Fδ = δ ◦ Fξ − δ ◦ ξF = δ ◦ d ◦ δc,

thus δ ◦ g = Fd ◦ u + dF ◦ v, which shows that d ∈ Coder(K (F ), F ). Let now

g ∈ Coder(M, F ) be any coderivation. We know by proposition 2.1, that Fg ◦ m ∈
Coint(M, F ). Using the isomorphism stated in (2.7), we obtain the following equality

w ◦ δc ◦ Fg ◦m = Fg ◦m,

which implies that

g = ξF ◦ w ◦ δc ◦ Fg ◦m,
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as g− is natural. Developing d ◦ δc ◦ gF ◦ n, we get

d ◦ δc ◦ gF ◦ n =
(
Fξ − ξF

)
◦ w ◦ δc ◦ gF ◦ n

=
(
Fξ − ξF

)
◦

(
F 2 − δ ◦ ξF

)
◦ gF ◦ n

=
(
Fξ − Fξ ◦ δ ◦ Fξ − ξF + ξF ◦ δ ◦ Fξ

)
◦ gF ◦ n

=
(
Fξ − Fξ − ξF + Fξ

)
◦ gF ◦ n

=
(
Fξ − ξF

)
◦ gF ◦ n

=
(
Fξ − ξF

)
◦

(
δ ◦ g − Fg ◦m

)
= Fξ ◦ Fg ◦m− ξF ◦ Fg ◦m

= −ξF ◦
(
F 2 − δ ◦ Fξ

)
◦ Fg ◦m

= −ξF ◦ w ◦ δc ◦ Fg ◦m = −g.

If we take g′ = −δc ◦ Fg ◦ m, then we find g = d ◦ g′ and the universal property is

fulfilled. �

Corollary 2.4. Let F = (F, δ, δ) be a comonad in a Grothendieck category A such that

F is a right exact and commutes with direct sums. Consider the universal cointegration

w and the universal coderivation d associated to the F-bicomodule (F, δ, δ). The following

are equivalent

(i) The sequence

0 // F
δ // F 2 δc

// K (F ) // 0

is a split sequence in the category of bicomodules FM F.

(ii) The universal cointegration w is inner.

(iii) The universal coderivation d is inner.

Proof. Consequence of lemma 2.1 and Proposition 2.2. �

3. Cohomology For Bicomodules

The following lemma which will be used in the sequel, was in part proved in [4,

Theorem 3.4].

Lemma 3.1. Let A and B two preadditive categories with cokernels, and F : A →
B a covariant functor with right adjoint functor G : B → A . Denote by χ and θ

respectively, the counit and unit of this adjunction. Let E0 be the injective class of

cosplit sequences in B, and put E = F−1(E0). For every object M ∈ A , the following

are equivalent

(i) M is F -injective.

(ii) M is E -injective.

(iii) The unit θM : M → G F (M) is a split-mono in A .



COHOMOLOGY FOR BICOMODULES. SEPARABLE AND MASCHKE FUNCTORS 15

In particular every object of the form G F (M) is E -injective. The functor F is then

Maschke if and only if the class of E -injective objects coincides with class of all objects

of A .

Laiachi – is it not correct that already all the objects in A of the form

G (N) with N ∈ B are E injective ??

Proof. (i) ⇒ (iii). We known by adjunction properties that χF (M) ◦F (θM) = F (M).

Since M is F -injective, θM has a left inverse.

(iii) ⇒ (ii). Let us denote by γ : G F (M) →M the left inverse of θM . For any sequence

E : X
i // X ′ j // X ′′

in E , we need to prove that its corresponding sequence of abelian groups

HomA (X ′′,M) // HomA (X ′,M) // HomA (X,M)

is exact (in the usual sense). Given such E in E , we have a commutative diagram in B

F (X)
F (i)

// F (X ′)
F (j)

//

F (i)c

��

F (X ′′)

Coker(F (i))

l

77ooooooooooo

where l splits as monomorphism by l′. Let τ : X ′ →M be a morphism in A , such that

τ ◦ i = 0. Then there exists a morphism g : Coker(F (i)) → F (M) of B such that

g ◦F (i)c = F (τ). This leads to the composition

X ′′

θX′′
��

α //__________ M

G F (X ′′)
G (g◦l′)

// G F (M)

γ

OO

The morphism α satisfies

α ◦ j = γ ◦ G (g ◦ l′) ◦ θX′′ ◦ j
= γ ◦ G (g ◦ l′) ◦ G F (j) ◦ θX′

= γ ◦ G
(
g ◦ l′ ◦F (j)

)
◦ θX′

= γ ◦ G
(
g ◦ l′ ◦ l ◦F (i)c

)
◦ θX′

= γ ◦ G
(
g ◦F (i)c

)
◦ θX′

= γ ◦ G F (τ) ◦ θX′

= γ ◦ θM ◦ τ = τ

which proves the exactness of the sequence of abelian groups.

(ii) ⇒ (i) Let i : X → X ′ be a morphism of A such that F (i) has a left inverse.

The later condition means that 0 // F (X)
F (i)

// F (X ′) is a cosplit sequence in B.
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Thus 0 // X
i // X ′ is a sequence in E . Therefore, the corresponding sequence of

abelian groups

HomA

(
X ′, M

)
// HomA

(
X, M

)
// 0

is exact. Whence HomA

(
i, M

)
is surjective and so M is F -injective. �

Consider in the category of bicomodules AM F the class E0 of all co-split sequences.

This an injective class, as AM F is an additive category with cokernels. As we have seen,

the corresponding class of E0-injective objects coincides with the class of all objects of

AM F. Denote by E := S −1
(
E0

)
the class of sequences E in the category FM F such

that S (E) is a sequence in E0, as we have point out E is also an injective class.

Proposition 3.2. Let (M,m, n) be an F-bicomodule. The following are equivalent

(i) (M,m, n) is E -injective.

(ii) (M,m, n) is S -injective.

(iii) The unit Θ(M,m, n) of the adjunction S a T at (M,m, n), stated in (1.8), is a split

monomorphism.

In particular every bicomodule of the form T S (M,m, n) = (MF,mF ,Mδ) is E -injective.

Laiachi – Similar remark as in Lemma 3.1. aren’t all comodules of the

form T (N) already relative injective ?

Proof. Follows immediate from Lemma 3.1. �

Fix F = (F, δ, ξ) a comonad in a Grothendieck category A with F ∈ Funt(A, A).

For every F-bicomodule (M,m, n) and each i ≥ 1, we consider the i − th induced F-

bicomodule (MF i,mF i ,MF i−1δ).

Proposition 3.3. Let (M,m, n) be any F-bicomodule. The following sequence in the

category of F-bicomodules

(3.1) 0 // M
n // MF

d0
// MF 2 d1

// · · · // MF n+1 dn
// MF n+2 // · · ·

where d0 = Mδ − nF and recursively

(3.2) dn+1 = dnF + (−1)n+1MF n+1δ, n = 0, 1, 2, · · ·

defines an E -injective resolution for (M,m, n).

Proof. Let us denote by E(M) the sequence defined in (3.1). One can easily check that

the family of morphisms

un := (−1)n+1MF nξ : MF n+1 −→ MF n

in AM F, defines a contracting homotopy for S (E(M)). This implies by [13, Lemma

2.4] that S (E(M)) is sequence in E0. Hence E(M) is in E . �
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Let (N, r, s) be another F-bicomodule and denote by ExtE

(
N, M

)
the homology of

the complex

(3.3) 0 // HomFMF

(
N, MF

)
// HomFMF

(
N, MF 2

)
// · · ·

obtained by applying the functor HomFMF

(
N, −

)
to the E -injective resolution of M

given in (3.1). Using the natural isomorphism stated in Lemma 1.4, we show that the

complex (3.3) is isomorphic to

(3.4) 0 // HomAMF

(
N, M

)
∂0

// HomAMF

(
N, MF

)
∂1

// · · ·

where

∂0(f) = fF ◦ s− n ◦ f,

∂1(f) = Mδ ◦ f − fF ◦ s− nF ◦ f,

∂n(f) =
n−1∑
i=0

(−1)iMF iδFn−i−1 ◦ f + (−1)nfF ◦ s− nFn ◦ f, n = 2, 3, ...

In particular, we have

Ker (∂1) = {f : (N, r) → (MF,mF )|Mδ ◦ f = fF ◦ s + nF ◦ f}
Im (∂0) = {f : (N, r) → (MF,mF )| f = ϕF ◦ s− n ◦ ϕ, for some ϕ : (N, r) → (M,m)}

That is the 1-cocycle are cointegrations and the 1-coboundaries are inner cointegrations.

Thus

(3.5) Ext1
E

(
N, M

)
∼= Coint(N,M)/InCoint(N,M).

The pair (T S ,Θ−) form a resolvent pair in the sense of [13, Prposition 2.10] for

the injective class E . Since FM F has co-kernels, [13, Lemma 2.11] implies that the

cokernels constructed in (2.5) lead to a functor

K : FM F → FM F,

and a natural transformation

T S → K .

Furthermore, K (E) is a sequence in E , whenever E is a sequence in E . By the isomor-

phism given in (2.7), we have HomFMF

(
N, K (E)

)
∼= Coint(N, E) is an exact sequence

of abelian groups, for every E -projective F-bicomodule N and every sequence E in E .

On the other hand, given an E -injective F-bicomodule M, then K (M) is clearly E -

injective. Thus Coint(E,M), which by (2.7) is isomorphic to HomFMF

(
E, K (M)

)
, is

an exact sequence of abelian groups. This proves that the E -derived functor of the bi-

functor Coint(−,−) can be constructed. For N and M two F-bicomodules, let H∗(N,M)

[Laiachi – I removed the mathbb-font for H at this point, since it is not used

further in the paper. I hope this is correct, since I am still not completely

familiar with all the cohomology-stuff...] be this E -derived functor which can be
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computed using the E -injective resolution given in proposition 3.3. Using this times

the natural isomorphisms of (2.7) and the fact that T S (M) are E -injective for every

F-bicomodule M, we can easily show that

ExtnE

(
N, K (M)

)
∼= Hn(N,M), n ≥ 0(3.6)

Extn+1
E

(
N, M

)
∼= ExtnE

(
N, K (M)

)
, n ≥ 1.(3.7)

By both propositions 3.2 and 2.2, and the isomorphisms given in (3.5), (3.6), and (3.7),

we have

Corollary 3.4. For a F-bicomodule (M,m, n), the following are equivalent

(i) M is E -injective.

(ii) M is S -injective.

(iii) The sequence

0 // M
n // MF

nc
// K (M) // 0

splits in the category of bicomodules FM F.

(iv) The universal cointegration from K (M) into M is inner.

(v) Every cointegration into M is inner.

Now we can formulate a characterization of comonads with a coseparable forgetful

functor by means of the cohomology groups of their bicomodules.

Theorem 3.5. Let A be a Grothendieck category and F = (F, δ, ξ) a comonad in A
with universal cogenerator the adjunction S : AF // A : Too . If F is right exact and

preserves direct sums. Then the following are equivalent

(i) S : AF → A is a separable functor.

(ii) S : FM F → AM F is a Maschke functor.

(iii) δ : F → F 2 is a split monomorphism in the category of bicomodules FM F.

(iv) (F, δ, δ) is E -injective F-bicomodule

(v) The universal coderivation from K (F ) into F is inner.

(vi) Every coderivation into F is inner.

(vii) All cointegrations between F-bicomodules are inner.

(viii) ExtnE

(
−, −

)
= 0 for all n ≥ 1.

(ix) Hn(N, F ) = 0 for all F-bicomodule N and all n ≥ 1.

Proof. Corollary 3.4, Proposition 2.1, and properties of Ext give the following equiva-

lences (ii) ⇔ (vii), (ii) ⇔ (viii), (iv) ⇔ (ix), (iv) ⇔ (vi). Proposition 3.2 gives the

equivalence (iv) ⇔ (iii), and lastly Theorem 1.6 gives the equivalences (i) ⇔ (ii) ⇔
(iii). �

4. Applications

We present in this section two different applications of Theorem 3.5. The first one

is devoted to a coseparable corings [11], where of course the comonad is defined by the
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tensor product over algebra. The second deals with the co-algebra coextension over

fields, and the comonad is defined using cotensor product. Here we obtain Nakajima’s

results [16] without requiring the co-commutativity of the base co-algebra. This condi-

tion is however replaced, in our case, by assuming that the extended coalgebra is a left

co-flat.

4.1. Coseparable corings. Let K be commutative ring with 1. In what follows all

algebras are K-algebras, and all bimodules over algebras are assumed to be central K-

bimodules. Let R be an algebra an R-coring [19] is a three-tuple (C,∆, ε) consisting of

a R-bimodule and two R-bilinear maps

∆ : C → C⊗R C and ε : C → R,

known as the comultiplication and the counit, which satisfy

(C⊗R ∆) ◦∆ = (∆⊗R C) ◦∆, (C⊗R ε) ◦∆ = C = (ε⊗R C) ◦∆.

In this sub-section the unadorned symbol −⊗ − between R-bimodules and R-bilinear

maps denotes the tensor product −⊗R −. We denote as usual by CM C the category of

C-bicomodules. The objects are three-tuples (M,%M , λM) consisting of R-bimodule M

and two R-bilinear maps %M : M → M ⊗ C (right C-coaction), λM : M → C⊗M (left

C-coaction) satisfying

(C⊗ λM) ◦ λM = (∆⊗M) ◦ λM , (ε⊗M) ◦ λM = M

(%M ⊗ C) ◦ %M = (M ⊗∆) ◦ %M , (M ⊗ ε) ◦ %M = M

(C⊗ %M) ◦ λM = (λM ⊗ C) ◦ %M .

It is clear that F := (F, δ, ξ) where F = −⊗C : MR → MR, δ = −⊗∆, and ξ = −⊗ε,
is a comonad in the category of right R-modules MR, with F ∈ Funt(MR, MR).

Given any F-bicomodule (M,m, n) we can use Watts’ theorem [20] to find a natural

isomorphism

(4.1) kM
− : M −→ −⊗M(R)

satisfying (−⊗ψR) ◦kM
− = kM′

− ◦ψ for every natural transformation ψ : M → M′ with

(M′,m′, n′) is another F-bicomodule. With the help of this natural isomorphism we can

establish a functor

G : FM F // CM C

(M,m, n) //
(
M(R), %M(R), λM(R)

)
f // fR

where the C-coactions are defined by %M(R) = mR and λM(R) = kM
F (R) ◦ nR. Conversely,

given any C-bicomodule (M,%M , λM), we clearly obtain a F-bicomodule defined by

the three-tuple

(
−⊗M,−⊗ %M ,

(
kM
F

)−1

◦ (−⊗ λM)

)
. This in fact entails an inverse

functor, up to the natural transformations k−
−, to the functor G . Henceforth, G is an

equivalence of categories FM F and CM C. It is then obvious that δ is a split-mono
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in the category of F-bicomodules if and only if ∆ is a split-mono in the category of

C-bicomodules. It is well known (see [3]) that this later condition happens if and only

if the right coaction forgetful functor is separable.

Given two C-bicomodules (M,%M , λM) and (N, %N , λN). Following to [11], a R-

bilinear map g : M → C is said to be coderivation if it satisfies

∆ ◦ g = (g ⊗ C) ◦ %M + (C⊗ g) ◦ λM
The coderivation g is said to be an inner coderivation if there exists a R-bilinear map

γ : M → C such that g = (C ⊗ γ) ◦ λM − (γ ⊗ C) ◦ %M . We denote by CoderC(M,A)

the abelian group of all coderivations from M to C. A (left) cointegration from N into

M is a R-bilinear morphism f : N → C⊗M such that

(∆⊗ C) ◦ f = (C⊗ λM) ◦ f + (C⊗ f) ◦ λN
The cointegration f is said to be an inner cointegration if there exists a R-bilinear map

ϕ : N →M satisfying

%M ◦ ϕ = (ϕ⊗ C) ◦ %N , and f = (C⊗ ϕ) ◦ λN − λM ◦ ϕ

The abelian group of all cointegrations from N into M will be denoted by CointC(N,M).

Cointegrations and coderivations in both categories of bicomodules FM F and CM C

are connected by the following isomorphisms of an abelian groups

Coder(M, F )
∼= // CoderC

(
M(R),C

)
g � // gR

(−⊗ g) ◦ kM
− g�oo

and

Coint(N,M)
∼= // CointC

(
N(R),M(R)

)
f

� // kM
F (R) ◦ fR(

kM
F (−)

)−1

◦ (−⊗ f) ◦ kN
− f�oo

where the isomorphism F (R) ∼= C was used as isomorphism of R-corings. The re-

strictions of the above isomorphisms to the sub-groups of inner coderivations or inner

cointegrations, are also isomorphisms.

Applying Theorem 3.5 to this situation, we obtain

Corollary 4.1 ([11, Theorem 3.10]). For any R-coring (C,∆, ε), the following are equiv-

alent

(i) The forgetful functor S : M C → MR from the category of right C-comodules to the

category of right R-modules is a separable functor.

(ii) The forgetful functor CM C → CMR is a Maschke functor.

(iii) The short exact sequence

0 // C
∆ // C⊗ C

∆c
// Ω(C) // 0
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splits in the category of bicomodules CM C.

(iv) C is E -injective, where E is the injective class in CM C whose sequences split in

the category of R-bimodules RMR.

(v) The universal coderivation from Ω(C) into C is inner.

(vi) Every coderivation into C is inner.

(vii) All cointegrations between C-bicomodules are inner.

(viii) ExtnE

(
−, −

)
= 0 for all n ≥ 1.

(ix) Hn(N,C) = 0 for all C-bicomodule N and all n ≥ 1.

4.2. Coseparable coalgebras co-extension. In what follows K is assumed to be a

field. The unadorned symbol ⊗ between K-vector spaces means the tensor product ⊗K.

Let A, C are two K-coalgebras, and consider φ : A → C a morphism of K-coalgebras.

This define an adjunction

−�CA : M C //
M A : Ooo

between the categories of right comodules with −�CA right adjoint to O, and where

−�C− is the co-tensor product over C. In the remainder, we denote this bi-functor by

−�− := −�C−. Notice that −�− is associative (up to natural isomorphism), as C

is a K-coalgebra and K is a field. From now on, we assume that −�A : M C → M A

is right exact, and thus exact. Put F := O(−�A) : M C → M C , since M C is a

Grothendieck category we can construct the category Funt(M C , M C), and we have in

this case that F ∈ Funt(M C , M C). Let us denote by ∆ : A→ A�A the resulting map

from the universal property of kernels. This is in fact an A-bicomodule map, and thus

a C-bicomodule map by applying O. Furthermore, we have

(A�∆) ◦∆ = (∆�A) ◦∆

(φ�A) ◦∆ = (A�φ) ◦∆ = A (up to isomorphisms).

Using these equalities, on can easily check that there is a comonad F := (F, δ, ξ) in

the category of right C-comodules M C , where δ and ξ are defined by the following

commutative diagrams of natural transformations

−�A
−�∆ // −�A�A,

F
δ //_______ F 2

−�A
−�φ // −�C

∼=
��

F
ξ //______ 11M C

Given (M,m, n) any F-bicomodule, we know that M : M C → M C is right exact and

preserves direct sums. By [9, Theorem 2.6], M(C) := M is a C-bicomodule, and there

is a natural isomorphism

(4.2) ΥM
− : M

∼= // −�M,

which satisfies (−�βC)◦ΥM
− = ΥN

−◦β, for every natural transformation β : M → N with

N ∈ Funt(M C , M C). The natural transformation m and n induces by this isomorphism
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a structure of A-bicomodule on M . The right and left A-coactions are given by

M
mC //

%M ''OOOOOOO M�A

eqk
M, A

��
M ⊗ A

M
nC //

λM
,,YYYYYYYYYYYYYYYYYY MF (C)

ΥM
F (C)

∼=
// F (C)�M ∼= A�M

eqk
A, M

��
A⊗M

where eqkX, Y is the equalizer map, that is the kernel of eqX,Y : X ⊗ Y //
X ⊗ C ⊗ Y//

defined obviously for every right C-comodule X and left C-comodule Y . The counitary

conditions of these new A-coactions are easily seen, while the co-associatively and com-

patibility conditions need a routine and long computations using properties of cotensor

product over coalgebras over fields.

This in fact establishes a functor from the category of F-bicomodules to the category

of A-bicomodule sending

(4.3) F : FM F −→ AM A,
( (

M,m, n
)
→

(
M,%M , λM

))
,
(
f → fC

)
For every F-bicomodule M, F (M) = M is clearly left co-flat C-comodule.

Conversely, given any A-bicomodule (N, %N , λN) such that the underlying left C-

comodule CN is co-flat, then we have a functor −�N : M C → M C which is right

exact and preserves direct sums together with two natural transformations

−�N
−�λ′N // −�A�N, −�N

−�%′N // −�N�A,

where λ′N and %′N are C-bicolinear defined by universal property

N
λN //

λ′N ''OOOOOOO A⊗N

A�N

eqk
A, N

OO N
%N //

%′N ''OOOOOOO N ⊗ A

N�A

eqk
N, A

OO

By definition and the properties of cotensor product λ′N and %′N satisfy the following

equalities

(∆�N) ◦ λ′N = (A�λ′N) ◦ λ′N , (φ�N) ◦ λ′N = N (up to isomorphism)

(N�∆) ◦ %′N = (%′N�A) ◦ %′N , (N�φ) ◦ %′N = N (up to isomorphism)

(A�%′N) ◦ λ′N = (λ′N�A) ◦ %′N .

Consider now the obtained three-tuple (N, r, s), where N := −�N : M C → M C is a

functor, and r := −�%′N : N → FN, s := −�λ′N : N → NF are two natural transforma-

tion. Since N is assumed to be left co-flat, the previous equalities show that (N, r, s) is

actually a F-bicomodule, whose image by F is isomorphic to the initial A-bicomodule

(N, %N , λN), via the natural transformations Υ−
−. Now, given an A-bicolinear morphism

g : (N, %N , λN) → (N ′, %N ′ , λN ′), we get a F-bicomodules morphism g := −�g : N → N′.

This shows that the above constructions are in fact functorial.

In conclusion, we have shown that the functor F defined in (4.3), establishes an

equivalence of categories FM F and AC A, where the later is the full sub-category of
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the category of A-bicomodules AM A whose objects are co-flat left C-comodules after

forgetting by O.

Recall from [16] that A is said to be a separable C-coalgebra if the A-bicolinear map

∆ : A → A�A is a split-mono in the category of A-bicomodules. By [9, Theorem 4.7]

this is equivalent to say that the forgetful functor O is a separable functor. Using the

equivalence of categories established above, it is easy to check that δ is a split-mono in
FM F if and only if ∆ is a split-mono in AM A. Given two A-bicomodules (M,%M , λM)

and (N, %N , λN), a C-bicolinear map g : M → A is said to be C-coderivation if its

satisfies

∆ ◦ g = (g�A) ◦ %′M + (A�g) ◦ λ′M
The C-coderivation g is said to be an inner C-coderivation if there exists a C-bicolinear

map γ : M → C such that g = (A�γ)◦λ′M − (γ�A)◦%′M . We denote by CoderC(M,A)

the abelian group of all C-derivations from M to A. A (left) C-cointegration from N

into M is a morphism of C − A-bicomodule f : N → A�M such that

(∆�A) ◦ f = (A�λ′M) ◦ f + (A�f) ◦ λ′N

The C-cointegration f is said to be an inner C-cointegration if there exists a C-bicolinear

map ϕ : N →M satisfying

%′M ◦ ϕ = (ϕ�A) ◦ %′N , and f = (A�ϕ) ◦ λ′N − λ′M ◦ ϕ

The abelian group of all C-cointegration fromN intoM will be denoted by CointC(N,M).

Given (M,m, n) and (N, r, s) two F-bicomodules and consider there associated A-

bicomodule via the above equivalence of categories F :

(M(C) := M,%M , λM) and (N(C) := N, %′N , λ
′
N).

We have an abelian group isomorphism

Coder(M, F )
∼= // CoderC

(
M(C), A

)
g � // ιA ◦ gC

(−�g) ◦ΥM
− g�oo

where ι− : C�− → 11M C is the obvious natural isomorphism. The isomorphism of

cointegrations groups is given by

Coint(N,M)
∼= // CointC

(
N(C),M(C)

)
f

� // (ιA�M(C)) ◦ΥM
F (C) ◦ fC(

ΥM
F (−)

)−1

◦ (−�f) ◦ΥN
− f�oo

Of course the restrictions of those isomorphisms to the sub-groups of inner cointegra-

tions or inner coderivations are also groups isomorphisms. Applying now theorem 3.5,

we arrive to the following
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Corollary 4.2 (compare with [16, Theorem 1.2]). Let φ : A → C be a morphism of

K-coalgebras over a field K. Assume that CA is a co-flat left C-comodule. The the

following are equivalent

(i) A is a separable C-coalgebra.

(ii) For any A-bicomodule M such that CM is co-flat, every C-coderivation from M

to A is inner.

(iii) For any pair of A-bicomodules M and N such that CM and CN are co-flat, every

C-cointegration from M into N is inner.
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[9] J. Gómez-Torrecillas, Separable functors in corings, Int. J. Math. Math. Sc. 30 (2002), no. 4,

203–225.
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