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1. Introduction 

Parkinson's disease (PD) is a neurodegenerative disorder affecting millions worldwide and is 
one of the most common diseases affecting the aging population (Delau et al., 2006).  Clinical 
hallmarks of PD feature severe motor deficits characterized by bradykinesia, tremor, rigidity 
and postural instability. Though less recognized, PD symptoms also include psychiatric 
complications such as depression, anxiety and psychosis that deleteriously influence quality of 
life. While the origin of motor deficits is the progressive degeneration of nigrostriatal 
dopamine (DA) neurons, other monoamine neurons within the serotonin (5-HT) and 
norepinephrine (NE) system also degenerate, likely contributing to mood dysfunction. In this 
chapter the pathophysiology of non-dopaminergic monoamine systems, their contribution to 
PD-related mood dysfunction, and therapeutics targeting them will be discussed. 

2. Norepinephrine system 

In PD, the cardinal cell death of the dopaminergic substantia nigra pars compacta (SNpc) 
neurons is accompanied by deficits in other monoamine neurotransmitter systems. Of these, 
NE appears most most consistently affected.  Numerous studies, both neuroanatomical and 
biochemical, have documented  severe loss of NE neurons, originating from the locus 
coeruleus (LC), concomitant with or even preceding the loss of DA neurons (Mann and Yates, 
1983; Marien et al., 2004; Schapira et al., 2006). The precise anatomical relationship between the 
LC and the SNpc and the striatum remains to be elucidated; however, evidence exists for a 
functional relationship between these brain regions (Fornai et al., 2007). Most notable, loss of 
NE may exacerbate damage to the DA nigrostriatal system, as  NE is postulated to play a 
neuroprotective and neuromodulator role in the progression of PD (Rommelfanger and 
Weinshenker, 2007).  The following sections will focus on the pathophysiology of NE, its 
relative contribution to the development of psychiatric symptoms of PD, and the treatment of 
these symptoms using noradrenergic drugs.  

2.1 CNS pathophysiology of NE system in PD 
2.1.1 Neuroanatomical evidence in PD patients 
As early as 1917, noradrenergic neurons originating from the LC were reported to be 
severely deteriorated in patients suffering from PD (Tretiakoff et al., 1917; Fornai et al., 
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2007). In a landmark study by Hornykiewicz et al., (1960), direct biochemical evidence 
supported these initial findings, by showing the loss of both NE neurons and NE content in 
several  brain regions in PD, including the caudate nucleus and putamen (Ehringer and 
Hornykiewicz, 1960).  
Neuropathological evidence in post-mortem tissue of PD patients ranges from 
observation of Lewy bodies (LB) within single NE cells and cytoplasmic neurofibrillary 
tangles (NT) to a loss of neurons in the LC (Mann, 1983). Patt and Gerhard (1993), using a 
variant of the Golgi method, found that medium-sized LC neurons containing 
neuromelanin granules were most affected in PD patients (Patt and Gerhard, 1993) 
correlating with loss of synaptic spines, a reduction in dendritic length, swollen perikarya 
and apoptosis. Bertrand et al., (1997) reported the presence of glial proliferation along 
with extracellular neuromelanin granules around dying NE neurons. Post-mortem studies 
carried out in PD patients have established a loss of  approximately 70% of NE neurons 
when compared to age-matched controls (Bertrand et al., 1997; Zarow et al., 2003). 
Interestingly, the NE neuronal loss was greater in the LC compared to cholinergic loss in 
the nucleus basalis and dopaminergic loss in the SNpc in Alzheimer and PD patients, 
respectively (Zarow et al., 2003). Of note, the loss of LC neurons observed in PD patients 
is not homogenous as there appears to be a disease specific and regional pattern to 
degeneration in the LC. For example, German and co-workers (1992) observed that in PD 
patients with no dementia complications, the degeneration was consistent throughout the 
rostral and caudal portion of the LC, whereas, in PD patients with dementia, the cell loss 
occurred more severely in the rostral portion of the LC nucleus.  These findings have led 
to the postulation that LC degeneration patterns could be used to classify and 
differentiate between various sub-groups of PD patients. Comprehensive evidence by 
Braak and colleagues have found that, in PD patients, the degeneration of NE neurons 
progressed from lower brain stem regions, like the LC, to more rostral areas, like the SNpc 
(Braak and Braak, 2000; Braak et al., 2003). 
Biochemical evidence obtained from post-mortem and  ante-mortem studies in PD patients 

suggests that NE levels in multiple brain regions, including the motor  cortex, hippocampus, 

striatum, substantia nigra and hypothalamus, are significantly decreased (Gesi et al., 2000). 

Interestingly, brain regions that are innervated by NE nuclei other than LC are relatively 

spared from NE loss.    

Accumulating evidence strongly suggests that the loss of NE neurons originating from the LC 

is a very important aspect of the pathophysiology of PD and contributes to the progression of 

PD, deleteriously affecting the survival of DA neurons. For example, various experimental 

studies have demonstrated that prior loss of NE innervation increases the vulnerability of the 

DA neurons to a further neurotoxic insult (Fornai et al., 1995; Mavridis et al., 1991). 

Conversely, it has been established that increased NE stimulation is neuroprotective against 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced induced neurotoxicity (Kilbourn 

et al., 1998; Rommelfanger et al., 2004). Thus, it appears that NE may play a neurotrophic role 

acting as a neuroprotective mechanism for DA neurons. This was corroborated by Tong and 

colleagues (2006) who found an inverse relationship between intact NE innervation and DA 

loss in PD patients. Collectively, these findings suggest that the loss of LC neurons precedes 

and facilitates the subsequent damage to nigrostriatal DA neurons. 

Therefore, since NE is known to act as a modulator of the dopaminergic system in various 

brain regions, the loss of NE appears to be a very critical event in the timeline of PD. 
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2.1.2 Mechanism(s) of NE loss 
The mechanisms underlying NE loss like DA neurodegeneration remain to be elucidated. 

However, NE neurons are susceptible to the same insults that affect DA neurons such as 

oxidative stress, neuroinflammation, protein misfolding and neurotoxin-induced cell death. 

For example, Yavich et al. (2006) demonstrated that mice expressing a pathogenic mutation 

of α-synuclein have abnormal compartmentalization and metabolism of both DA and NE. In 

addition, it is well known that monoamines have a tendency to auto-oxidize leading to 

oxidative stress and neuronal cell loss (Chiueh et al., 2000; Maker et al., 1986); and the 

aforementioned abnormal compartmentalization of NE may make LC neurons vulnerable to 

oxidative stress. Genetic mutations in Parkin, a genotype found in PD, also make LC 

neurons vulnerable to cell death. Studies in mice have demonstrated that Parkin mutations 

lead to loss of LC neurons (Von Coelln et al., 2004) likely via protein misfolding and 

dysregulation of the ubiquitous-proteasome system. This is a compelling finding since 

alterations in the expression of proteasome activators have been shown to correlate with 

neuronal loss in SNpc and the LC. Poor expression of proteasome activators correlated with 

neuronal cell loss in the LC and regions expressing normal levels of the proteasome 

activators did not suffer from neuronal degeneration (McNaught et al., 2010). Finally, NE 

neurons are also susceptible to neurotoxin-induced apoptosis. For example, in the 

experimental 6-hydroxydopamine (6-OHDA) model of PD, administration of desipramine, a 

NE transporter (NET) inhibitor, infers protection to NE neurons. Since DA and NE 

transporters share homology in structure and display common affinity for several 

substrates, it is likely that NET takes up the same neurotoxins that affect DA neurons in 

sporadic PD. Collectively these factors could make the LC neurons vulnerable to damage in 

both genetic and sporadic models of PD. More studies that shed light on the 

neurodegenerative processes in the LC are necessary to better understand the progression of 

PD. Moreover, neuroprotective strategies directed toward LC neurons may be warranted 

since loss of LC neurons makes the DA neurons more vulnerable to neurodegeneration. 

2.2 Non-motor symptoms 
2.2.1 NE loss and non-motor symptoms 
Although motor symptoms of PD are widely acknowledged hallmarks of this 
neurodegenerative disease, there exists compelling evidence for  the presence of psychiatric 
complications, such as depression, anxiety and psychotic symptoms (Bosboom et al., 2004). 
Loss of dopaminergic and noradrenergic innervation has been associated with psychiatric 
complications such as depression (Remy et al., 2005) and anxiety (Stein et al., 1990; 
Lauterbach et al., 2003). Cognitive and mood dysfunction has been reported in >50% of PD 
patients. In patients with early PD, depression (40%), apathy (27%), and anxiety (27%) are 
widely reported (Aarsland et al., 2009) and it is notable that these non-motor symptoms are 
identified as the most important and devastating feature contributing towards poverty of 
quality of life (McKinlay et al., 2008; Schrag, 2006). Moreover, the incidence of depression 
and anxiety in PD exceeds not only rates within the normal population but also other 
neurological disorders (Weintraub et al., 2003), with anxiety disorders, such as off-period 
panic attacks and specific phobias, have been reported in nearly 40% of PD patients 
(Lauterbach, 2005). Collectively these findings lead to the important observation that 
depression and anxiety are likely a result of neuropathological processes rather than as a 
result of motor impairments. 
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The exact pathophysiology underlying these mood dysfunctions are unknown though given 

the role of NE in several of these symptoms, it is likely that NE loss in PD plays a critical role. 

As discussed earlier, neurodegeneration of LC neurons in PD is a well established 

phenomenon that precedes DA neuronal loss (Braak et al., 2003). It has been postulated that a 

compromised LC produces significant changes in NE receptors and transporters that may lead 

to the development or exacerbation of depression/anxiety (Eskow Jaunarajs et al., 2010). 

Additionally, Remy et al. (2005) have reported reduced binding for the DA/NE transporter, 

suggesting a loss of terminals, in the LC of PD patients suffering from anxiety and depression 

(Remy et al., 2005). In a rodent model of PD, alterations in DA and NE systems in the striatum 

have been reported to produce anxiety (Tadaiesky et al., 2008), consistent with findings in 

naïve rats that NE regulates anxiety behavior. Experimental studies have reported depression 

and anxiety-like behaviors in a 6-OHDA lesion model of PD (Branchi et al., 2010; Eskow 

Jaunarajs et al., 2010; Tadaiesky et al., 2008). Additionally, concomitant depletion of NE, 5-HT 

and DA in a unilateral rodent model of PD produced symptoms of depression, suggesting that 

loss of  all three systems contribute to PD-like depression (Delaville et al., 2010). In an 

interesting study, Taylor et al. (2009) used a vesicular monoamine transporter-2 (VMAT-2) 

deficient mouse model to induce severe NE and DA loss thereby mimicking PD. VMAT-2 

deficient mice exhibited severe depression and anxiety-like symptoms that worsened with 

advancing age (Taylor et al., 2009) highlighting a possible interplay between DA and NE. 

Histological studies have highlighted the fact that LC  neuron morphology is more severely 

affected in PD with depression than in PD without depressio (Chan-Palay and Asan, 1989). 

While most of the evidence in clinical and experimental models correlating NE deficit with 

mood dysfunction is indirect, there exists evidence that noradrenergic drugs might provide 

relief in the treatment of these mood disorders. 

2.2.2 Treatment of non-motor symptoms with NE drugs 
The role for the NE system in affective disorders such as anxiety and depression has been 
partially implicated by the effectiveness of drugs that enhance NE levels. Reboxetine, a NET 
inhibitor, has been proven to be effective in the treatment of depression associated with PD 
(Pintor et al., 2006). In one of the largest Randomized Clinical Trials (RCT) to date Menza 
and colleagues (2009) found that Nortryptaline, a tricyclic antidepressant (TCA), with 
preferential actions as a NET inhibitor, was proven to be more effective in treating 
depression in PD patients compared to selective 5-HT reuptake inhibitors (SSRIs: Menza et 
al., 2009). In a similar placebo controlled study in PD patients, Desipramine, a NET 
inhibitor, was found to be effective in treating depression; however, these improvements 
were accompanied with mild adverse side effects (Devos et al., 2008). These therapeutic 
findings suggest a more prominent role for NE in the development of depression in PD. The 
few drugs that seem to be effective in treating depression likely act to elevate extracellular 
NE levels in the brain, by blocking NET (Dziedzicka-Wasylewska et al., 2006). Therefore, it 
seems feasible that drugs that mimic NE or elevate NE levels in the brain would be effective 
in treating NE-related non-motor symptoms in PD. 

3. Serotonin system 

The 5-HT system like the NE system undergoes significant, though more variable, 
neurodegeneration as PD progresses; a finding documented in various studies, both post- 
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and ante-mortem (Miyawaki et al., 1997; Scatton et al., 1983). Since the 5-HT system 
ubiquitously innervates and modulates basal ganglia nuclei, 5-HT loss likely affects both 
motor symptoms of PD and l-DOPA related side effects. In addition, given the role of 5-HT 
in mood, such alterations may also correlate with the preponderance of depression and 
anxiety seen in PD. Therefore, various treatment strategies have been developed that 
modulate the 5-HT system. In the following sections, we review the neuropathology of the 
5-HT system in PD, the consequences of a damaged 5-HT system on non-motor aspects, and 
the line of experimental and clinical treatments targeting the 5-HT system to provide 
symptomatic relief for the PD patient. 

3.1 CNS pathophysiology of 5-HT system in PD 
3.1.1 Neuroanatomical evidence in PD patients 
Even though degeneration of DA neurons in the SNpc remains the best identified 

neuropathological hallmark in PD, there exists increasing evidence suggesting PD-related 

pathology in the principle 5-HT cell bodies, the raphe nuclei and other regions innervated 

by raphe neurons (Braak et al., 2003).  

Multiple studies have reported the presence of LB in the caudal group of raphe nuclei, like 

the raphe magnus and raphe pallidus, in early PD, sometimes occurring even before the 

onset of motor symptoms (Braak et al., 2003; Del Tredici et al., 2002; Parkkinen et al., 2008). 

It is interesting to note that these caudal raphe nuclei contain 5-HT neurons associated with 

functions like pain perception, and gastrointestinal motility that are manifest as early 

symptoms in PD patients prior to motor complaints (Chaudhuri and Schapira, 2009). The 

rostral raphe nuclei consisting of dorsal and medial raphe nuclei are equally affected in PD 

and according to Braak staging, are affected before the SNpc but after the caudal raphe 

nuclei (Braak et al., 2003). 

Despite reports of raphe LB formation, evidence for the degeneration of 5-HT neurons in the 

rostral raphe nuclei is variable; post-mortem analysis of PD brains by Paulus and Jellinger 

(1991) revealed a profound loss of 5-HT neurons, however, other studies have not (Halliday 

et al., 1990; Mann and Yates, 1983). Several studies have employed transcranial sonography 

to study the midbrain raphe nuclei. This work has revealed abnormal pathology in the form 

of hypoechogenicity or an absence of sonographic signals in PD vs. control subjects. 

Interestingly, PD patients in one study also suffered from higher incidence of depression, 

reflecting a direct relationship between raphe nuclei loss and PD-related depression (Becker 

et al., 1997; Berg and Gaenslen, 2010; Walter et al., 2007b). MRI imaging studies carried out 

in depressed PD patients have also demonstrated a loss of homogeneity in the midbrain 

raphe consistent with  neuronal compromise and/or cell loss (Berg et al., 1999).  

PD-related pathology of the 5-HT system is not limited to the cell bodies of the raphe nuclei. 
Convincing evidence exists for damaged 5-HT projections and terminals as well. For 
example, post-mortem studies in PD patients have described significant loss of 5-HT 
markers, such as brain 5-HT concentrations. In cortical and the basal ganglia regions 5-HT 
content has been reported to be reduced by as much as 50% compared to controls 
(Birkmayer and Birkmayer, 1987). Kish and colleagues (2008) investigated the integrity of 
the forebrain 5-HT system. In contrast to DA loss, which was preferential to the putamen, 5-
HT loss was more prominent in the caudate for all 5-HT markers including 5-HT (-66%), the 
5-HT metabolite 5-HIAA (-42%), 5-HT transporter (SERT), (-56%) and the rate limiting 
enzyme in 5-HT synthesis tryptophan hydroxylase (-59%). These corroborated ante-mortem 
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observations in PD patients that examined levels of 5-HIAA in cerebrospinal fluid and have 
found significant reductions when compared to control patients. Interestingly, the deficits in 
cerebrospinal fluid 5-HIAA levels were more pronounced in PD patients with depression in 
comparison to non-depressed PD patients, again supporting a relationship between 
decreased 5-HT function and depression in PD (Mayeux et al., 1984; Mayeux et al., 1986).  
Development of additional imaging technologies, like PET and SPECT, has facilitated the 

measurement of SERT and thus the evaluation of the integrity of the 5-HT terminal 

(Meyer et al., 2007). In vivo SPECT studies, using non-specific ligands for SERT, found 

decreased binding in the cortex and hypothalamus of PD patients (Berding et al., 2003a; 

Berding et al., 2003b). However, these findings have been contradicted by studies that did 

not find any changes in the mid-brain but rather reduction in the thalamic nuclei of PD 

patients (Caretti et al., 2008; Kim et al., 2003; Roselli et al., 2010). Decreased SERT binding 

has been observed by use of PET imaging using more specific ligands. Under these 

circumstances reduced SERT was observed in the striatum, frontal cortex, caudate 

nucleus, putamen and the mid-brain raphe region of patients with PD (Albin et al., 2008; 

Guttman et al., 2007; Kerenyi et al., 2003). SERT binding is also labile, changing  as PD 

progresses. For example, in the early stages of PD, SERT binding has been shown to be 

reduced in only in the striatum, thalamus and cingulate cortex.  In later symptomatic 

stages of PD these alterations appear to extend to the prefrontal cortex and the raphe 

nuclei (Haapaniemi et al., 2001; Politis et al., 2010). Such findings suggest that a 

progressive reduction in SERT binding may serve as good a bio-marker for the diagnosis 

and development of treatment strategies for PD patients. 

In addition to neuronal integrity,  5-HT receptors are also affected in PD. Modification of 
pre- and post-synaptic 5-HT receptors has been observed in various animal and human 
studies of PD. While it is not clear whether these compensatory changes are due to lost 5-HT 
input, DA innervation, or DA replacement, it is established that dopaminergic tone 
regulates the expression of several  5-HT receptors. 5-HT1A receptor binding is not 
consistently affected in the 6-OHDA model of PD; however, studies in MPTP-treated 
macaques suggest increases in striatal and cortical binding (Frechilla et al., 2001; Huot et al., 
2010b). 5-HT1B receptor binding is significantly increased in the striatum (54%) and the 
globus pallidus (33%). Intranigral lesions have also been reported to increase 5-HT4 receptor 
density in the caudate and the globus pallidus (Di Matteo et al., 2008). Studies using in situ 
hybridization and autoradiographic radioligand binding have revealed few changes in 5-
HT1A and 5-HT2B receptor binding (Numan et al., 1995; Zhang et al., 2008); however, 5-HT2A 
receptors have been shown to increase in the striatum (Zhang et al., 2008). The possibility 
exists that striatal 5-HT2A and 5-HT2C receptor are differentially regulated in 6-OHDA-
lesioned animals and the changes observed in these receptors could be a reflection of the 
compensatory changes in the PD-afflicted brain. Some of the changes in 5-HT receptor 
binding are reversible after treatment with l-DOPA, Zhang and colleagues (2008) reported a 
reversal of increased striatal 5-HT2A receptor mRNA in a 6-OHDA rodent model of PD after 
l-DOPA treatment. Interestingly, l-DOPA did not alter the changes in striatal 5-HT2C 
receptor mRNA levels. It appears that changes in regulation of the 5-HT2A receptor are 
dependent on striatal DA levels and the 5-HT2C loss could be due to nigrostriatal loss, thus 
reflecting a difference in regulation between the two receptor sub-types. The 5-HT receptor 
changes seen in PD patients are partly similar to changes in the experimental PD models. 
Similar increases were seen in the density of 5-HT2A and 5-HT2C receptor in the striatum as 
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well as other regions (Fox and Brotchie, 2000; Huot et al., 2010c; Radja et al., 1993). It is 
important to note that these changes may not be direct evidence of 5-HT neuropathology 
but definitely provide an insight into neuroplasticity of the 5-HT system that may unravel 
potential targets for therapeutic strategies in the treatment of PD. 
An indirect marker for 5-HT alterations in PD is the assessment of responses to 5-HT 
challenge tests. Of these, the most common is the endocrine response to the 5-HT releasing 
agent, Fenfluramine. In normal subjects Fenfluramine produces robust increases in prolactin 
and corticosterone levels. However, in PD patients it was found that this endocrine response 
was impaired (Kostic et al., 1996; Volpi et al., 1997). Such effects may also correlate with 
non-motor symptoms since PD patients suffering from depression also displayed blunted 
prolactin responses in comparison to non-depressed PD patients (Kostic et al., 1996). 
Collectively these findings provide substantial evidence for neurochemical, 
neuroanatomical and functional alterations of the 5-HT system.  

3.2 Non-motor symptoms 
3.2.1 5-HT loss and non-motor symptoms 
As previously mentioned depression and anxiety are some of the most common non-

motor symptoms in PD and are even associated with an elevated risk towards the 

development of PD (Leentjens et al., 2003; Schuurman et al., 2002; Shiba et al., 2000). The 

underlying pathophysiological mechanisms remain to be completely understood; 

however, it is well established that 5-HT dysfunction plays an important role in several 

mood-disorders in non-PD patients (Michelsen et al., 2008). Depression not only reduces 

the quality of life for PD patients but has a negative effect on caregivers as well (Schrag et 

al., 2000; 2004).  

During the progression of PD it has been observed that brain regions, like rostral raphe, 

thalamus and cortex, that mediate mood disturbances in PD are severely affected by the 

presence of Lewy bodies (Braak and Del Tredici, 2008). Currently, most evidence linking 

abnormal serotonergic neurotransmission to mood disturbances in PD is corroborative but 

points to a role for 5-HT pathology. For example, depressed PD patients display reduced 

brainstem raphe echogenicity, in comparison to non-depressed PD patients (Walter et al., 

2007a). Post-mortem comparisons of neuronal density in the dorsal raphe nucleus between 

depressed and non-depressed PD patients found lower neuronal density in depressed PD 

patients (Paulus and Jellinger, 1991). In vivo studies measuring cerebrospinal fluid levels 

found lower levels of 5-HIAA in depressed PD patients indicating reduced 5-HT 

metabolism (Mayeux et al., 1986). Imaging studies have been less conclusive and have found 

either no change in SERT uptake (Kim et al., 2003) or reported elevated 5-HT receptor 

binding in depressed PD patients when compared to non-depressed PD patients (Boileau et 

al., 2008). Interestingly, acute tryptophan depletion in a small group of PD patients did not 

produce depression or anxiety in these patients (Leentjens et al., 2006). Another major non-

motor symptom affecting PD patients is the development of psychosis that may lead to 

development of paranoid delusions in some PD patients (Ravina et al., 2007). The 

underlying cause remains to be elucidated and some investigators have postulated that 

there may be a serotonergic involvement. 5-HT2 receptors, responsible for hallucinations 

and psychosis, are relatively intact or may even be upregulated in the cortex of PD patients 

suffering from psychosis compared to PD patients free from any psychotic disorder (Cheng 

et al., 1991; Huot et al., 2010a). 
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3.2.2 Treatment of non-motor symptoms with serotonergic drugs 
Drugs acting on the serotonergic system are currently the standard of care for the treatment 

and management of psychiatric dysfunction, like anxiety, depression and psychosis in PD, 

despite causal evidence or 5-HT dysfunction in PD-related mood disorders. Most of the SSRIs 

currently used act by elevating the extracellular 5-HT levels  and thus act indirectly on various 

post-synaptic 5-HT receptors, many of which have been implicated in mood disorders (Dobkin 

et al., 2011; Dobkin et al., 2010; Fox et al., 2009;  Menza et al., 2009; Weintraub et al., 2006). The 

other potential side effects such as postural hypotension, sedation and 5-HT syndrome, due to 

5-HT1 receptor stimulation, continue to limit the use of these antidepressants in PD patients 

(Veazey et al., 2005). It is important to note that many PD patients suffer from orthostatic 

hypotension and tremors and these could get exacerbated. Nefazodone, a 5-HT2 receptor  

antagonist/re-uptake inhibitor has been used as an antidepressant and to reduce 

extrapyramidal symptoms in PD patients (Avila et al., 2003). 

Psychotic complications usually treated with drugs that have an anti-dopaminergic profile are 

not ideal for the PD patient since it can lead to worsening of motor symptoms. Therefore, 

atypical antipsychotics, like Clozapine and Quetiapine, have been found to be effective in 

treating psychosis in PD patients (Kurlan et al., 2007), an effect attributed to their 5-HT2 

receptor antagonistic properties. Another non-selective 5-HT2 receptor antagonist Mianserin 

has been demonstrated to reduce visual hallucinations in a small group of PD patients without 

affecting the parkinsonian motor symptoms. Preliminary findings from a Phase II study 

evaluating Pimavanserin, a 5-HT2A receptor inverse agonist, are encouraging and show a 

trend in improving psychosis without affecting PD motor scores (Meltzer et al., 2010). 

It is of interest to note that l-DOPA therapy has been traditionally assumed to improve 

affective symptoms, like depression and anxiety; however, emerging evidence suggests 

that chronic use of l-DOPA may aggravate mood problems (Eskow Jaunarajs et al., 2011). 

Preclinical investigations have reported that 6-OHDA-lesioned rats chronically treated 

with l-DOPA exhibit reduced 5-HT and 5-HIAA levels (Carta et al., 2007; Eskow Jaunarajs 

et al., 2011). Studies employing in vivo microdialysis have confirmed reductions in 5-HT 

levels, after acute l-DOPA, in the 6-OHDA-lesioned striatum as well as in non-motor 

affective sites (Navailles et al., 2010). Chronic l-DOPA treatment has been demonstrated to 

reduce expression of tryptophan hydroxylase within the dorsal raphe nucleus, which may 

lead to reduced 5-HT synthesis and release in efferent structures (Eskow Jaunarajs et al., 

2011). l-DOPA uptake and release of DA by 5-HT terminals into the striatum may 

compete with native 5-HT function leading to an aggravation of affective disorders like 

depression and anxiety in PD patients undergoing chronic l-DOPA therapy (Eskow 

Jaunarajs et al., 2011) . 

In sum, drugs acting on the serotonergic system provide some symptomatic relief for PD 

patients. However, l-DOPA therapy by itself has the potential to exacerbate mood 

disorders.  

4. Conclusion 

In conclusion, there exists convincing evidence that both 5-HT and NE systems are severely 

affected in PD and that they contribute towards PD progression and symptoms. 

Therapeutics targeting these systems appear beneficial; however, more research is necessary 

to develop more efficacious therapeutic targets and strategies. 
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